1932

Abstract

The presence of granulated lymphocytes in the human uterine mucosa, known as decidua during pregnancy, or endometrium otherwise, was first noted in the nineteenth century, but it was not until 1990 that these cells were identified as a type of natural killer (NK) cell. From the outset, uterine NK (uNK) cells were found to be less cytotoxic than their circulating counterparts, peripheral NK (pNK) cells. Recently, unbiased approaches have defined three subpopulations of uNK cells, all of which cluster separately from pNK cells. Here, we review the history of research into uNK cells, including their ability to interact with placental extravillous trophoblast cells and their potential role in regulating placental implantation. We go on to review more recent advances that focus on uNK cell development and heterogeneity and their potential to defend against infection and to mediate memory effects. Finally, we consider how a better understanding of these cells could be leveraged in the future to improve outcomes of pregnancy for mothers and babies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-102119-075119
2023-04-26
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-102119-075119.html?itemId=/content/journals/10.1146/annurev-immunol-102119-075119&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Nogales-Ortiz F, Tarancon I, Nogales FF. 1979. The pathology of female genital tuberculosis: a 31-year study of 1436 cases. Obstet. Gynecol. 53:4422–28
    [Google Scholar]
  2. 2.
    McQueen DB, Maniar KP, Hutchinson A, Confino R, Bernardi L, Pavone ME. 2021. Redefining chronic endometritis: the importance of endometrial stromal changes. Fertil. Steril. 116:3855–61
    [Google Scholar]
  3. 3.
    Mutter GL, Ferenczy A 2002. Anatomy and histology of the uterine corpus. Blaustein's Pathology of the Female Genital Tract RJ Kurma 383–419. New York: Springer
    [Google Scholar]
  4. 4.
    Archer DF, McIntyre-Seltman K, Wilborn WW, Dowling EA, Cone F et al. 1991. Endometrial morphology in asymptomatic postmenopausal women. Am. J. Obstet. Gynecol. 165:2317–22
    [Google Scholar]
  5. 5.
    Turco MY, Moffett A. 2019. Development of the human placenta. Development 146:22dev163428
    [Google Scholar]
  6. 6.
    Kelleher AM, Demayo FJ, Spencer TE. 2019. Uterine glands: developmental biology and functional roles in pregnancy. Endocr. Rev. 40:51424–45
    [Google Scholar]
  7. 7.
    Burton GJ, Cindrova-Davies T, Turco MY. 2020. Review: Histotrophic nutrition and the placental-endometrial dialogue during human early pregnancy. Placenta 102:21–26
    [Google Scholar]
  8. 8.
    Carter AM. 2021. Unique aspects of human placentation. Int. J. Mol. Sci. 22:158099
    [Google Scholar]
  9. 9.
    Jauniaux E, Collins S, Burton GJ 2018. Placenta accreta spectrum: pathophysiology and evidence-based anatomy for prenatal ultrasound imaging. Am. J. Obstet. Gynecol. 218:175–87
    [Google Scholar]
  10. 10.
    Marchand F. 1895. On the so-called decidual tumors following normal childbirth, hydatidiform mole and extrauterine pregnancy. Obstet. Gynecol. 1:419
    [Google Scholar]
  11. 11.
    Weill P. 1921. Etudes sur les leucocytes. I. Les cellules granuleuses des muqueuses intestinale et utérines. Arch. Anat. Microsc. 17:77–82
    [Google Scholar]
  12. 12.
    Hamperl H. 1955. The granular endometrial stromal cells: a new cell type. J. Pathol. Bacteriol. 69:358–59
    [Google Scholar]
  13. 13.
    Hamperl H, Hellweg G. 1958. Granular endometrial stromal cells. Obstet. Gynecol. 11:4379–87
    [Google Scholar]
  14. 14.
    von Numers C. 1953. On the specific granular cells (globular leukocytes) of the human endometrium, with special reference to their occurrence in different pathological conditions and to their staining reactions. Acta Pathol. Microbiol. Scand. 33:3250–56
    [Google Scholar]
  15. 15.
    Kazzaz BA. 1972. Specific endometrial granular cells: a semiquantitative study. Eur. J. Obstet. Gynecol. 2:377–84
    [Google Scholar]
  16. 16.
    Stewart IJ, Peel S. 1993. Natural killer cytotoxicity and antibody-dependent cytotoxicity of cells of rat metrial glands. J. Reprod. Fertil. 98:2489–94
    [Google Scholar]
  17. 17.
    Gambel P, Croy BA, Moore WD, Hunziker RD, Wegmann TG, Rossant J. 1985. Characterization of immune effector cells present in early murine decidua. Cell. Immunol. 93:2303–14
    [Google Scholar]
  18. 18.
    Croy BA, Gambel P, Rossant J, Wegmann TG. 1985. Characterization of murine decidual natural killer (NK) cells and their relevance to the success of pregnancy. Cell. Immunol. 93:2315–26
    [Google Scholar]
  19. 19.
    Bulmer JN, Sunderland CA. 1983. Bone-marrow origin of endometrial granulocytes in the early human placental bed. J. Reprod. Immunol. 5:6383–87
    [Google Scholar]
  20. 20.
    Bulmer JN, Sunderland CA. 1984. Immunohistological characterization of lymphoid cell populations in the early human placental bed. Immunology 52:2349–57
    [Google Scholar]
  21. 21.
    Bulmer JN, Johnson PM. 1986. The T-lymphocyte population in first-trimester human decidua does not express the interleukin-2 receptor. Immunology 58:4685–87
    [Google Scholar]
  22. 22.
    Bulmer JN, Hollings D, Ritson A. 1987. Immunocytochemical evidence that endometrial stromal granulocytes are granulated lymphocytes. J. Pathol. 153:3281–88
    [Google Scholar]
  23. 23.
    Starkey PM, Sargent IL, Redman CW. 1988. Cell populations in human early pregnancy decidua: characterization and isolation of large granular lymphocytes by flow cytometry. Immunology 65:1129–34
    [Google Scholar]
  24. 24.
    King A, Birkby C, Loke YW. 1989. Early human decidual cells exhibit NK activity against the K562 cell line but not against first trimester trophoblast. Cell. Immunol. 118:2337–44
    [Google Scholar]
  25. 25.
