1932

Abstract

Giant cell arteritis (GCA) and Takayasu arteritis (TAK) are large-vessel vasculitides affecting the aorta and its branches. Arterial damage from these diseases may result in ischemic complications, aneurysms, and dissections. Despite their similarities, the management of GCA and TAK differs. Glucocorticoids are used frequently but relapses are common, and glucocorticoid toxicity contributes to significant morbidity. Conventional immunosuppressive therapies can be beneficial in TAK, though their role in the management of GCA remains unclear. Tumor necrosis factor inhibitors improve remission rates and appear to limit vascular damage in TAK; these agents are not beneficial in GCA. Tocilizumab is the first biologic glucocorticoid-sparing agent approved for use in GCA and also appears to be effective in TAK. A better understanding of the pathogenesis of both conditions and the availability of targeted therapies hold much promise for future management.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-060622-100940
2024-01-29
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/med/75/1/annurev-med-060622-100940.html?itemId=/content/journals/10.1146/annurev-med-060622-100940&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Jennette JC, Falk RJ, Bacon PA et al. 2013. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheumatol. 65:111
    [Google Scholar]
  2. 2.
    Pugh D, Karabayas M, Basu N et al. 2022. Large-vessel vasculitis. Nat. Rev. Dis. Primers 7:93
    [Google Scholar]
  3. 3.
    Grayson PC, Ponte C, Suppiah R et al. 2022. 2022 American College of Rheumatology/EULAR classification criteria for Takayasu arteritis. Ann. Rheum. Dis. 81:165460
    [Google Scholar]
  4. 4.
    Ponte C, Grayson PC, Robson JC et al. 2022. 2022 American College of Rheumatology/EULAR classification criteria for giant cell arteritis. Ann. Rheum. Dis. 81:164753
    [Google Scholar]
  5. 5.
    Aydin SZ, Robson JC, Sreih AG et al. 2019. Update on outcome measure development in large-vessel vasculitis: report from OMERACT 2018. J. Rheumatol. 46:1198201
    [Google Scholar]
  6. 6.
    Boleto G, Berti A, Merkel PA et al. 2022. Measurement properties of outcome instruments for large-vessel vasculitis: a systematic literature review. J. Rheumatol. 50:78998
    [Google Scholar]
  7. 7.
    Agueda AF, Monti S, Luqmani RA et al. 2019. Management of Takayasu arteritis: a systematic literature review informing the 2018 update of the EULAR recommendation for the management of large vessel vasculitis. RMD Open 5:e001020
    [Google Scholar]
  8. 8.
    Monti S, Agueda AF, Luqmani RA et al. 2019. Systematic literature review informing the 2018 update of the EULAR recommendation for the management of large vessel vasculitis: focus on giant cell arteritis. RMD Open 5:e001003
    [Google Scholar]
  9. 9.
    Langford CA, Cuthbertson D, Ytterberg SR et al. 2017. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of giant cell arteritis. Arthritis Rheumatol. 69:83745
    [Google Scholar]
  10. 10.
    Langford CA, Cuthbertson D, Ytterberg SR et al. 2017. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of Takayasu arteritis. Arthritis Rheumatol. 69:84653
    [Google Scholar]
  11. 11.
    Stone JH, Tuckwell K, Dimonaco S et al. 2017. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 377:31728
    [Google Scholar]
  12. 12.
    Nakaoka Y, Isobe M, Takei S et al. 2018. Efficacy and safety of tocilizumab in patients with refractory Takayasu arteritis: results from a randomised, double-blind, placebo-controlled, phase 3 trial in Japan (the TAKT study). Ann. Rheum. Dis. 77:34854
    [Google Scholar]
  13. 13.
    Hellmich B, Agueda A, Monti S et al. 2020. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann. Rheum. Dis. 79:1930
    [Google Scholar]
  14. 14.
    Maz M, Chung SA, Abril A et al. 2021. 2021 American College of Rheumatology/Vasculitis Foundation guideline for the management of giant cell arteritis and Takayasu arteritis. Arthritis Rheumatol. 73:134965
    [Google Scholar]
  15. 15.
    Carmona FD, Coit P, Saruhan-Direskeneli G et al. 2017. Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Sci. Rep. 7:43953
    [Google Scholar]
  16. 16.
