1932

Abstract

Oceanic motions with spatial scales of 200 m–20 km, called submesoscales, are ubiquitous in the upper ocean and serve as a key intermediary between larger-scale balanced dynamics and unbalanced turbulence. Here, we introduce the fluid dynamics of submesoscales and contrast them with motions at larger and smaller scales. We summarize the various ways in which submesoscales develop due to instabilities that extract potential or kinetic energy from larger-scale balanced currents; some instabilities have counterparts at larger scales, while others are distinct to the submesoscale regime. Submesoscales modify the density stratification in the upper ocean and redistribute energy between scales. These energy transfers are complex, having both up-scale and down-scale components. Submesoscale eddies and fronts also contribute to a spatially heterogeneous distribution of shear and restratification that leave an imprint on upper ocean turbulence. The impact of submesoscales on the Earth's climate remains an exciting research frontier.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-031422-095147
2023-01-19
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/fluid/55/1/annurev-fluid-031422-095147.html?itemId=/content/journals/10.1146/annurev-fluid-031422-095147&mimeType=html&fmt=ahah

Literature Cited

  1. Adams KA, Hosegood P, Taylor JR, Sallée JB, Bachman S et al. 2017. Frontal circulation and submesoscale variability during the formation of a Southern Ocean mesoscale eddy. J. Phys. Ocean. 47:71737–53
    [Google Scholar]
  2. Akitomo K. 2010. Baroclinic instability and submesoscale eddy formation in weakly stratified oceans under cooling. J. Geophys. Res. Oceans 115:C11027
    [Google Scholar]
  3. Bachman SD, Fox-Kemper B, Pearson B. 2017a. A scale-aware subgrid model for quasi-geostrophic turbulence. J. Geophys. Res. Oceans 122:21529–54
    [Google Scholar]
  4. Bachman SD, Fox-Kemper B, Taylor JR, Thomas LN 2017b. Parameterization of frontal symmetric instabilities. I: theory for resolved fronts. Ocean Model. 109:72–95
    [Google Scholar]
  5. Bachman SD, Klocker A. 2020. Interaction of jets and submesoscale dynamics leads to rapid ocean ventilation. J. Phys. Ocean. 50:102873–83
    [Google Scholar]
  6. Badin G, Tandon A, Mahadevan A. 2011. Lateral mixing in the pycnocline by baroclinic mixed layer eddies. J. Phys. Ocean. 41:112080–101
    [Google Scholar]
  7. Balwada D, Smith KS, Abernathey R. 2018. Submesoscale vertical velocities enhance tracer subduction in an idealized Antarctic Circumpolar Current. Geophys. Res. Lett. 45:189790–802
    [Google Scholar]
  8. Barkan R, McWilliams JC, Shchepetkin AF, Molemaker MJ, Renault L et al. 2017. Submesoscale dynamics in the northern Gulf of Mexico. Part I: regional and seasonal characterization and the role of river outflow. J. Phys. Ocean. 47:92325–46
    [Google Scholar]
  9. Barkan R, Molemaker MJ, Srinivasan K, McWilliams JC, D'Asaro EA. 2019. The role of horizontal divergence in submesoscale frontogenesis. J. Phys. Ocean. 49:61593–618
    [Google Scholar]
  10. Belcher SE, Grant AL, Hanley KE, Fox-Kemper B, Van Roekel L et al. 2012. A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 39:18L18605
    [Google Scholar]
  11. Blumen W. 1979. On short-wave baroclinic instability. J. Atmos. Sci. 36:101925–33
    [Google Scholar]
  12. Boccaletti G, Ferrari R, Fox-Kemper B. 2007. Mixed layer instabilities and restratification. J. Phys. Ocean. 37:92228–50