    King A, Balendran N, Wooding P, Carter NP, Loke YW. 1991. CD3⁻ leukocytes present in the human uterus during early placentation: phenotypic and morphologic characterization of the CD56++ population. Dev. Immunol. 1:3169–90
    [Google Scholar]
  26. 26.
    Ritson A, Bulmer JN. 1989. Isolation and functional studies of granulated lymphocytes in first trimester human decidua. Clin. Exp. Immunol. 77:2263–68
    [Google Scholar]
  27. 27.
    Ferry BL, Starkey PM, Sargent IL, Watt GM, Jackson M, Redman CWG 1990. Cell populations in the human early pregnancy decidua: natural killer activity and response to interleukin-2 of CD56-positive large granular lymphocytes. Immunology 70:4446–52
    [Google Scholar]
  28. 28.
    Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS et al. 2003. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J. Exp. Med. 198:81201–12
    [Google Scholar]
  29. 29.
    King A, Wooding P, Gardner L, Loke YW. 1993. Expression of perforin, granzyme A and TIA-1 by human uterine CD56+ NK cells implies they are activated and capable of effector functions. Hum. Reprod. 8:122061–67
    [Google Scholar]
  30. 30.
    Kopcow HD, Allan DSJ, Chen X, Rybalov B, Andzelm MM et al. 2005. Human decidual NK cells form immature activating synapses and are not cytotoxic. PNAS 102:4315563–68
    [Google Scholar]
  31. 31.
    King A, Loke YW. 1990. Human trophoblast and JEG choriocarcinoma cells are sensitive to lysis by IL-2-stimulated decidual NK cells. Cell. Immunol. 129:2435–48
    [Google Scholar]
  32. 32.
    Verma S, Hiby SE, Loke YW, King A. 2000. Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol. Reprod. 62:4959–68
    [Google Scholar]
  33. 33.
    Saito S, Morii T, Enomoto M, Sakakura S, Nishikawa K et al. 1993. The effect of interleukin 2 and transforming growth factor-β2 (TGF-β2) on the proliferation and natural killer activity of decidual CD16⁻ CD56bright natural killer cells. Cell. Immunol. 152:2605–13
    [Google Scholar]
  34. 34.
    Jokhi PP, King A, Sharkey AM, Smith SK, Loke YW. 1994. Screening for cytokine messenger ribonucleic acids in purified human decidual lymphocyte populations by the reverse-transcriptase polymerase chain reaction. J. Immunol. 153:104427–35
    [Google Scholar]
  35. 35.
    Higuma-Myojo S, Sasaki Y, Miyazaki S, Saki M, Siozaki A et al. 2005. Cytokine profile of natural killer cells in early human pregnancy. Am. J. Reprod. Immunol. 54:121–29
    [Google Scholar]
  36. 36.
    Bianco J, Stephenson K, Yamada AT, Croy BA. 2008. Time-course analyses addressing the acquisition of DBA lectin reactivity in mouse lymphoid organs and uterus during the first week of pregnancy. Placenta 29:121009–15
    [Google Scholar]
  37. 37.
    Paffaro VA, Bizinotto MC, Joazeiro PP, Yamada AT. 2003. Subset classification of mouse uterine natural killer cells by DBA lectin reactivity. Placenta 24:5479–88
    [Google Scholar]
  38. 38.
    Huhn O, Ivarsson MA, Gardner L, Hollinshead M, Stinchcombe JC et al. 2020. Distinctive phenotypes and functions of innate lymphoid cells in human decidua during early pregnancy. Nat. Commun. 11:1381
    [Google Scholar]
  39. 39.
    Goodridge JP, Jacobs B, Saetersmoen ML, Clement D, Hammer Q et al. 2019. Remodeling of secretory lysosomes during education tunes functional potential in NK cells. Nat. Commun. 10:1514
    [Google Scholar]
  40. 40.
    Chiang SCC, Wood SM, Tesi B, Akar HH, Al-Herz W et al. 2017. Differences in granule morphology yet equally impaired exocytosis among cytotoxic T cells and NK cells from Chediak-Higashi syndrome patients. Front. Immunol. 8:426
    [Google Scholar]
  41. 41.
    Haliotis T, Roder J, Klein M, Ortaldo J, Fauci AS et al. 1980. Chediak-Higashi gene in humans. I. Impairment of natural-killer function. J. Exp. Med. 151:51039–48
    [Google Scholar]
  42. 42.
    Gil-Krzewska A, Wood SM, Murakami Y, Nguyen V, Chiang SCC et al. 2016. Chediak-Higashi syndrome: Lysosomal trafficking regulator domains regulate exocytosis of lytic granules but not cytokine secretion by natural killer cells. J. Allergy Clin. Immunol. 137:41165–77
    [Google Scholar]
  43. 43.
    Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M et al. 2018. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563:7731347–53
    [Google Scholar]
  44. 44.
    Redman CW, McMichael AJ, Stirrat GM, Sunderland CA, Ting A. 1984. Class I major histocompatibility complex antigens on human extra-villous trophoblast. Immunology 52:3457–68
    [Google Scholar]
  45. 45.
    Apps R, Murphy SP, Fernando R, Gardner L, Ahad T, Moffett A. 2009. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127:126–39
    [Google Scholar]
  46. 46.
    Ellis SA, Sargent IL, Redman CWG, McMichael AJ. 1986. Evidence for a novel HLA antigen found on human extravillous trophoblast and a choriocarcinoma cell line. Immunology 59:4595–601
    [Google Scholar]
  47. 47.
    Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, Demars R. 1990. A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:4952220–23
    [Google Scholar]
  48. 48.
    Ellis SA, Palmer MS, McMichael AJ. 1990. Human trophoblast and the choriocarcinoma cell line BeWo express a truncated HLA Class I molecule. J. Immunol. 144:2731–35
    [Google Scholar]
  49. 49.
    Hutter H, Hammer A, Blaschitz A, Hartmann M, Ebbesen P et al. 1996. Expression of HLA class I molecules in human first trimester and term placenta trophoblast. Cell Tissue Res 286:3439–47
    [Google Scholar]
  50. 50.
    Hiby SE, King A, Sharkey A, Loke YW. 1999. Molecular studies of trophoblast HLA-G: polymorphism, isoforms, imprinting and expression in preimplantation embryo. Tissue Antigens 53:11–13
    [Google Scholar]
  51. 51.