    Carmona FD, Mackie SL, Martin JE et al. 2015. A large-scale genetic analysis reveals a strong contribution of the HLA class II region to giant cell arteritis susceptibility. Am. J. Hum. Genet. 96:56580
    [Google Scholar]
  17. 17.
    Ortiz-Fernandez L, Saruhan-Direskeneli G, Alibaz-Oner F et al. 2021. Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study. Am. J. Hum. Genet. 108:8499
    [Google Scholar]
  18. 18.
    Terao C, Yoshifuji H, Kimura A et al. 2013. Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population. Am. J. Hum. Genet. 93:28997
    [Google Scholar]
  19. 19.
    Wen X, Chen S, Li P et al. 2017. Single nucleotide polymorphisms of IL12B are associated with Takayasu arteritis in Chinese Han population. Rheumatol. Int. 37:54755
    [Google Scholar]
  20. 20.
    Teng MW, Bowman EP, McElwee JJ et al. 2015. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21:71929
    [Google Scholar]
  21. 21.
    Ma-Krupa W, Jeon MS, Spoerl S et al. 2004. Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. J. Exp. Med. 199:17383
    [Google Scholar]
  22. 22.
    Weyand CM, Goronzy JJ. 2023. Immunology of giant cell arteritis. Circ. Res. 132:23850
    [Google Scholar]
  23. 23.
    Piggott K, Deng J, Warrington K et al. 2011. Blocking the NOTCH pathway inhibits vascular inflammation in large-vessel vasculitis. Circulation 123:30918
    [Google Scholar]
  24. 24.
    Zhang H, Watanabe R, Berry GJ et al. 2017. Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. PNAS 114:E97079
    [Google Scholar]
  25. 25.
    Deng J, Younge BR, Olshen RA et al. 2010. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation 121:90615
    [Google Scholar]
  26. 26.
    Corbera-Bellalta M, Alba-Rovira R, Muralidharan S et al. 2022. Blocking GM-CSF receptor alpha with mavrilimumab reduces infiltrating cells, pro-inflammatory markers and neoangiogenesis in ex vivo cultured arteries from patients with giant cell arteritis. Ann. Rheum. Dis. 81:52436
    [Google Scholar]
  27. 27.
    Graver JC, Boots AMH, Haacke EA et al. 2019. Massive B-cell infiltration and organization into artery tertiary lymphoid organs in the aorta of large vessel giant cell arteritis. Front. Immunol. 10:83
    [Google Scholar]
  28. 28.
    Ciccia F, Rizzo A, Maugeri R et al. 2017. Ectopic expression of CXCL13, BAFF, APRIL and LT-β is associated with artery tertiary lymphoid organs in giant cell arteritis. Ann. Rheum. Dis. 76:23543
    [Google Scholar]
  29. 29.
    Jiang W, Sun M, Wang Y et al. 2022. Critical role of Notch-1 in mechanistic target of rapamycin hyperactivity and vascular inflammation in patients with Takayasu arteritis. Arthritis Rheumatol. 74:123544
    [Google Scholar]
  30. 30.
    Saadoun D, Garrido M, Comarmond C et al. 2015. Th1 and Th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheumatol. 67:135360
    [Google Scholar]
  31. 31.
    Watanabe R, Berry GJ, Liang DH et al. 2020. Pathogenesis of giant cell arteritis and Takayasu arteritis—similarities and differences. Curr. Rheumatol. Rep. 22:68
    [Google Scholar]
  32. 32.
    Regnier P, Le Joncour A, Maciejewski-Duval A et al. 2020. Targeting JAK/STAT pathway in Takayasu's arteritis. Ann. Rheum. Dis. 79:95159
    [Google Scholar]
  33. 33.
    Hoyer BF, Mumtaz IM, Loddenkemper K et al. 2012. Takayasu arteritis is characterised by disturbances of B cell homeostasis and responds to B cell depletion therapy with rituximab. Ann. Rheum. Dis. 71:7579
    [Google Scholar]
  34. 34.
    Sima D, Thiele B, Turowski A et al. 1994. Anti-endothelial antibodies in Takayasu arteritis. Arthritis Rheum. 37:44143
    [Google Scholar]
  35. 35.
    Strehl C, Ehlers L, Gaber T, Buttgereit F. 2019. Glucocorticoids—all-rounders tackling the versatile players of the immune system. Front. Immunol. 10:1744
    [Google Scholar]
  36. 36.