    [Google Scholar]
  13. Boyd PW, Claustre H, Lévy M, Siegel DA, Weber T. 2019. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568:327–35
    [Google Scholar]
  14. Brannigan L. 2016. Intense submesoscale upwelling in anticyclonic eddies. Geophys. Res. Lett. 43:3360–69
    [Google Scholar]
  15. Brannigan L, Marshall DP, Naveira-Garabato A, Nurser AG 2015. The seasonal cycle of submesoscale flows. Ocean Model. 92:69–84
    [Google Scholar]
  16. Brüggemann N, Eden C. 2014. Evaluating different parameterizations for mixed layer eddy fluxes induced by baroclinic instability. J. Phys. Oceanogr. 44:92524–46
    [Google Scholar]
  17. Buckingham CE, Khaleel Z, Lazar A, Martin AP, Allen JT et al. 2017. Testing Munk's hypothesis for submesoscale eddy generation using observations in the North Atlantic. J. Geophys. Res. Oceans 122:86725–45
    [Google Scholar]
  18. Buckingham CE, Lucas NS, Belcher SE, Rippeth TP, Grant ALM et al. 2019. The contribution of surface and submesoscale processes to turbulence in the open ocean surface boundary layer. J. Adv. Model. Earth Syst. 11:4066–94
    [Google Scholar]
  19. Buckingham CE, Naveira Garabato AC, Thompson AF, Brannigan L, Lazar A et al. 2016. Seasonality of submesoscale flows in the ocean surface boundary layer. Geophys. Res. Lett. 43:52118–26
    [Google Scholar]
  20. Callies J, Ferrari R. 2018a. Baroclinic instability in the presence of convection. J. Phys. Ocean. 48:145–60
    [Google Scholar]
  21. Callies J, Ferrari R. 2018b. Note on the rate of restratification in the baroclinic spindown of fronts. J. Phys. Ocean. 48:71543–53
    [Google Scholar]
  22. Callies J, Ferrari R, Klymak JM, Gula J. 2015. Seasonality in submesoscale turbulence. Nat. Commun. 6:6862
    [Google Scholar]
  23. Callies J, Flierl G, Ferrari R, Fox-Kemper B. 2016. The role of mixed-layer instabilities in submesoscale turbulence. J. Fluid Mech. 788:5–41
    [Google Scholar]
  24. Canuto V, Dubovikov M. 2010. Mixed layer sub-mesoscale parameterization—part 1: derivation and assessment. Ocean Sci. 6:3679–93
    [Google Scholar]
  25. Capet X, Campos E, Paiva A. 2008a. Submesoscale activity over the Argentinian shelf. Geophys. Res. Lett. 35:15L15605
    [Google Scholar]
  26. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF. 2008b. Mesoscale to submesoscale transition in the California Current System. Part I: flow structure, eddy flux, and observational tests. J. Phys. Ocean. 38:29–43
    [Google Scholar]
  27. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF. 2008c. Mesoscale to submesoscale transition in the California Current System. Part III: energy balance and flux. J. Phys. Ocean. 38:102256–69
    [Google Scholar]
  28. Caulfield CP. 2021. Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech. 53:113–45
    [Google Scholar]
  29. Charney JG. 1947. The dynamics of long waves in a baroclinic westerly current. J. Atmos. Sci. 4:5136–62
    [Google Scholar]
  30. Chelton DB, Xie SP 2010. Coupled ocean-atmosphere interactions at oceanic mesoscales. Oceanography 23:52–69
    [Google Scholar]
  31. Cronin MF, Kessler WS. 2009. Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr. 39:51200–15
    [Google Scholar]
  32. Crowe MN, Taylor JR. 2018. The evolution of a front in turbulent thermal wind balance. Part 1. Theory. J. Fluid Mech. 850:179–211
    [Google Scholar]
  33. Crowe MN, Taylor JR. 2019a. Baroclinic instability with a simple model for vertical mixing. J. Phys. Ocean. 49:123273–300