    King A, Boocock C, Sharkey AM, Gardner L, Beretta A et al. 1996. Evidence for the expression of HLA-C class I mRNA and protein by human first trimester trophoblast. J. Immunol. 156:62068–76
    [Google Scholar]
  52. 52.
    King A, Allan DSJ, Bowen M, Powis SJ, Joseph S et al. 2000. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur. J. Immunol. 30:61623–31
    [Google Scholar]
  53. 53.
    Pröll J, Blaschitz A, Hutter H, Dohr G. 1999. First trimester human endovascular trophoblast cells express both HLA-C and HLA-G. Am. J. Reprod. Immunol. 42:130–36
    [Google Scholar]
  54. 54.
    Lee N, Goodlett DR, Ishitani A, Marquardt H, Geraghty DE. 1998. HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences. J. Immunol. 160:104951–60
    [Google Scholar]
  55. 55.
    O'Callaghan CA, Tormo J, Willcox BE, Braud VM, Jakobsen BK et al. 1998. Structural features impose tight peptide binding specificity in the nonclassical MHC molecule HLA-E. Mol. Cell 1:4531–41
    [Google Scholar]
  56. 56.
    Llano M, Lee N, Navarro F, García P, Albar JP et al. 1998. HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors: preferential response to an HLA-G-derived nonamer. Eur. J. Immunol. 28:92854–63
    [Google Scholar]
  57. 57.
    Wagtmann N, Rajagopalan S, Winter CC, Peruzzi M, Long EO. 1995. Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity 3:6801–9
    [Google Scholar]
  58. 58.
    Moretta A, Sivori S, Vitale M, Pende D, Morelli L et al. 1995. Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J. Exp. Med. 182:3875–84
    [Google Scholar]
  59. 59.
    Moffett A, Colucci F. 2015. Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction. Immunol. Rev. 267:1283–97
    [Google Scholar]
  60. 60.
    Parham P, Moffett A. 2013. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat. Rev. Immunol. 13:2133–44
    [Google Scholar]
  61. 61.
    Sharkey AM, Gardner L, Hiby S, Farrell L, Apps R et al. 2008. Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J. Immunol. 181:139–46
    [Google Scholar]
  62. 62.
    Male V, Sharkey A, Masters L, Kennedy PR, Farrell LE, Moffett A. 2011. The effect of pregnancy on the uterine NK cell KIR repertoire. Eur. J. Immunol. 41:103017–27
    [Google Scholar]
  63. 63.
    Parham P, Guethlein LA. 2018. Genetics of natural killer cells in human health, disease, and survival. Annu. Rev. Immunol. 36:519–48
    [Google Scholar]
  64. 64.
    Braud VM, Allan DSJ, O'Callaghan CA, Soderstrom K, D'Andrea A et al. 1998. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:6669795–99
    [Google Scholar]
  65. 65.
    Brooks AG, Borrego F, Posch PE, Patamawenu A, Scorzelli CJ et al. 1999. Specific recognition of HLA-E, but not classical, HLA class I molecules by soluble CD94/NKG2A and NK cells. J. Immunol. 162:1305–13
    [Google Scholar]
  66. 66.
    Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG. 1998. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J. Exp. Med. 187:5813–18
    [Google Scholar]
  67. 67.
    Lee N, Llano M, Carretero M, Akiko-Ishitani, Navarro F et al. 1998. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. PNAS 95:95199–204
    [Google Scholar]
  68. 68.
    Gamliel M, Goldman-Wohl D, Isaacson B, Gur C, Stein N et al. 2018. Trained memory of human uterine NK cells enhances their function in subsequent pregnancies. Immunity 48:5951–62
    [Google Scholar]
  69. 69.
    Kusumi M, Yamashita T, Fujii T, Nagamatsu T, Kozuma S, Taketani Y. 2006. Expression patterns of lectin-like natural killer receptors, inhibitory CD94/NKG2A, and activating CD94/NKG2C on decidual CD56bright natural killer cells differ from those on peripheral CD56dim natural killer cells. J. Reprod. Immunol. 70:1–233–42
    [Google Scholar]
  70. 70.
    Feyaerts D, Kuret T, Van Cranenbroek B, Van Der Zeeuw-Hingrez S, Van Der Heijden OWH et al. 2018. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire. Hum. Reprod. 33:3441–51
    [Google Scholar]
  71. 71.
    Petrie EJ, Clements CS, Lin J, Sullivan LC, Johnson D et al. 2008. CD94-NKG2A recognition of human leukocyte antigen (HLA)-E bound to an HLA class I leader sequence. J. Exp. Med. 205:3725–35
    [Google Scholar]
  72. 72.
    Heatley SL, Pietra G, Lin J, Widjaja JML, Harpur CM et al. 2013. Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen-E (HLA-E) by natural killer cells. J. Biol. Chem. 288:128679–90
    [Google Scholar]
  73. 73.
    Ober C, Aldrich CL. 1997. HLA-G polymorphisms: neutral evolution or novel function?. J. Reprod. Immunol. 36:1–21–21
    [Google Scholar]
  74. 74.
    Davis DM, Reyburn HT, Pazmany L, Chiu I, Mandelboim O, Strominger JL. 1997. Impaired spontaneous endocytosis of HLA-G. Eur. J. Immunol. 27:102714–19
    [Google Scholar]
  75. 75.
    Park B, Lee S, Kim E, Chang S, Jin M, Ahn K 2001. The truncated cytoplasmic tail of HLA-G serves a quality-control function in post-ER compartments. Immunity 15:2213–24
    [Google Scholar]
  76. 76.
    Walpole NG, Kjer-Nielsen L, Kostenko L, McCluskey J, Brooks AG et al. 2010. The structure and stability of the monomorphic HLA-G are influenced by the nature of the bound peptide. J. Mol. Biol. 397:2467–80
    [Google Scholar]
  77. 77.
    Apps R, Gardner L, Moffett A. 2008. A critical look at HLA-G. Trends Immunol 29:7313–21
    [Google Scholar]
  78. 78.
    Loke YW, King A, Burrows T, Gardner L, Bowen M et al. 1997. Evaluation of trophoblast HLA-G antigen with a specific monoclonal antibody. Tissue Antigens 50:2135–46
    [Google Scholar]
  79. 79.