    Birkhead NC, Wagener HP, Shick RM. 1957. Treatment of temporal arteritis with adrenal corticoste-roids; results in fifty-five cases in which lesion was proved at biopsy. JAMA 163:82127
    [Google Scholar]
  37. 37.
    Christ L, Seitz L, Scholz G et al. 2021. Tocilizumab monotherapy after ultra-short glucocorticoid administration in giant cell arteritis: a single-arm, open-label, proof-of-concept study. Lancet Rheumatol. 3:E61926
    [Google Scholar]
  38. 38.
    Fraga A, Mintz G, Valle L, Flores-Izquierdo G. 1972. Takayasu's arteritis: frequency of systemic manifestations (study of 22 patients) and favorable response to maintenance steroid therapy with adrenocorticosteroids (12 patients). Arthritis Rheumatol. 15:61724
    [Google Scholar]
  39. 39.
    de Boysson H, Barakat C, Dumont A et al. 2022. Tolerance of glucocorticoids in giant cell arteritis: a study of patient-reported adverse events. Rheumatology 61:356775
    [Google Scholar]
  40. 40.
    Misra DP, Rathore U, Patro P et al. 2021. Corticosteroid monotherapy for the management of Takayasu arteritis—a systematic review and meta-analysis. Rheumatol. Int. 41:172942
    [Google Scholar]
  41. 41.
    Mainbourg S, Addario A, Samson M et al. 2020. Prevalence of giant cell arteritis relapse in patients treated with glucocorticoids: a meta-analysis. Arthritis Care Res. 72:83849
    [Google Scholar]
  42. 42.
    Maksimowicz-McKinnon K, Clark TM, Hoffman GS. 2007. Limitations of therapy and a guarded prognosis in an American cohort of Takayasu arteritis patients. Arthritis Rheumatol. 56:10009
    [Google Scholar]
  43. 43.
    Mutoh T, Shirai T, Fujii H et al. 2020. Insufficient use of corticosteroids without immunosuppressants results in higher relapse rates in Takayasu arteritis. J. Rheumatol. 47:25563
    [Google Scholar]
  44. 44.
    Hoffman GS, Cid MC, Hellmann DB et al. 2002. A multicenter, randomized, double-blind, placebo-controlled trial of adjuvant methotrexate treatment for giant cell arteritis. Arthritis Rheumatol. 46:130918
    [Google Scholar]
  45. 45.
    Jover JA, Hernandez-Garcia C, Morado IC et al. 2001. Combined treatment of giant-cell arteritis with methotrexate and prednisone: a randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 134:10614
    [Google Scholar]
  46. 46.
    Spiera RF, Mitnick HJ, Kupersmith M et al. 2001. A prospective, double-blind, randomized, placebo controlled trial of methotrexate in the treatment of giant cell arteritis (GCA). Clin. Exp. Rheumatol. 19:495501
    [Google Scholar]
  47. 47.
    Mahr A, Hachulla E, de Boysson H et al. 2021. Presentation and real-world management of giant cell arteritis (Artemis study). Front. Med. 8:732934
    [Google Scholar]
  48. 48.
    Kramaric J, Rotar Z, Tomsic M, Hocevar A. 2022. Performance of leflunomide as a steroid-sparing agent in giant cell arteritis: a single-center, open-label study. Front. Med. 9:1069013
    [Google Scholar]
  49. 49.
    Hoffman GS, Leavitt RY, Kerr GS et al. 1994. Treatment of glucocorticoid-resistant or relapsing Takayasu arteritis with methotrexate. Arthritis Rheumatol. 37:57882
    [Google Scholar]
  50. 50.
    Wu C, Sun Y, Cui X et al. 2020. Effectiveness and safety of methotrexate versus leflunomide in 12-month treatment for Takayasu arteritis. Ther. Adv. Chronic Dis. 11:2040622320975233
    [Google Scholar]
  51. 51.
    Dai D, Wang Y, Jin H et al. 2017. The efficacy of mycophenolate mofetil in treating Takayasu arteritis: a systematic review and meta-analysis. Rheumatol. Int. 37:108388
    [Google Scholar]
  52. 52.
    Valsakumar AK, Valappil UC, Jorapur V et al. 2003. Role of immunosuppressive therapy on clinical, immunological, and angiographic outcome in active Takayasu's arteritis. J. Rheumatol. 30:179398
    [Google Scholar]
  53. 53.
