- Home
- A-Z Publications
- Annual Review of Statistics and Its Application
- Previous Issues
- Volume 11, 2024
Annual Review of Statistics and Its Application - Volume 11, 2024
Volume 11, 2024
-
-
Analysis of Microbiome Data
Vol. 11 (2024), pp. 483–504More LessThe microbiome represents a hidden world of tiny organisms populating not only our surroundings but also our own bodies. By enabling comprehensive profiling of these invisible creatures, modern genomic sequencing tools have given us an unprecedented ability to characterize these populations and uncover their outsize impact on our environment and health. Statistical analysis of microbiome data is critical to infer patterns from the observed abundances. The application and development of analytical methods in this area require careful consideration of the unique aspects of microbiome profiles. We begin this review with a brief overview of microbiome data collection and processing and describe the resulting data structure. We then provide an overview of statistical methods for key tasks in microbiome data analysis, including data visualization, comparison of microbial abundance across groups, regression modeling, and network inference. We conclude with a discussion and highlight interesting future directions.
-
-
-
Statistical Brain Network Analysis
Vol. 11 (2024), pp. 505–531More LessThe recent fusion of network science and neuroscience has catalyzed a paradigm shift in how we study the brain and led to the field of brain network analysis. Brain network analyses hold great potential in helping us understand normal and abnormal brain function by providing profound clinical insight into links between system-level properties and health and behavioral outcomes. Nonetheless, methods for statistically analyzing networks at the group and individual levels have lagged behind. We have attempted to address this need by developing three complementary statistical frameworks—a mixed modeling framework, a distance regression framework, and a hidden semi-Markov modeling framework. These tools serve as synergistic fusions of statistical approaches with network science methods, providing needed analytic foundations for whole-brain network data. Here we delineate these approaches, briefly survey related tools, and discuss potential future avenues of research. We hope this review catalyzes further statistical interest and methodological development in the field.
-
-
-
Distributed Computing and Inference for Big Data
Vol. 11 (2024), pp. 533–551More LessData are distributed across different sites due to computing facility limitations or data privacy considerations. Conventional centralized methods—those in which all datasets are stored and processed in a central computing facility—are not applicable in practice. Therefore, it has become necessary to develop distributed learning approaches that have good inference or predictive accuracy while remaining free of individual data or obeying policies and regulations to protect privacy. In this article, we introduce the basic idea of distributed learning and conduct a selected review on various distributed learning methods, which are categorized by their statistical accuracy, computational efficiency, heterogeneity, and privacy. This categorization can help evaluate newly proposed methods from different aspects. Moreover, we provide up-to-date descriptions of the existing theoretical results that cover statistical equivalency and computational efficiency under different statistical learning frameworks. Finally, we provide existing software implementations and benchmark datasets, and we discuss future research opportunities.
-