    Blaschitz A, Juch H, Volz A, Hutter H, Daxboeck C et al. 2005. The soluble pool of HLA-G produced by human trophoblasts does not include detectable levels of the intron 4-containing HLA-G5 and HLA-G6 isoforms. Mol. Hum. Reprod. 11:10699–710
    [Google Scholar]
  80. 80.
    Clements CS, Kjer-Nielsen L, Kostenko L, Hoare HL, Dunstone MA et al. 2005. Crystal structure of HLA-G: a nonclassical MHC class I molecule expressed at the fetal-maternal interface. PNAS 102:93360–65
    [Google Scholar]
  81. 81.
    Lee N, Malacko AR, Ishitani A, Chen MC, Bajorath J et al. 1995. The membrane-bound and soluble forms of HLA-G bind identical sets of endogenous peptides but differ with respect to TAP association. Immunity 3:5591–600
    [Google Scholar]
  82. 82.
    Gonen-Gross T, Achdout H, Arnon TI, Gazit R, Stern N et al. 2005. The CD85J/leukocyte inhibitory receptor-1 distinguishes between conformed and β2-microglobulin-free HLA-G molecules. J. Immunol. 175:84866–74
    [Google Scholar]
  83. 83.
    Boyson JE, Erskine R, Whitman MC, Chiu M, Lau JM et al. 2002. Disulfide bond-mediated dimerization of HLA-G on the cell surface. PNAS 99:2516180–85
    [Google Scholar]
  84. 84.
    Gonen-Gross T, Achdout H, Gazit R, Hanna J, Mizrahi S et al. 2003. Complexes of HLA-G protein on the cell surface are important for leukocyte Ig-like receptor-1 function. J. Immunol. 171:31343–51
    [Google Scholar]
  85. 85.
    Hirayasu K, Arase H. 2015. Functional and genetic diversity of leukocyte immunoglobulin-like receptor and implication for disease associations. J. Hum. Genet. 60:11703–8
    [Google Scholar]
  86. 86.
    Apps R, Gardner L, Sharkey AM, Holmes N, Moffett A. 2007. A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1. Eur. J. Immunol. 37:71924–37
    [Google Scholar]
  87. 87.
    Shiroishi M, Kuroki K, Rasubala L, Tsumoto K, Kumagai I et al. 2006. Structural basis for recognition of the nonclassical MHC molecule HLA-G by the leukocyte Ig-like receptor B2 (LILRB2/LIR2/ILT4/CD85d). PNAS 103:4416412–17
    [Google Scholar]
  88. 88.
    Shiroishi M, Kuroki K, Ose T, Rasubala L, Shiratori I et al. 2006. Efficient leukocyte Ig-like receptor signaling and crystal structure of disulfide-linked HLA-G dimer. J. Biol. Chem. 281:1510439–47
    [Google Scholar]
  89. 89.
    Kuroki K, Matsubara H, Kanda R, Miyashita N, Shiroishi M et al. 2019. Structural and functional basis for LILRB immune checkpoint receptor recognition of HLA-G isoforms. J. Immunol. 203:123386–94
    [Google Scholar]
  90. 90.
    Li C, Houser BL, Nicotra ML, Strominger JL. 2009. HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. PNAS 106:145767–72
    [Google Scholar]
  91. 91.
    Fu B, Zhou Y, Ni X, Tong X, Xu X et al. 2017. Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity 47:61100–13.e6
    [Google Scholar]
  92. 92.
    Marlin R, Duriez M, Berkane N, de Truchis C, Madec Y et al. 2012. Dynamic shift from CD85j/ILT-2 to NKG2D NK receptor expression pattern on human decidual NK during the first trimester of pregnancy. PLOS ONE 7:1e30017
    [Google Scholar]
  93. 93.
    Ristich V, Liang S, Zhang W, Wu J, Horuzsko A. 2005. Tolerization of dendritic cells by HLA-G. Eur. J. Immunol. 35:41133–42
    [Google Scholar]
  94. 94.
    Wu J, Horuzsko A. 2009. Expression and function of immunoglobulin-like transcripts on tolerogenic dendritic cells. Hum. Immunol. 70:5353–56
    [Google Scholar]
  95. 95.
    Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C et al. 2006. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 12:91065–74
    [Google Scholar]
  96. 96.
    Goodridge JP, Witt CS, Christiansen FT, Warren HS. 2003. KIR2DL4 (CD158d) genotype influences expression and function in NK cells. J. Immunol. 171:41768–74
    [Google Scholar]
  97. 97.
    Witt CS, Martin A, Christiansen FT. 2000. Detection of KIR2DL4 alleles by sequencing and SSCP reveals a common allele with a shortened cytoplasmic tail. Tissue Antigens 56:3248–57
    [Google Scholar]
  98. 98.
    Faure M, Long EO. 2002. KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential. J. Immunol. 168:126208–14
    [Google Scholar]
  99. 99.
    Cantoni C, Falco M, Pessino A, Moretta A, Moretta L, Biassoni R. 1999. P49, a putative HLA-G1 specific inhibitory NK receptor belonging to the immunoglobulin superfamily. J. Reprod. Immunol. 43:2157–65
    [Google Scholar]
  100. 100.
    Ponte M, Cantoni C, Biassoni R, Tradori-Cappai A, Bentivoglio G et al. 1999. Inhibitory receptors sensing HLA-G1 molecules in pregnancy: Decidua-associated natural killer cells express LIR-1 and CD94/NKG2A and acquire p49, an HLA-G1-specific receptor. PNAS 96:105674–79
    [Google Scholar]
  101. 101.
    Yan WH, Fan LA. 2005. Residues Met76 and Gln79 in HLA-G α1 domain involved in KIR2DL4 recognition. Cell Res 15:3176–82
    [Google Scholar]
  102. 102.
    Moradi S, Berry R, Pymm P, Hitchen C, Beckham SA et al. 2015. The structure of the atypical killer cell immunoglobulin-like receptor, KIR2DL4. J. Biol. Chem. 290:1610460–71
    [Google Scholar]
  103. 103.
    Clements CS, Kjer-Nielsen L, McCluskey J, Rossjohn J. 2007. Structural studies on HLA-G: implications for ligand and receptor binding. Hum. Immunol. 68:4220–26
    [Google Scholar]
  104. 104.
    Rajagopalan S, Long EO. 1999. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J. Exp. Med. 189:71093–100
    [Google Scholar]
  105. 105.