    Hoffman GS, Cid MC, Rendt-Zagar KE et al. 2007. Infliximab for maintenance of glucocorticosteroid-induced remission of giant cell arteritis: a randomized trial. Ann. Intern. Med. 146:62130
    [Google Scholar]
  54. 54.
    Martinez-Taboada VM, Rodriguez-Valverde V, Carreno L et al. 2008. A double-blind placebo controlled trial of etanercept in patients with giant cell arteritis and corticosteroid side effects. Ann. Rheum. Dis. 67:62530
    [Google Scholar]
  55. 55.
    Seror R, Baron G, Hachulla E et al. 2014. Adalimumab for steroid sparing in patients with giant-cell arteritis: results of a multicentre randomised controlled trial. Ann. Rheum. Dis. 73:207481
    [Google Scholar]
  56. 56.
    Osman M, Pagnoux C, Dryden DM et al. 2014. The role of biological agents in the management of large vessel vasculitis (LVV): a systematic review and meta-analysis. PLOS ONE 9:e115026
    [Google Scholar]
  57. 57.
    Misra DP, Rathore U, Patro P et al. 2021. Disease-modifying anti-rheumatic drugs for the management of Takayasu arteritis—a systematic review and meta-analysis. Clin. Rheumatol. 40:4391416
    [Google Scholar]
  58. 58.
    Gudbrandsson B, Molberg O, Garen T, Palm O. 2017. Prevalence, incidence, and disease characteristics of takayasu arteritis by ethnic background: data from a large, population-based cohort resident in southern Norway. Arthritis Care Res. 69:27885
    [Google Scholar]
  59. 59.
    Schmidt J, Kermani TA, Bacani AK et al. 2012. Tumor necrosis factor inhibitors in patients with Takayasu arteritis: experience from a referral center with long-term followup. Arthritis Care Res. 64:107983
    [Google Scholar]
  60. 60.
    Hoffman GS, Merkel PA, Brasington RD et al. 2004. Anti-tumor necrosis factor therapy in patients with difficult to treat Takayasu arteritis. Arthritis Rheumatol. 50:2296304
    [Google Scholar]
  61. 61.
    Molloy ES, Langford CA, Clark TM et al. 2008. Anti-tumour necrosis factor therapy in patients with refractory Takayasu arteritis: long-term follow-up. Ann. Rheum. Dis. 67:156769
    [Google Scholar]
  62. 62.
    Mertz P, Kleinmann JF, Lambert M et al. 2020. Infliximab is an effective glucocorticoid-sparing treatment for Takayasu arteritis: results of a multicenter open-label prospective study. Autoimmun. Rev. 19:102634
    [Google Scholar]
  63. 63.
    Villiger PM, Adler S, Kuchen S et al. 2016. Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet 387:192127
    [Google Scholar]
  64. 64.
    Schmidt WA, Dasgupta B, Luqmani R et al. 2020. A multicentre, randomised, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of sirukumab in the treatment of giant cell arteritis. Rheumatol. Ther. 7:793810
    [Google Scholar]
  65. 65.
    Stone JH, Han J, Arlinger M et al. 2021. Long-term effect of tocilizumab in patients with giant cell arteritis: open-label extension phase of the Giant Cell Arteritis Actemra (GiACTA) trial. Lancet Rheumatol. 3:E32836
    [Google Scholar]
  66. 66.
    Alibaz-Oner F, Kaymaz-Tahra S, Bayindir O et al. 2021. Biologic treatments in Takayasu's arteritis: a comparative study of tumor necrosis factor inhibitors and tocilizumab. Semin. Arthritis Rheum. 51:122429
    [Google Scholar]
  67. 67.
    Mekinian A, Biard L, Dagna L et al. 2022. Efficacy and safety of TNF-α antagonists and tocilizumab in Takayasu arteritis: multicentre retrospective study of 209 patients. Rheumatology 61:137684
    [Google Scholar]
  68. 68.
    Misra DP, Singh K, Rathore U et al. 2023. The effectiveness of tocilizumab and its comparison with tumor necrosis factor alpha inhibitors for Takayasu arteritis: a systematic review and meta-analysis. Autoimmun. Rev. 22:103275
    [Google Scholar]
  69. 69.
    Nakaoka Y, Isobe M, Tanaka Y et al. 2020. Long-term efficacy and safety of tocilizumab in refractory Takayasu arteritis: final results of the randomized controlled phase 3 TAKT study. Rheumatology 59:242734
    [Google Scholar]
  70. 70.
