1932

Abstract

Red blood cells transport O from the lungs to body tissues. Hypoxia stimulates kidney cells to secrete erythropoietin (EPO), which increases red cell mass. Hypoxia-inducible factors (HIFs) mediate gene transcriptional activation. HIF-α subunits are subject to O-dependent prolyl hydroxylation and then bound by the von Hippel–Lindau protein (VHL), which triggers their ubiquitination and proteasomal degradation. Mutations in the genes encoding EPO, EPO receptor, HIF-2α, prolyl hydroxylase domain protein 2 (PHD2), or VHL cause familial erythrocytosis. In addition to O, α-ketoglutarate is a substrate for PHD2, and analogs of α-ketoglutarate inhibit hydroxylase activity. In phase III clinical trials evaluating the treatment of anemia in chronic kidney disease, HIF prolyl hydroxylase inhibitors were as efficacious as darbepoetin alfa in stimulating erythropoiesis. However, safety concerns have arisen that are focused on thromboembolism, which is also a phenotypic manifestation of VHL or HIF-2α mutation, suggesting that these events are on-target effects of HIF prolyl hydroxylase inhibitors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042921-102602
2023-01-27
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/med/74/1/annurev-med-042921-102602.html?itemId=/content/journals/10.1146/annurev-med-042921-102602&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Raymond J, Segre D. 2006. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–67
    [Google Scholar]
  2. 2.
    D'Alessandro A, Dzieciatkowska M, Nemkov T, Hansen KC 2017. Red blood cell proteomics update: Is there more to discover?. Blood Transfus 15:182–87
    [Google Scholar]
  3. 3.
    Erslev AJ. 1991. Erythropoietin. N. Engl. J. Med. 324:1339–44
    [Google Scholar]
  4. 4.
    Schuster SJ, Wilson JH, Erlsev AJ, Caro J 1987. Physiologic regulation and tissue localization of renal erythropoietin messenger RNA. Blood 70:316–18
    [Google Scholar]
  5. 5.
    West JB. 2012. High-altitude medicine. Am. J. Respir. Crit. Care Med. 186:1229–37
    [Google Scholar]
  6. 6.
    Semenza GL, Wang GL. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12:5447–54
    [Google Scholar]
  7. 7.
    Semenza GL. 2020. The genomics and genetics of oxygen homeostasis. Annu. Rev. Genom. Hum. Genet. 21:183–204
    [Google Scholar]
  8. 8.
    Yoon D, Pastore YD, Divoky V et al. 2006. Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J. Biol. Chem. 281:25703–11
    [Google Scholar]
  9. 9.
    Gruber M, Hu CJ, Johnson RS et al. 2007. Acute postnatal ablation of HIF-2α results in anemia. PNAS 104:2301–6
    [Google Scholar]
  10. 10.
    Epstein AC, Gleadle JM, McNeill LA et al. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54
    [Google Scholar]
  11. 11.
    Maxwell PH, Wiesener MS, Chang GW et al. 1999. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–75
    [Google Scholar]
  12. 12.
    Rankin EB, Biju MP, Liu Q et al. 2007. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Investig. 117:1068–77
    [Google Scholar]
  13. 13.
    Takeda K, Aguila HL, Parikh NS et al. 2008. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 111:3229–35
    [Google Scholar]
  14. 14.
    Hickey MM, Lam JC, Bezman NA et al. 2007. Von Hippel-Lindau mutation in mice recapitulates Chuvash polycythemia via hypoxia-inducible factor-2α signaling and splenic erythropoiesis. J. Clin. Investig. 117:3879–89
    [Google Scholar]
  15. 15.
    Spivak JL. 2019. How I treat polycythemia vera. . Blood 134:341–52
    [Google Scholar]
  16. 16.
    Arcasoy MO, Degar BA, Harris KW, Forget BG. 1997. Familial erythrocytosis associated with a short deletion in the erythropoietin receptor gene. Blood 89:4628–35
    [Google Scholar]
  17. 17.
    De la Chapelle A, Traskelin AL, Juvonen E. 1993. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. PNAS 90:4495–99
    [Google Scholar]
  18. 18.
    Sokol L, Luhovy M, Guan Y et al. 1995. Primary familial polycythemia: a frameshift mutation in the erythropoietin receptor gene and increased sensitivity of erythroid progenitors to erythropoietin. Blood 86:15–22
    [Google Scholar]
  19. 19.