    Rajagopalan S, Bryceson YT, Kuppusamy SP, Geraghty DE, Van Der Meer A et al. 2006. Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLOS Biol 4:1e9
    [Google Scholar]
  106. 106.
    Rajagopalan S, Long EO. 2012. KIR2DL4 (CD158d): an activation receptor for HLA-G. Front. Immunol. 3:258
    [Google Scholar]
  107. 107.
    Moffett A, Shreeve N. 2022. Local immune recognition of trophoblast in early human pregnancy: controversies and questions. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-022-00777-2
    [Google Scholar]
  108. 108.
    Verma S, King A, Loke YW. 1997. Expression of killer cell inhibitory receptors on human uterine natural killer cells. Eur. J. Immunol. 27:4979–83
    [Google Scholar]
  109. 109.
    Manaster I, Mizrahi S, Goldman-Wohl D, Sela HY, Stern-Ginossar N et al. 2008. Endometrial NK cells are special immature cells that await pregnancy. J. Immunol. 181:31869–76
    [Google Scholar]
  110. 110.
    Mcgrath E, Ryan EJ, Lynch L, Golden-Mason L, Mooney E et al. 2009. Changes in endometrial natural killer cell expression of CD94, CD158a and CD158b are associated with infertility. Am. J. Reprod. Immunol. 61:4265–76
    [Google Scholar]
  111. 111.
    Sharkey AM, Xiong S, Kennedy PR, Gardner L, Farrell LE et al. 2015. Tissue-specific education of decidual NK cells. J. Immunol. 195:73026–32
    [Google Scholar]
  112. 112.
    Ivarsson MA, Stiglund N, Marquardt N, Westgren M, Gidlöf S, Björkström NK. 2017. Composition and dynamics of the uterine NK cell KIR repertoire in menstrual blood. Mucosal Immunol 10:2322–31
    [Google Scholar]
  113. 113.
    Suryawanshi H, Morozov P, Straus A, Sahasrabudhe N, Max KEA et al. 2018. A single-cell survey of the human first-trimester placenta and decidua. Sci. Adv. 4:10eaau4788
    [Google Scholar]
  114. 114.
    Garcia-Alonso L, Handfield LF, Roberts K, Nikolakopoulou K, Fernando RC et al. 2021. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genet. 53:121698–711
    [Google Scholar]
  115. 115.
    Whettlock EM, Von Woon E, Cuff AO, Browne B, Johnson MR, Male V. 2022. Dynamic changes in uterine NK cell subset frequency and function over the menstrual cycle and pregnancy. Front. Immunol. 13:880438
    [Google Scholar]
  116. 116.
    Pique-Regi R, Romero R, Tarca AL, Sendler ED, Xu Y et al. 2019. Single cell transcriptional signatures of the human placenta in term and preterm parturition. eLife 8:e52004
    [Google Scholar]
  117. 117.
    Vazquez J, Chasman DA, Lopez GE, Tyler CT, Ong IM, Stanic AK. 2020. Transcriptional and functional programming of decidual innate lymphoid cells. Front. Immunol. 10:3065
    [Google Scholar]
  118. 118.
    Guo C, Cai P, Jin L, Sha Q, Yu Q et al. 2021. Single-cell profiling of the human decidual immune microenvironment in patients with recurrent pregnancy loss. Cell Discov 7:1
    [Google Scholar]
  119. 119.
    Zhou Y, Fu B, Xu X, Zhang J, Tong X et al. 2020. PBX1 expression in uterine natural killer cells drives fetal growth. Sci. Transl. Med. 12:537eaax1798
    [Google Scholar]
  120. 120.
    Chen P, Zhou L, Chen J, Lu Y, Cao C et al. 2021. The immune atlas of human deciduas with unexplained recurrent pregnancy loss. Front. Immunol. 12:689019
    [Google Scholar]
  121. 121.
    Wu Z, Wang M, Liang G, Jin P, Wang P et al. 2021. Pro-inflammatory signature in decidua of recurrent pregnancy loss regardless of embryonic chromosomal abnormalities. Front. Immunol. 12:772729
    [Google Scholar]
  122. 122.
    Strunz B, Bister J, Jönsson H, Filipovic I, Crona-Guterstam Y et al. 2021. Continuous human uterine NK cell differentiation in response to endometrial regeneration and pregnancy. Sci. Immunol. 6:56eabb7800
    [Google Scholar]
  123. 123.
    Krop J, van der Zwan A, Ijsselsteijn ME, Kapsenberg H, Luk SJ et al. 2022. Imaging mass cytometry reveals the prominent role of myeloid cells at the maternal-fetal interface. iScience 25:7104648
    [Google Scholar]
  124. 124.
    Soares MJ, Varberg KM, Iqbal K. 2018. Hemochorial placentation: development, function, and adaptations. Biol. Reprod. 99:1196–211
    [Google Scholar]
  125. 125.
    Brosens I, Pijnenborg R, Vercruysse L, Romero R. 2011. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 204:3193–201
    [Google Scholar]
  126. 126.
    Duffy JMN, Cairns AE, Magee LA, von Dadelszen P, van 't Hooft J et al. 2020. Standardising definitions for the pre-eclampsia core outcome set: a consensus development study. Pregnancy Hypertens. 21:208–17
    [Google Scholar]
  127. 127.
    Hiby SE, Walker JJ, O'Shaughnessy KM, Redman CWG, Carrington M et al. 2004. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 200:8957–65
    [Google Scholar]
  128. 128.
    Nakimuli A, Chazara O, Hiby SE, Farrell L, Tukwasibwe S et al. 2015. A KIR B centromeric region present in Africans but not Europeans protects pregnant women from pre-eclampsia. PNAS 112:3845–50
    [Google Scholar]
  129. 129.
    Kelemu T, Erlandsson L, Seifu D, Hansson E, Abebe M et al. 2020. Polymorphism in killer cell immunoglobulin-like receptors and human leukocyte antigen-c and predisposition to preeclampsia in Ethiopian pregnant women population. J. Reprod. Immunol. 141:103169
    [Google Scholar]
  130. 130.
    Huhn O, Chazara O, Ivarsson MA, Retière C, Venkatesan TC et al. 2018. High-resolution genetic and phenotypic analysis of KIR2DL1 alleles and their association with pre-eclampsia. J. Immunol. 201:92593–601. Erratum 2019. J. Immunol. 202:61904
    [Google Scholar]
  131. 131.