    Harigai M, Miyamae T, Hashimoto H et al. 2022. A multicentre, large-scale, observational study of tocilizumab in patients with Takayasu arteritis in Japan: the ACT-Bridge study. Mod. Rheumatol. 2022:roac099
    [Google Scholar]
  71. 71.
    Sanchez-Alvarez C, Koster M, Duarte-Garcia A, Warrington KJ. 2020. Disease progression of Takayasu arteritis in two patients treated with tocilizumab. Ann. Rheum. Dis. 79:e21
    [Google Scholar]
  72. 72.
    Nakaoka Y, Yanagawa M, Hata A et al. 2022. Vascular imaging of patients with refractory Takayasu arteritis treated with tocilizumab: post hoc analysis of a randomized controlled trial. Rheumatology 61:236068
    [Google Scholar]
  73. 73.
    Pazzola G, Muratore F, Pipitone N et al. 2018. Rituximab therapy for Takayasu arteritis: a seven patients experience and a review of the literature. Rheumatology 57:115155
    [Google Scholar]
  74. 74.
    Nakagomi D, Kronbichler A, Witte T et al. 2018. Comment on: Rituximab therapy for Takayasu arteritis: a seven patients experience and a review of the literature. Rheumatology 57:130910
    [Google Scholar]
  75. 75.
    Mutoh T, Ishii T, Shirai T et al. 2019. Refractory Takayasu arteritis successfully treated with rituximab: case-based review. Rheumatol. Int. 39:198994
    [Google Scholar]
  76. 76.
    Deshayes S, Ly KH, Rieu V et al. 2021. Steroid-sparing effect of anakinra in giant-cell arteritis: a case series with clinical, biological and iconographic long-term assessments. Rheumatology 61:4006
    [Google Scholar]
  77. 77.
    Campochiaro C, Tomelleri A, Sartorelli S et al. 2020. Drug retention and discontinuation reasons between seven biologics in patients with Takayasu arteritis. Semin. Arthritis Rheum. 50:50914
    [Google Scholar]
  78. 78.
    Conway R, O'Neill L, Gallagher P et al. 2018. Ustekinumab for refractory giant cell arteritis: a prospective 52-week trial. Semin. Arthritis Rheum. 48:52328
    [Google Scholar]
  79. 79.
    Matza MA, Fernandes AD, Stone JH, Unizony SH. 2021. Ustekinumab for the treatment of giant cell arteritis. Arthritis Care Res. 73:89397
    [Google Scholar]
  80. 80.
    Terao C, Yoshifuji H, Nakajima T et al. 2016. Ustekinumab as a therapeutic option for Takayasu arteritis: from genetic findings to clinical application. Scand. J. Rheumatol. 45:8082
    [Google Scholar]
  81. 81.
    Venhoff N, Schmidt WA, Lamprecht P et al. 2021. Efficacy and safety of secukinumab in patients with giant cell arteritis: study protocol for a randomized, parallel group, double-blind, placebo-controlled phase II trial. Trials 22:543
    [Google Scholar]
  82. 82.
    Tian X, Li M, Jiang N et al. 2023. Comparative efficacy of secukinumab versus tumor necrosis factor inhibitors for the treatment of Takayasu arteritis. Arthritis Rheumatol. 75:141523
    [Google Scholar]
  83. 83.
    Cid MC, Unizony SH, Blockmans D et al. 2022. Efficacy and safety of mavrilimumab in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 81:65361
    [Google Scholar]
  84. 84.
    Koster MJ, Crowson CS, Giblon RE et al. 2022. Baricitinib for relapsing giant cell arteritis: a prospective open-label 52-week pilot study. Ann. Rheum. Dis. 81:86167
    [Google Scholar]
  85. 85.
    Kong X, Sun Y, Dai X et al. 2022. Treatment efficacy and safety of tofacitinib versus methotrexate in Takayasu arteritis: a prospective observational study. Ann. Rheum. Dis. 81:11723
    [Google Scholar]
  86. 86.
    Wang J, Dai X, Ma L et al. 2022. Efficacy and safety of tofacitinib versus leflunomide with glucocorticoids treatment in Takayasu arteritis: a prospective study. Semin. Arthritis Rheum. 55:152018
    [Google Scholar]
/content/journals/10.1146/annurev-med-060622-100940
Loading
/content/journals/10.1146/annurev-med-060622-100940
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error