    Zmajkovic J, Lundberg P, Nienhold R et al. 2018. A gain-of-function mutation in EPO in familial erythrocytosis. N. Engl. J. Med. 378:924–30
    [Google Scholar]
  20. 20.
    Ang SO, Chen H, Hirota K et al. 2002. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. . Nat. Genet. 32:614–21
    [Google Scholar]
  21. 21.
    Lanikova L, Lorenzo F, Yang C et al. 2013. Novel homozygous VHL mutation in exon 2 is associated with congenital polycythemia but not with cancer. Blood 121:3918–24
    [Google Scholar]
  22. 22.
    Sarangi S, Lanikova L, Kapralova K et al. 2014. The homozygous VHL(D126N) missense mutation is associated with dramatically elevated erythropoietin levels, consequent polycythemia, and early onset severe pulmonary hypertension. Pediatr. Blood Cancer 61:2104–6
    [Google Scholar]
  23. 23.
    Tomasic NL, Piterkova L, Huff C et al. 2013. The phenotype of polycythemia due to Croatian homozygous VHL (571>C:H191D) mutation is different from that of Chuvash polycythemia (VHL 598C>T:R200W). Haematologica 98:560–67
    [Google Scholar]
  24. 24.
    Percy MJ, Zhao Q, Flores A et al. 2006. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. PNAS 103:654–59
    [Google Scholar]
  25. 25.
    Percy MJ, Furlow PW, Beer PA et al. 2007. A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood 110:2193–96
    [Google Scholar]
  26. 26.
    Percy MJ, Furlow PW, Lucas GS et al. 2008. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358:162–68
    [Google Scholar]
  27. 27.
    Smith TG, Brooks JT, Balanos GM et al. 2006. Mutation of von Hippel–Lindau tumour suppressor and human cardiopulmonary physiology. PLOS Med 3:e290
    [Google Scholar]
  28. 28.
    Formenti F, Beer PA, Croft QPP et al. 2011. Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel-Lindau disease and HIF-2α gain-of-function mutation. FASEB J 25:2001–11
    [Google Scholar]
  29. 29.
    Gale DP, Harten SK, Reid CDL et al. 2008. Autosomal dominant erythrocytosis and pulmonary arterial hypertension associated with an activating HIF-2α mutation. Blood 112:919–21
    [Google Scholar]
  30. 30.
    Shimoda LA. 2020. Cellular pathways promoting pulmonary vascular remodeling by hypoxia. Physiology 35:222–33
    [Google Scholar]
  31. 31.
    Gordeuk VR, Sergueeva AI, Miasnikova GY et al. 2004. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood 103:3924–32
    [Google Scholar]
  32. 32.
    Gordeuk VR, Miasnikova GY, Sergueeva AI et al. 2020. Thrombotic risk in congenital erythrocytosis due to up-regulated hypoxia sensing is not associated with elevated hematocrit. Haematologica 105:e87–90
    [Google Scholar]
  33. 33.
    Toyoda H, Hirayama J, Sugimoto Y et al. 2014. Polycythemia and paraganglioma with a novel somatic HIF2A mutation in a male. Pediatrics 133:e1787–91
    [Google Scholar]
  34. 34.
    Yang C, Zhuang Z, Fliedner SMJ et al. 2015. Germline PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. J. Mol. Med. 93:93–104
    [Google Scholar]
  35. 35.
    Zhuang Z, Yang C, Lorenzo F et al. 2012. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. . N. Engl. J. Med. 367:922–30
    [Google Scholar]
  36. 36.
    Bikbov B, Purcell CA, Levey AS et al. GBD Chronic Kidney Dis. Collab.). 2020. Global, regional, and national burden of chronic kidney disease, 1999–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395:709–33
    [Google Scholar]
  37. 37.
    Erslev AJ, Besarab A. 1997. Erythropoietin in the pathogenesis and treatment of the anemia of chronic renal failure. Kidney Int 51:3622–30
    [Google Scholar]
  38. 38.
    Moranne O, Froissart M, Rossert J et al. 2009. Timing of onset of CKD-related metabolic complications. J. Am. Soc. Nephrol. 20:164–71
    [Google Scholar]
  39. 39.