    Xiong S, Sharkey AM, Kennedy PR, Gardner L, Farrell LE et al. 2013. Maternal uterine NK cell-activating receptor KIR2DS1 enhances placentation. J. Clin. Investig. 123:104264–72
    [Google Scholar]
  132. 132.
    Hiby SE, Apps R, Sharkey AM, Farrell LE, Gardner L et al. 2010. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J. Clin. Investig. 120:114102–10
    [Google Scholar]
  133. 133.
    Hiby SE, Apps R, Chazara O, Farrell LE, Magnus P et al. 2014. Maternal KIR in combination with paternal HLA-C2 regulate human birth weight. J. Immunol. 192:115069–73
    [Google Scholar]
  134. 134.
    Clark MM, Chazara O, Sobel EM, Gjessing HK, Magnus P et al. 2016. Human birth weight and reproductive immunology: testing for interactions between maternal and offspring KIR and HLA-C genes. Hum. Hered. 81:4181–93
    [Google Scholar]
  135. 135.
    Blokhuis JH, Hilton HG, Guethlein LA, Norman PJ, Nemat-Gorgani N et al. 2017. KIR2DS5 allotypes that recognize the C2 epitope of HLA-C are common among Africans and absent from Europeans. Immunity Inflamm. Dis. 5:4461–68
    [Google Scholar]
  136. 136.
    Varla-Leftherioti M, Spyropoulou-Vlachou M, Niokou D, Keramitsoglou T, Darlamitsou A et al. 2003. Natural killer (NK) cell receptors’ repertoire in couples with recurrent spontaneous abortions. Am. J. Reprod. Immunol. 49:3183–91
    [Google Scholar]
  137. 137.
    Witt CS, Goodridge J, Gerbase-DeLima MG, Daher S, Christiansen FT. 2004. Maternal KIR repertoire is not associated with recurrent spontaneous abortion. Hum. Reprod. 19:112653–57
    [Google Scholar]
  138. 138.
    Akbari S, Shahsavar F, Karami R, Yari F, Anbari K, Ahmadi SAY. 2020. Recurrent spontaneous abortion (RSA) and maternal KIR genes: a comprehensive meta-analysis. JBRA Assist. Reprod. 24:2197–213
    [Google Scholar]
  139. 139.
    Faridi RM, Das V, Tripthi G, Talwar S, Parveen F, Agrawal S. 2009. Influence of activating and inhibitory killer immunoglobulin-like receptors on predisposition to recurrent miscarriages. Hum. Reprod. 24:71758–64
    [Google Scholar]
  140. 140.
    Hiby SE, Regan L, Lo W, Farrell L, Carrington M, Moffett A. 2008. Association of maternal killer-cell immunoglobulin-like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum. Reprod. 23:4972–76
    [Google Scholar]
  141. 141.
    Faridi RM, Agrawal S. 2011. Killer immunoglobulin-like receptors (KIRs) and HLA-C allorecognition patterns implicative of dominant activation of natural killer cells contribute to recurrent miscarriages. Hum. Reprod. 26:2491–97
    [Google Scholar]
  142. 142.
    Vargas RG, Bompeixe EP, França PP, Marques de Moraes M, da Graça Bicalho M 2009. Activating killer cell immunoglobulin-like receptor genes’ association with recurrent miscarriage. Am. J. Reprod. Immunol. 62:134–43
    [Google Scholar]
  143. 143.
    Nowak I, Malinowski A, Tchórzewski H, Barcz E, Wilczyński JR et al. 2009. Frequencies of killer immunoglobulin-like receptor genotypes influence susceptibility to spontaneous abortion. J. Appl. Genet. 50:4391–98
    [Google Scholar]
  144. 144.
    Su N, Wang H, Zhang B, Kang Y, Guo Q et al. 2018. Maternal natural killer cell immunoglobulin receptor genes and human leukocyte antigen-C ligands influence recurrent spontaneous abortion in the Han Chinese population. Exp. Ther. Med. 15:1327–37
    [Google Scholar]
  145. 145.
    Mansour L, Alkhuriji A, Babay ZA, Alqadheeb S, Al-Khulaifi F et al. 2020. Association of killer immunoglobulin-like receptor and human leukocyte antigen class I ligand with recurrent abortion in Saudi women. Genet. Test. Mol. Biomarkers 24:278–84
    [Google Scholar]
  146. 146.
    Alecsandru D, Barrio A, Garrido N, Aparicio P, Pellicer A et al. 2020. Parental human leukocyte antigen-C allotypes are predictive of live birth rate and risk of poor placentation in assisted reproductive treatment. Fertil. Steril. 114:4809–17
    [Google Scholar]
  147. 147.
    Wilczyńska K, Wiśniewski A, Malinowski A, Barcz E, Wilczyński JR et al. 2019. ERAP, KIR and HLA-C gene interaction in susceptibility to recurrent spontaneous abortion in the Polish population. Hum. Immunol. 80:5344–48
    [Google Scholar]
  148. 148.
    Long W, Shi Z, Fan S, Liu L, Lu Y et al. 2015. Association of maternal KIR and fetal HLA-C genes with the risk of preeclampsia in the Chinese Han population. Placenta 36:4433–37
    [Google Scholar]
  149. 149.
    Larsen TG, Hackmon R, Geraghty DE, Hviid TVF. 2019. Fetal human leukocyte antigen-C and maternal killer-cell immunoglobulin-like receptors in cases of severe preeclampsia. Placenta 75:27–33
    [Google Scholar]
  150. 150.
    Saito S, Takeda Y, Sakai M, Nakabayahi M, Hayakawa S. 2006. The incidence of pre-eclampsia among couples consisting of Japanese women and Caucasian men. J. Reprod. Immunol. 70:1–293–98
    [Google Scholar]
  151. 151.
    Moffett A, Hiby S, Carrington M. 2006. Letter in response to article by Saito et al. J. Reprod. Immunol. 71:2132–33
    [Google Scholar]
  152. 152.
    Chazara O, Moffett A 2015. Association of maternal KIR and fetal HLA-C genes with the risk of preeclampsia in the Chinese Han population, Long et al. Placenta 36:8967
    [Google Scholar]
  153. 153.
    Moffett A, Hiby S. 2009. Influence of activating and inhibitory killer immunoglobulin-like receptors on predisposition to recurrent miscarriages. Hum. Reprod. 24:82048–49
    [Google Scholar]
  154. 154.