    [Google Scholar]
  34. Crowe MN, Taylor JR. 2019b. The evolution of a front in turbulent thermal wind balance. Part 2. Numerical simulations. J. Fluid Mech. 880:326–52
    [Google Scholar]
  35. Damerell GM, Heywood KJ, Calvert D, Grant ALM, Bell MJ, Belcher SE. 2020. A comparison of five surface mixed layer models with a year of observations in the North Atlantic. Prog. Oceanogr. 187:102316
    [Google Scholar]
  36. D'Asaro E, Lee C, Rainville L, Harcourt R, Thomas L 2011. Enhanced turbulence and energy dissipation at ocean fronts. Science 332:6027318–22
    [Google Scholar]
  37. Dong J, Fox-Kemper B, Zhang H, Dong C. 2020. The scale of submesoscale baroclinic instability globally. J. Phys. Oceanogr. 50:92649–67
    [Google Scholar]
  38. Dong J, Fox-Kemper B, Zhang H, Dong C. 2021. The scale and activity of symmetric instability estimated from a global submesoscale-permitting ocean model. J. Phys. Oceanogr. 51:51655–70
    [Google Scholar]
  39. Dove LA, Thompson AF, Balwada D, Gray AR. 2021. Observational evidence for ventilation hotspots in the Southern Ocean. J. Geophys. Res. Oceans 126:e2021JC017178
    [Google Scholar]
  40. Eady ET. 1949. Long waves and cyclone waves. Tellus 1:333–52
    [Google Scholar]
  41. Eldevik T, Dysthe KB. 2002. Spiral eddies. J. Phys. Ocean. 32:3851–69
    [Google Scholar]
  42. Evans DG, Lucas NS, Hemsley V, Frajka-Williams E, Naveira Garabato AC et al. 2018. Annual cycle of turbulent dissipation estimated from seagliders. Geophys. Res. Lett. 45:1910560–69
    [Google Scholar]
  43. Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 41:253–82
    [Google Scholar]
  44. Flament P, Armi L. 2000. The shear, convergence, and thermohaline structure of a front. J. Phys. Ocean. 30:151–66
    [Google Scholar]
  45. Follows MJ, Williams RG, Marshall JC. 1996. The solubility pump of carbon in the subtropical gyre of the North Atlantic. J. Mar. Res. 54:4605–30
    [Google Scholar]
  46. Fox-Kemper B, Danabasoglu G, Ferrari R, Griffies S, Hallberg R et al. 2011. Parameterization of mixed layer eddies. III: implementation and impact in global ocean climate simulations. Ocean Model. 39:1–261–78
    [Google Scholar]
  47. Fox-Kemper B, Ferrari R, Hallberg R. 2008. Parameterization of mixed layer eddies. Part I: theory and diagnosis. J. Phys. Ocean. 38:61145–65
    [Google Scholar]
  48. Fox-Kemper B, Hewitt HT, Xiao C, Aoalgeirsdóttir G, Drijfhout SS et al. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge, UK: Cambridge Univ. Press
  49. Freilich M, Mahadevan A. 2021. Coherent pathways for subduction from the surface mixed layer at ocean fronts. J. Geophys. Res. 126:e2020JC017042
    [Google Scholar]
  50. Griffiths RW, Killworth PD, Stern ME. 1982. Ageostrophic instability of ocean currents. J. Fluid Mech. 117:343–77
    [Google Scholar]
  51. Groeskamp S, Griffies SM, Iudicone D, Marsh R, Nurser AG, Zika JD. 2019. The water mass transformation framework for ocean physics and biogeochemistry. Annu. Rev. Mar. Sci. 11:271–305
    [Google Scholar]
  52. Gula J, Molemaker MJ, McWilliams JC. 2014. Submesoscale cold filaments in the Gulf Stream. J. Phys. Ocean. 44:102617–43
    [Google Scholar]
  53. Gula J, Molemaker MJ, McWilliams JC. 2016. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nat. Commun. 7:12811
    [Google Scholar]
  54. Haine TW, Marshall J. 1998. Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Ocean. 28:4634–58
    [Google Scholar]