    Maxwell PH, Ferguson DJ, Nicholls LG et al. 1997. The interstitial response to renal injury: fibroblast-like cells show phenotypic changes and have reduced potential for erythropoietin gene expression. Kidney Int 52:715–24
    [Google Scholar]
  40. 40.
    Souma T, Yamazaki S, Moriguchi T et al. 2013. Plasticity of renal erythropoietin-producing cells governs fibrosis. J. Am. Soc. Nephrol. 24:1599–616
    [Google Scholar]
  41. 41.
    De Seigneux S, Lundby AKM, Berchtold L et al. 2016. Increased synthesis of liver erythropoietin with CKD. J. Am. Soc. Nephrol. 27:2265–69
    [Google Scholar]
  42. 42.
    Zhang AS, Enns CA. 2009. Molecular mechanisms of normal iron homeostasis. Hematology Am. Soc. Hematol. Educ. Program 2009:207–14
    [Google Scholar]
  43. 43.
    Wrighting DM, Andrews NC. 2006. Interleukin-6 induces hepcidin expression through STAT3. Blood 108:3204–9
    [Google Scholar]
  44. 44.
    Crugliano G, Serra R, Ielapi N et al. 2021. Hypoxia-inducible factor stabilizers in end stage kidney disease: “Can the promise be kept?. Int. J. Mol. Sci. 22:12590
    [Google Scholar]
  45. 45.
    Levin A. 2021. Therapy for anemia in chronic kidney disease—new interventions and new questions. N. Engl. J. Med. 384:1657–58
    [Google Scholar]
  46. 46.
    Mastrogiannaki M, Matak P, Keith B et al. 2009. HIF-2α, but not HIF-1α, promotes iron absorption in mice. . J. Clin. Investig. 119:1159–66
    [Google Scholar]
  47. 47.
    Mukhopadhyay CK, Mazumder B, Fox PL. 2000. Role of hypoxia-inducible factor 1 in transcriptional activation of ceruloplasmin by iron deficiency. J. Biol. Chem. 275:21048–54
    [Google Scholar]
  48. 48.
    Peyssonnaux C, Zinkernagel AS, Schuepbach RA et al. 2007. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Investig. 117:1926–32
    [Google Scholar]
  49. 49.
    Rolfs A, Kvietkova I, Gassmann M, Wenger RH. 1997. Oxygen-regulated transferrin expression is mediated by hypoxia-inducible factor 1. J. Biol. Chem. 272:20055–62
    [Google Scholar]
  50. 50.
    Shah YM, Matsubara T, Ito S et al. 2009. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab 9:152–64
    [Google Scholar]
  51. 51.
    Taylor M, Qu A, Anderson ER et al. 2011. Hypoxia-inducible factor-2 mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology 140:2044–55
    [Google Scholar]
  52. 52.
    Gordeuk VR, Miasnikova GY, Sergueeva AI et al. 2011. Chuvash polycythemia VHL-R200W mutation is associated with down-regulation of hepcidin expression. Blood 118:5278–82
    [Google Scholar]
  53. 53.
    Volke M, Gale DP, Maegdefrau U et al. 2009. Evidence for a lack of a direct transcriptional suppression of the iron regulatory peptide hepcidin by hypoxia-inducible factors. PLOS ONE 4:e7875
    [Google Scholar]
  54. 54.
    Liu Q, Davidoff O, Niss K, Haase VH. 2012. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J. Clin. Investig. 381:4635–44
    [Google Scholar]
  55. 55.
    Kaulz L, Jung G, Valore EV et al. 2014. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat. Genet. 46:678–84
    [Google Scholar]
  56. 56.
    Besarab A, Provenzano R, Hertel J et al. 2015. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in non-dialysis-dependent chronic kidney disease (NDD-CKD) patients. Nephrol. Dial. Transplant. 30:1665–73
    [Google Scholar]
  57. 57.
    Barratt J, Andric B, Tataradze A et al. 2021. Roxadustat for the treatment of anemia in chronic kidney disease patients not on dialysis: a phase 3, randomized, open-label, active-controlled study (DOLOMITES). Nephrol. Dial. Transplant. 36:1616–28
    [Google Scholar]
  58. 58.
    Sanghani NS, Haase VH. 2019. Hypoxia-inducible factor activators in renal anemia: current clinical experience. Adv. Chronic Kidney Dis. 26:253–66
    [Google Scholar]
  59. 59.