    De Oliveira LG, Lash GE, Murray-Dunning C, Bulmer JN, Innes BA et al. 2010. Role of interleukin 8 in uterine natural killer cell regulation of extravillous trophoblast cell invasion. Placenta 31:7595–601
    [Google Scholar]
  155. 155.
    Wallace AE, Host AJ, Whitley GS, Cartwright JE. 2013. Decidual natural killer cell interactions with trophoblasts are impaired in pregnancies at increased risk of preeclampsia. Am. J. Pathol. 183:61853–61
    [Google Scholar]
  156. 156.
    Apps R, Sharkey A, Gardner L, Male V, Kennedy P et al. 2011. Ex vivo functional responses to HLA-G differ between blood and decidual NK cells. Mol. Hum. Reprod. 17:9577–86
    [Google Scholar]
  157. 157.
    Kennedy PR, Chazara O, Gardner L, Ivarsson MA, Farrell LE et al. 2016. Activating KIR2DS4 is expressed by uterine NK cells and contributes to successful pregnancy. J. Immunol. 197:114292–300
    [Google Scholar]
  158. 158.
    Abbas Y, Oefner CM, Polacheck WJ, Gardner L, Farrell L et al. 2017. A microfluidics assay to study invasion of human placental trophoblast cells. J. R. Soc. Interface 14:13020170131
    [Google Scholar]
  159. 159.
    Zhang SM, Tian FJ, Zeng WH, Ma XL, Ren J-B, Lin Y. 2018. XCL1-XCR1 pathway promotes trophoblast invasion at maternal-fetal interface by inducing MMP-2/MMP-9 activity. Am. J. Reprod. Immunol. 80:3e12990
    [Google Scholar]
  160. 160.
    Pijnenborg R, Vercruysse L, Hanssens M. 2006. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27:9–10939–58
    [Google Scholar]
  161. 161.
    Kam EPY, Gardner L, Loke YW, King A. 1999. The role of trophoblast in the physiological change in decidual spiral arteries. Hum. Reprod. 14:82131–38
    [Google Scholar]
  162. 162.
    Craven CM, Morgan T, Ward K. 1998. Decidual spiral artery remodelling begins before cellular interaction with cytotrophoblasts. Placenta 19:4241–52
    [Google Scholar]
  163. 163.
    Gambino LS, Wrefordm NG, Bertram JF, Dockery P, Lederman F, Rogers PAW. 2002. Angiogenesis occurs by vessel elongation in proliferative phase human endometrium. Hum. Reprod. 17:51199–206
    [Google Scholar]
  164. 164.
    Smith SD, Dunk CE, Aplin JD, Harris LK, Jones RL. 2009. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am. J. Pathol. 174:51959–71
    [Google Scholar]
  165. 165.
    Hazan AD, Smith SD, Jones RL, Whittle W, Lye SJ, Dunk CE. 2010. Vascular-leukocyte interactions: mechanisms of human decidual spiral artery remodeling in vitro. Am. J. Pathol. 177:21017–30
    [Google Scholar]
  166. 166.
    Robson A, Harris LK, Innes BA, Lash GE, Aljunaidy MM et al. 2012. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J 26:124876–85
    [Google Scholar]
  167. 167.
    Fraser R, Whitley GSJ, Thilaganathan B, Cartwright JE. 2015. Decidual natural killer cells regulate vessel stability: implications for impaired spiral artery remodelling. J. Reprod. Immunol. 110:54–60
    [Google Scholar]
  168. 168.
    Lash GE, Schiessl B, Kirkley M, Innes BA, Cooper A et al. 2006. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J. Leukoc. Biol. 80:3572–80
    [Google Scholar]
  169. 169.
    Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M et al. 2018. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 564:7735263–67
    [Google Scholar]
  170. 170.
    Haider S, Meinhardt G, Saleh L, Kunihs V, Gamperl M et al. 2018. Self-renewing trophoblast organoids recapitulate the developmental program of the early human placenta. Stem Cell Rep 11:2537–51
    [Google Scholar]
  171. 171.
    Okae H, Toh H, Sato T, Hiura H, Takahashi S et al. 2018. Derivation of human trophoblast stem cells. Cell Stem Cell 22:150–63.e6
    [Google Scholar]
  172. 172.
    Megli CJ, Coyne CB. 2022. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat. Rev. Microbiol. 20:267–82
    [Google Scholar]
  173. 173.
    Quinnan GV, Kirmani N, Rook AH, Manischewitz JF, Jackson L et al. 1982. Cytotoxic T cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N. Engl. J. Med. 307:17–13
    [Google Scholar]
  174. 174.
    Biron CA, Byron KS, Sullivan JL. 1989. Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 320:261731–35
    [Google Scholar]
  175. 175.
    Cottineau J, Kottemann MC, Lach FP, Kang YH, Vély F et al. 2017. Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. J. Clin. Investig. 127:51991–2006
    [Google Scholar]
  176. 176.
    Enders G, Daiminger A, Bäder U, Exler S, Enders M. 2011. Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J. Clin. Virol. 52:3244–46
    [Google Scholar]
  177. 177.
    Siewiera J, El Costa H, Tabiasco J, Berrebi A, Cartron G et al. 2013. Human cytomegalovirus infection elicits new decidual natural killer cell effector functions. PLOS Pathog 9:4e1003257
    [Google Scholar]
  178. 178.
    Crespo ÂC, Strominger JL, Tilburgs T. 2016. Expression of KIR2DS1 by decidual natural killer cells increases their ability to control placental HCMV infection. PNAS 113:5215072–77
    [Google Scholar]
  179. 179.
    Hammer Q, Rückert T, Borst EM, Dunst J, Haubner A et al. 2018. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol. 19:5453–63
    [Google Scholar]
  180. 180.
    Feyaerts D, van der Meer A, Joosten I, van der Molen RG. 2019. Selective expansion and CMV-dependency in pregnancy trained human endometrial NK cells. Cell. Mol. Immunol. 16:4410–11
    [Google Scholar]
  181. 181.
    de Mendonça Vieira R, Meagher A, Crespo ÂC, Kshirsagar SK, Iyer V et al. 2020. Human term pregnancy decidual NK cells generate distinct cytotoxic responses. J. Immunol. 204:123149–59
    [Google Scholar]
  182. 182.