  55. Hamlington PE, Van Roekel LP, Fox-Kemper B, Julien K, Chini GP. 2014. Langmuir–submesoscale interactions: descriptive analysis of multiscale frontal spindown simulations. J. Phys. Ocean. 44:92249–72
    [Google Scholar]
  56. Held IM, Pierrehumbert RT, Garner ST, Swanson KL. 1995. Surface quasi-geostrophic dynamics. J. Fluid Mech. 282:1–20
    [Google Scholar]
  57. Horvat C, Tziperman E, Campin JM. 2016. Interaction of sea ice floe size, ocean eddies, and sea ice melting. Geophys. Res. Lett. 43:8083–90
    [Google Scholar]
  58. Hoskins B. 1974. The role of potential vorticity in symmetric stability and instability. Q. J. R. Meteorol. Soc. 100:425480–82
    [Google Scholar]
  59. Johnston TS, Rudnick DL, Pallàs-Sanz E. 2011. Elevated mixing at a front. J. Geophys. Res. Oceans 116:C11033
    [Google Scholar]
  60. Klein P, Hua BL, Lapeyre G, Capet X, Le Gentil S, Sasaki H 2008. Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Ocean. 38:81748–63
    [Google Scholar]
  61. Klein P, Lapeyre G. 2009. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci. 1:351–75
    [Google Scholar]
  62. Kundu PK, Cohen IM, Dowling DR. 2015. Fluid Mechanics London: Academic
  63. Lapeyre G, Klein P. 2006. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Ocean. 36:2165–76
    [Google Scholar]
  64. Lapeyre G, Klein P, Hua BL. 2006. Oceanic restratification forced by surface frontogenesis. J. Phys. Ocean. 36:81577–90
    [Google Scholar]
  65. Lévy M, Ferrari R, Franks PJ, Martin AP, Rivière P. 2012. Bringing physics to life at the submesoscale. Geophys. Res. Lett. 39:L14602
    [Google Scholar]
  66. Lévy M, Franks PJS, Smith KS. 2018. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 9:4758
    [Google Scholar]
  67. Lindborg E. 2006. The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550:207–42
    [Google Scholar]
  68. Lorenz EN. 1955. Available potential energy and the maintenance of the general circulation. Tellus 7:2157–167
    [Google Scholar]
  69. Mahadevan A. 2016. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8:161–84
    [Google Scholar]
  70. Mahadevan A, D'Asaro E, Lee C, Perry MJ 2012. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 337:609054–58
    [Google Scholar]
  71. Mahadevan A, Oliger J, Street R. 1996. A nonhydrostatic mesoscale ocean model. Part I: well-posedness and scaling. J. Phys. Ocean. 26:91868–80
    [Google Scholar]
  72. Mahadevan A, Tandon A. 2006. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Model. 14:3–4241–56
    [Google Scholar]
  73. Mahadevan A, Tandon A, Ferrari R. 2010. Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res. Oceans 115:C03017
    [Google Scholar]
  74. Manucharyan GE, Thompson AF. 2017. Submesoscale sea ice-ocean interactions in marginal ice zones. J. Geophys. Res. 122:9455–75
    [Google Scholar]
  75. Manucharyan GE, Thompson AF. 2022. Heavy footprints of upper-ocean eddies on weakened Arctic sea ice in marginal ice zones. Nat. Commun. 13:2147
    [Google Scholar]
  76. Martin AP, Richards KJ, Bracco A, Provenzale A. 2002. Patchy productivity in the open ocean. Glob. Biogeochem. Cycles 16:29–19-9
    [Google Scholar]
  77. McWilliams JC. 1985. Submesoscale, coherent vortices in the ocean. Rev. Geophys. 23:2165–82
    [Google Scholar]
  78. McWilliams JC. 2016. Submesoscale currents in the ocean. Proc. R. Soc. A 472:218920160117
    [Google Scholar]
  79. McWilliams JC. 2017. Submesoscale surface fronts and filaments: secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech. 823:391–432