    Chen N, Qian J, Chen J et al. 2017. Phase 2 studies of oral hypoxia-inducible factor prolyl hydroxylase inhibitor FG-4592 for treatment of anemia in China. Nephrol. Dial. Transplant. 32:1373–86
    [Google Scholar]
  60. 60.
    Holdstock L, Meadowcroft AM, Maier R et al. 2016. Four-week studies of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 for treatment of anemia. J. Am. Soc. Nephrol. 27:1234–44
    [Google Scholar]
  61. 61.
    Hwang S, Nguyen AD, Jo Y et al. 2017. Hypoxia-inducible factor 1α activates insulin-induced gene 2 (Insig-2) transcription for degradation of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase in the liver. J. Biol. Chem. 292:9382–93
    [Google Scholar]
  62. 62.
    Manalo DJ, Rowan A, Lavoie T et al. 2005. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105:659–69
    [Google Scholar]
  63. 63.
    Shen GM, Zhao YZ, Chen MT et al. 2012. Hypoxia-inducible factor 1 (HIF-1) promotes LDL and VLDL uptake through inducing VLDLR under hypoxia. Biochem. J. 441:675–83
    [Google Scholar]
  64. 64.
    Wakashima T, Tanaka T, Fukui K et al. 2020. JTZ-951, an HIF prolyl hydroxylase inhibitor, suppresses renal interstitial fibroblast transformation and expression of fibrosis-related factors. Am. J. Physiol. Renal Physiol. 318:F14–24
    [Google Scholar]
  65. 65.
    Broeker KAE, Fuchs MAA, Schrankl J et al. 2022. Prolyl-4-hydroxylases 2 and 3 control erythropoietin production in renin-expressing cells of mouse kidney. J. Physiol. 600:671–94
    [Google Scholar]
  66. 66.
    Kobayashi H, Liu Q, Binns TC et al. 2016. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J. Clin. Investig. 126:1926–38
    [Google Scholar]
  67. 67.
    Jatho A, Zieseniss A, Brechtel-Curth K et al. 2022. The HIFα-stabilizing drug roxadustat increases the number of renal EPO-producing Sca1+ cells. Cells 11:753
    [Google Scholar]
  68. 68.
    Bernhardt WM, Wiesener MS, Scigalla P et al. 2010. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J. Am. Soc. Nephrol. 21:2151–56
    [Google Scholar]
  69. 69.
    Duan LJ, Takeda K, Fong GH. 2014. Hematological, hepatic and retinal phenotypes in mice deficient for prolyl hydroxylase domain proteins in the liver. Am. J. Pathol. 184:1240–50
    [Google Scholar]
  70. 70.
    Chen N, Hao C, Peng X et al. 2019. Roxadustat for anemia in patients with kidney disease not receiving dialysis. N. Engl. J. Med. 381:1001–10
    [Google Scholar]
  71. 71.
    Chen N, Hao C, Liu BC et al. 2019. Roxadustat treatment for anemia in patients undergoing long-term dialysis. N. Engl. J. Med. 381:1011–22
    [Google Scholar]
  72. 72.
    Dhillon S. 2019. Roxadustat: first global approval. Drugs 79:563–72
    [Google Scholar]
  73. 73.
    FDA 2021. Cardiovascular and Renal Drugs Advisory Committee meeting July 15, 2021: roxadustat FDA Brief. Doc. June 14, US Food Drug Adm. Silver Spring, MD: https://www.fda.gov/media/150728/download
  74. 74.
    Pharm. Med. Devices Agency 2019. Report on the deliberation results Rep., Aug. 13 Pharm. Med. Devices Agency Tokyo: Jpn. (from Japanese). https://www.pmda.go.jp/files/000234811.pdf
  75. 75.
    Chertow GM, Pergola PE, Farag YMK et al. 2021. Vadadustat in patients with anemia and non-dialysis-dependent CKD. N. Engl. J. Med. 384:1589–600
    [Google Scholar]
  76. 76.
    Eckardt KU, Agarwal R, Aswad A et al. 2021. Safety and efficacy of vadadustat for anemia in patients undergoing dialysis. N. Engl. J. Med. 384:1601–12
    [Google Scholar]
  77. 77.