    Sen Santara S, Angela AC, Mulik S, Ovies C, Boulenouar S et al. 2021. Decidual NK cells kill Zika virus-infected trophoblasts. PNAS 118:47e2115410118
    [Google Scholar]
  183. 183.
    Crespo ÂC, Mulik S, Dotiwala F, Ansara JA, Sen Santara S et al. 2020. Decidual NK cells transfer granulysin to selectively kill bacteria in trophoblasts. Cell 182:51125–39.e18
    [Google Scholar]
  184. 184.
    Male V. 2022. SARS-CoV-2 infection and COVID-19 vaccination in pregnancy. Nat. Rev. Immunol. 22:5277–82
    [Google Scholar]
  185. 185.
    Lu-Culligan A, Chavan AR, Vijayakumar P, Irshaid L, Courchaine EM et al. 2021. Maternal respiratory SARS-CoV-2 infection in pregnancy is associated with a robust inflammatory response at the maternal-fetal interface. Medicine 2:5591–610.e10
    [Google Scholar]
  186. 186.
    Garcia-Flores V, Romero R, Xu Y, Theis KR, Arenas-Hernandez M et al. 2022. Maternal-fetal immune responses in pregnant women infected with SARS-CoV-2. Nat. Commun. 13:1320
    [Google Scholar]
  187. 187.
    Keskin DB, Allan DSJ, Rybalov B, Andzelm MM, Stern JNH et al. 2007. TGFβ promotes conversion of CD16+ peripheral blood NK cells into CD16⁻ NK cells with similarities to decidual NK cells. PNAS 104:93378–83
    [Google Scholar]
  188. 188.
    Lynch L, Golden-Mason L, Eogan M, O'Herlihy C, O'Farrelly C 2007. Cells with haematopoietic stem cell phenotype in adult human endometrium: relevance to infertility?. Hum. Reprod. 22:4919–26
    [Google Scholar]
  189. 189.
    Vacca P, Vitale C, Montaldo E, Conte R, Cantoni C et al. 2011. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. PNAS 108:62402–7
    [Google Scholar]
  190. 190.
    Male V, Hughes T, McClory S, Colucci F, Caligiuri MA, Moffett A. 2010. Immature NK cells, capable of producing IL-22, are present in human uterine mucosa. J. Immunol. 185:73913–18
    [Google Scholar]
  191. 191.
    Taylor HS. 2004. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 292:181–85
    [Google Scholar]
  192. 192.
    Sentman CL, Meadows SK, Wira CR, Eriksson M. 2004. Recruitment of uterine NK cells: induction of CXC chemokine ligands 10 and 11 in human endometrium by estradiol and progesterone. J. Immunol. 173:116760–66
    [Google Scholar]
  193. 193.
    Carlino C, Stabile H, Morrone S, Bulla R, Soriani A et al. 2008. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood 111:63108–15
    [Google Scholar]
  194. 194.
    Chantakru S, Wang W-C, van den Heuvel M, Bashar S, Simpson A et al. 2003. Coordinate regulation of lymphocyte-endothelial interactions by pregnancy-associated hormones. J. Immunol. 171:84011–19
    [Google Scholar]
  195. 195.
    Yamaguchi T, Kitaya K, Daikoku N, Yasuo T, Fushiki S, Honjo H. 2006. Potential selectin L ligands involved in selective recruitment of peripheral blood CD16⁻ natural killer cells into human endometrium. Biol. Reprod. 74:135–40
    [Google Scholar]
  196. 196.
    Höglund P, Brodin P. 2010. Current perspectives of natural killer cell education by MHC class I molecules. Nat. Rev. Immunol. 10:10724–34
    [Google Scholar]
  197. 197.
    Kieckbusch J, Gaynor LM, Moffett A, Colucci F. 2014. MHC-dependent inhibition of uterine NK cells impedes fetal growth and decidual vascular remodelling. Nat. Commun. 5:3359. Erratum 2017. Nat. Commun. 8:15444
    [Google Scholar]
  198. 198.
    Shreeve N, Depierreux D, Hawkes D, Traherne JA, Sovio U et al. 2021. The CD94/NKG2A inhibitory receptor educates uterine NK cells to optimize pregnancy outcomes in humans and mice. Immunity 54:61231–44.e4
    [Google Scholar]
  199. 199.
    Wang X, Peng H, Tian Z. 2019. Innate lymphoid cell memory. Cell. Mol. Immunol. 16:5423–29
    [Google Scholar]
  200. 200.
    Goldman-Wohl D, Gamliel M, Mandelboim O, Yagel S. 2019. Learning from experience: cellular and molecular bases for improved outcome in subsequent pregnancies. Am. J. Obstet. Gynecol. 221:3183–93
    [Google Scholar]
  201. 201.
    Sojka DK. 2020. Uterine natural killer cell heterogeneity: lessons from mouse models. Front. Immunol. 11:290
    [Google Scholar]
  202. 202.
    Huhn O, Zhao X, Esposito L, Moffett A, Colucci F, Sharkey AM. 2021. How do uterine natural killer and innate lymphoid cells contribute to successful pregnancy?. Front. Immunol. 12:607669
    [Google Scholar]
  203. 203.
    Filipovic I, Chiossone L, Vacca P, Hamilton RS, Ingegnere T et al. 2018. Molecular definition of group 1 innate lymphoid cells in the mouse uterus. Nat. Commun. 9:14492
    [Google Scholar]
  204. 204.
    Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D. 1991. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum. Reprod. 6:6791–98
    [Google Scholar]
  205. 205.
    Kaur G, Porter CBM, Ashenberg O, Lee J, Riesenfeld SJ et al. 2022. Mouse fetal growth restriction through parental and fetal immune gene variation and intercellular communications cascade. Nat. Commun. 13:14398
    [Google Scholar]
  206. 206.
    Abbas Y, Turco MY, Burton GJ, Moffett A. 2020. Investigation of human trophoblast invasion in vitro. Hum. Reprod. Update 26:4501–13
    [Google Scholar]
  207. 207.
    Moffett A, Chazara O, Colucci F, Johnson MH. 2016. Variation of maternal KIR and fetal HLA-C genes in reproductive failure: too early for clinical intervention. Reprod. Biomed. Online 33:6763–69
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-102119-075119
Loading
/content/journals/10.1146/annurev-immunol-102119-075119
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error