    [Google Scholar]
  80. McWilliams JC. 2019. A survey of submesoscale currents. Geosci. Lett. 6:3
    [Google Scholar]
  81. McWilliams JC, Molemaker MJ, Yavneh I. 2004. Ageostrophic, anticyclonic instability of a geostrophic, barotropic boundary current. Phys. Fluids 16:103720–25
    [Google Scholar]
  82. Mensa JA, Garraffo Z, Griffa A, Özgökmen TM, Haza A, Veneziani M. 2013. Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn. 63:8923–41
    [Google Scholar]
  83. Molemaker MJ, McWilliams JC, Capet X. 2010. Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech. 654:35–63
    [Google Scholar]
  84. Molemaker MJ, McWilliams JC, Yavneh I. 2001. Instability and equilibration of centrifugally stable stratified Taylor-Couette flow. Phys. Rev. Lett. 86:235270–73
    [Google Scholar]
  85. Molemaker MJ, McWilliams JC, Yavneh I. 2005. Baroclinic instability and loss of balance. J. Phys. Ocean. 35:91505–17
    [Google Scholar]
  86. Munk W, Armi L, Fischer K, Zachariasen F. 2000. Spirals on the sea. Proc. R. Soc. Lond. A 456:19971217–80
    [Google Scholar]
  87. Naveira Garabato AC, Yu X, Callies J, Barkan R, Polzin KL et al. 2022. Kinetic energy transfers between mesoscale and submesoscale motions in the open ocean's upper layers. J. Phys. Ocean. 52:175–97
    [Google Scholar]
  88. Omand MM, D'Asaro EA, Lee CM, Perry MJ, Briggs N et al. 2015. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348:6231222–25
    [Google Scholar]
  89. Pham HT, Sarkar S. 2018. Ageostrophic secondary circulation at a submesoscale front and the formation of gravity currents. J. Phys. Ocean. 48:102507–29
    [Google Scholar]
  90. Renault L, McWilliams JC, Gula J. 2018. Dampening of submesoscale currents by air-sea stress coupling in the Californian upwelling system. Sci. Rep. 8:13388
    [Google Scholar]
  91. Renault L, McWilliams JC, Masson S. 2017. Satellite observations of imprint of oceanic current on wind stress by air-sea coupling. Sci. Rep. 7:17747
    [Google Scholar]
  92. Richards KJ, Whitt DB, Brett G, Bryan FO, Feloy K, Long MC. 2021. The impact of climate change on ocean submesoscale activity. J. Geophys. Res. 126:e2020JC016750
    [Google Scholar]
  93. Riley JJ, Lelong MP. 2000. Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32:613–57
    [Google Scholar]
  94. Riley JJ, Lindborg E. 2008. Stratified turbulence: a possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci. 65:72416–24
    [Google Scholar]
  95. Rudnick DL, Luyten JR. 1996. Intensive surveys of the Azores Front: 1. Tracers and dynamics. J. Geophys. Res. Oceans 101:C1923–39
    [Google Scholar]
  96. Ruiz S, Claret M, Pascual A, Olita A, Troupin C et al. 2019. Effects of oceanic mesoscale and submesoscale frontal processes on vertical transport of phytoplankton. J. Geophys. Res. 124:859996014
    [Google Scholar]
  97. Sallée JB, Shuckburgh E, Bruneau N, Meijers AJ, Bracegirdle TJ, Wang Z. 2013. Assessment of Southern Ocean mixed-layer depths in CMIP5 models: historical bias and forcing response. J. Geophys. Res. Oceans 118:41845–62
    [Google Scholar]
  98. Salmon R. 1980. Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn. 15:1167–211
    [Google Scholar]
  99. Sasaki H, Klein P, Qiu B, Sasai Y. 2014. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun. 5:5636
    [Google Scholar]
  100. Satomura T. 1981. An investigation of shear instability in a shallow water. J. Meteorol. Soc. Japan Ser. II 59:1148–67
    [Google Scholar]