    Akebia Therapeut 2022. Akebia Therapeutics receives complete response letter from the FDA for vadadustat for the treatment of anemia due to chronic kidney disease in adult patients Press Release Mar. 30 Akebia Therapeut. Cambridge, MA: https://ir.akebia.com/news-releases/news-release-details/akebia-therapeutics-receives-complete-response-letter-fda
  78. 78.
    Pharm. Med. Devices Agency 2021. New drugs approved in FY 2020 List, Pharm. Med. Devices Agency Tokyo, Jpn: https://www.pmda.go.jp/files/000242574.pdf
  79. 79.
    Nangaku M, Kondo K, Kokado Y et al. 2021. Phase 3 randomized study comparing vadadustat with darbepoetin alfa for anemia in Japanese patients with nondialysis-dependent CKD. J. Am. Soc. Nephrol. 32:1779–90
    [Google Scholar]
  80. 80.
    Nangaku M, Kondo K, Ueta K et al. 2021. Efficacy and safety of vadadustat compared with darbepoetin alfa in Japanese anemic patients on hemodialysis: a phase 3, multicenter, randomized double-blind study. Nephrol. Dial. Transplant. 36:1731–41
    [Google Scholar]
  81. 81.
    Singh AK, Carroll K, McMurray JJV et al. 2021. Daprodustat for the treatment of anemia in patients not undergoing dialysis. N. Engl. J. Med. 385:2313–24
    [Google Scholar]
  82. 82.
    Singh AK, Carroll K, Perkovic V et al. 2021. Daprodustat for the treatment of anemia in patients undergoing dialysis. N. Engl. J. Med. 385:2325–35
    [Google Scholar]
  83. 83.
    Figg WD Jr, McDonough MA, Chowdhury R et al. 2021. Structural basis of prolyl hydroxylase domain inhibition by molidustat. ChemMedChem 16:2082–88
    [Google Scholar]
  84. 84.
    Akizawa T, Yamada T, Nobori K et al. 2021. Molidustat for Japanese patients with renal anemia receiving dialysis. Kidney Int. Rep. 6:2604–16
    [Google Scholar]
  85. 85.
    Yamamoto H, Nobori K, Matsuda Y et al. 2021. Efficacy and safety of molidustat for anemia in ESA-naïve non-dialysis patients: a randomized, phase 3 trial. Am. J. Nephrol. 52:871–83
    [Google Scholar]
  86. 86.
    Akizawa T, Nangaku M, Yamaguchi T et al. 2021. A phase 3 study of enarodustat in anemic patients with CKD not requiring dialysis: the SYMPHONY ND study. Kidney Int. Rep. 6:1840–49
    [Google Scholar]
  87. 87.
    Akizawa T, Nangaku M, Yamaguchi T et al. 2021. A phase 3 study of enarodustat (JTZ-951) in Japanese hemodialysis patients for treatment of anemia in chronic kidney disease: SYMPHONY HD study. Kidney Dis 7:494–502
    [Google Scholar]
  88. 88.
    Bye AP, Unsworth AJ, Gibbins JM. 2016. Platelet signaling: a complex interplay between inhibitory and activatory networks. J. Thromb. Haemost. 14:918–30
    [Google Scholar]
  89. 89.
    Zhang X, Zhang W, Ma SF et al. 2014. Iron deficiency modifies gene expression variation induced by augmented hypoxia sensing. Blood Cells Mol. Dis. 52:35–45
    [Google Scholar]
  90. 90.
    Sharma V, Dixit D, Koul N et al. 2011. Ras regulates interleukin-1β-induced HIF-1α transcriptional activity in glioblastoma. . J. Mol. Med. 89:123–36
    [Google Scholar]
  91. 91.
    Ortiz-Masia D, Diez I, Calatayud S et al. 2012. Induction of CD36 and thrombospondin-1 in macrophages by hypoxia-inducible factor 1 and its relevance in the inflammatory process. PLOS ONE 7:e48535
    [Google Scholar]
  92. 92.
    Kietzmann T, Roth U, Jungermann K. 1999. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood 94:4177–85
    [Google Scholar]
  93. 93.
    Wang Y, Lyu Y, Tu K et al. 2021. Histone citrullination by PADI4 is required for HIF-dependent transcriptional responses to hypoxia and tumor vascularization. Sci. Adv. 7:eabe3771
    [Google Scholar]
/content/journals/10.1146/annurev-med-042921-102602
Loading
/content/journals/10.1146/annurev-med-042921-102602
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error