  101. Scully-Power P. 1986. Navy oceanographer shuttle observations: STS 41-G mission report Tech. Doc. 7611 Nav. Underw. Syst. Cent. Newport, RI:
  102. Shakespeare CJ. 2016. Curved density fronts: cyclogeostrophic adjustment and frontogenesis. J. Phys. Oceanogr. 46:103193–207
    [Google Scholar]
  103. Siegelman L, Klein P, Rivière P, Thompson AF, Torres HS et al. 2020. Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci. 13:50–55
    [Google Scholar]
  104. Skyllingstad ED, Duncombe J, Samelson RM. 2017. Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part II: forced simulations. J. Phys. Ocean. 47:102429–54
    [Google Scholar]
  105. Skyllingstad ED, Samelson R. 2012. Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: unforced simulations. J. Phys. Ocean. 42:101701–16
    [Google Scholar]
  106. Stamper MA, Taylor JR. 2017. The transition from symmetric to baroclinic instability in the Eady model. Ocean Dyn. 67:65–80
    [Google Scholar]
  107. Stamper MA, Taylor JR, Fox-Kemper B. 2018. The growth and saturation of submesoscale instabilities in the presence of a barotropic jet. J. Phys. Ocean. 48:112779–97
    [Google Scholar]
  108. Stone PH. 1966. On non-geostrophic baroclinic stability. J. Atmos. Sci. 23:4390–400
    [Google Scholar]
  109. Stone PH. 1970. On non-geostrophic baroclinic stability: part II. J. Atmos. Sci. 27:5721–26
    [Google Scholar]
  110. Stone PH. 1972. On non-geostrophic baroclinic stability: part III. The momentum and heat transports. J. Atmos. Sci. 29:3419–26
    [Google Scholar]
  111. Strobach E, Klein P, Molod A, Fahad AA, Trayanov A et al. 2022. Local air-sea interactions at ocean mesoscale and submesoscale in a western boundary current. Geophys. Res. Lett. 49:e2021GL097003
    [Google Scholar]
  112. Su Z, Wang J, Klein P, Thompson AF, Menemenlis D. 2018. Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 9:775
    [Google Scholar]
  113. Sullivan PP, McWilliams JC. 2018. Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech. 837:341–80
    [Google Scholar]
  114. Sutherland BR, Achatz U, Caulfield CP, Klymak JM. 2019. Recent progress in modeling imbalance in the atmosphere and ocean. Phys. Rev. Fluids 4:010501
    [Google Scholar]
  115. Tagklis F, Bracco A, Ito T, Castelao R. 2020. Submesoscale modulation of deep water formation in the Labrador Sea. Sci. Rep. 10:17489
    [Google Scholar]
  116. Taylor JR. 2016. Turbulent mixing, restratification, and phytoplankton growth at a submesoscale eddy. Geophys. Res. Lett. 43:115784–92
    [Google Scholar]
  117. Taylor JR. 2018. Accumulation and subduction of buoyant material at submesoscale fronts. J. Phys. Ocean. 48:61233–41
    [Google Scholar]
  118. Taylor JR, Bachman S, Stamper M, Hosegood P, Adams K et al. 2018. Submesoscale Rossby waves on the Antarctic Circumpolar Current. Sci. Adv. 4:3eaao2824
    [Google Scholar]
  119. Taylor JR, Ferrari R. 2009. On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech. 622:103–13
    [Google Scholar]
  120. Taylor JR, Ferrari R. 2010. Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Ocean. 40:61222–42
    [Google Scholar]
  121. Taylor JR, Ferrari R. 2011. Ocean fronts trigger high latitude phytoplankton blooms. Geophys. Res. Lett. 38:23L23601
    [Google Scholar]
  122. Taylor JR, Smith KM, Vreugdenhil CA. 2020. The influence of submesoscales and vertical mixing on the export of sinking tracers in large-eddy simulations. J. Phys. Ocean. 50:51319–39
    [Google Scholar]
  123. Thomas LN. 2005. Destruction of potential vorticity by winds. J. Phys. Ocean. 35:122457–66
    [Google Scholar]
  124. Thomas LN, Tandon A, Mahadevan A 2008. Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime MW Hecht, H Hasumi 17–38 Geophys. Monogr. Ser. 177 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  125. Thomas LN, Taylor JR, D'Asaro EA, Lee CM, Klymak JM, Shcherbina A 2016. Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front. J. Phys. Ocean. 46:1197–217
    [Google Scholar]
  126. Thomas LN, Taylor JR, Ferrari R, Joyce TM. 2013. Symmetric instability in the Gulf Stream. Deep Sea Res. II 91:96–110
    [Google Scholar]
  127. Thompson AF, Lazar A, Buckingham C, Garabato ACN, Damerell GM, Heywood KJ. 2016. Open-ocean submesoscale motions: a full seasonal cycle of mixed layer instabilities from gliders. J. Phys. Ocean. 46:41285–307
    [Google Scholar]
  128. Thorpe A, Rotunno R. 1989. Nonlinear aspects of symmetric instability. J. Atmos. Sci. 46:91285–99
    [Google Scholar]
  129. Tulloch R, Marshall J, Hill C, Smith KS. 2011. Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Ocean. 41:61057–76
    [Google Scholar]
  130. Uchida T, Balwada D, Abernathey R, McKinley G, Smith S, Lévy M. 2019. The contribution of submesoscale over mesoscale eddy iron transport in the open Southern Ocean. J. Adv. Model. Earth Syst. 11:3934–58
    [Google Scholar]
  131. Verma V, Pham HT, Sarkar S 2019. The submesoscale, the finescale and their interaction at a mixed layer front. Ocean Model. 140:101400
    [Google Scholar]
  132. Verma V, Pham HT, Sarkar S. 2022. Interaction between upper-ocean submesoscale currents and convective turbulence. J. Phys. Oceanogr. 52:3437–58
    [Google Scholar]
  133. Wenegrat JO, Arthur R 2018. Response of the atmospheric boundary layer to submesoscale sea surface temperature fronts. Geophys. Res. Lett. 45:241350512
    [Google Scholar]
  134. Wenegrat JO, McPhaden MJ. 2016. Wind, waves, and fronts: frictional effects in a generalized Ekman model. J. Phys. Ocean. 46:2371–94
    [Google Scholar]
  135. Wenegrat JO, Thomas LN, Gula J, McWilliams JC. 2018. Effects of the submesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Ocean. 48:92141–65
    [Google Scholar]
  136. Whitt DB, Lévy M, Taylor JR. 2019. Submesoscales enhance storm-driven vertical mixing of nutrients: insights from a biogeochemical large eddy simulation. J. Geophys. Res. Oceans 124:118140–65
    [Google Scholar]
  137. Whitt DB, Taylor JR. 2017. Energetic submesoscales maintain strong mixed layer stratification during an autumn storm. J. Phys. Ocean. 47:102419–27
    [Google Scholar]
  138. Winters KB, Lombard PN, Riley JJ, D'Asaro EA. 1995. Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289:115–28
    [Google Scholar]
  139. Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36:281–314
    [Google Scholar]
  140. Yavneh I, McWilliams JC, Molemaker MJ. 2001. Non-axisymmetric instability of centrifugally stable stratified Taylor-Couette flow. J. Fluid Mech. 448:1–21
    [Google Scholar]
  141. Young W. 1994. The subinertial mixed layer approximation. J. Phys. Ocean. 24:81812–26
    [Google Scholar]
  142. Young W, Chen L. 1995. Baroclinic instability and thermohaline gradient alignment in the mixed layer. J. Phys. Ocean. 25:123172–85
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-031422-095147
Loading
/content/journals/10.1146/annurev-fluid-031422-095147
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error