1932

Abstract

RNA degradosomes are multienzyme complexes composed of ribonucleases, RNA helicases, and metabolic enzymes. RNase E–based degradosomes are widespread in . The RNA degradosome is sequestered from transcription in the nucleoid and translation in the cytoplasm by localization to the inner cytoplasmic membrane, where it forms short-lived clusters that are proposed to be sites of mRNA degradation. In , RNA degradosomes localize to ribonucleoprotein condensates in the interior of the cell [bacterial ribonucleoprotein-bodies (BR-bodies)], which have been proposed to drive the concerted degradation of mRNA to nucleotides. The turnover of mRNA in growing cells is important for maintaining pools of nucleotides for transcription and DNA replication.Membrane attachment of the RNA degradosome is necessary to avoid wasteful degradation of intermediates in ribosome assembly. Sequestering RNA degradosomes to BR-bodies, which exclude structured RNA, could have a similar role in protecting intermediates in ribosome assembly from degradation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041020-113308
2022-09-08
2024-05-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-041020-113308.html?itemId=/content/journals/10.1146/annurev-micro-041020-113308&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aït-Bara S, Carpousis AJ 2010. Characterization of the RNA degradosome of Pseudoalteromonas haloplanktis: conservation of the RNase E-RhlB interaction in the Gammaproteobacteria. J. Bacteriol. 192:5413–23
    [Google Scholar]
  2. 2.
    Aït-Bara S, Carpousis AJ 2015. RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Mol. Microbiol. 97:1021–35
    [Google Scholar]
  3. 3.
    Aït-Bara S, Carpousis AJ, Quentin Y 2015. RNase E in the γ-Proteobacteria: conservation of intrinsically disordered noncatalytic region and molecular evolution of microdomains. Mol. Genet. Genom. 290:847–62
    [Google Scholar]
  4. 4.
    Al-Husini N, Tomares DT, Bitar O, Childers WS, Schrader JM. 2018. α-Proteobacterial RNA degradosomes assemble liquid-liquid phase-separated RNP bodies. Mol. Cell 71:1027–39.e14
    [Google Scholar]
  5. 5.
    Al-Husini N, Tomares DT, Pfaffenberger ZJ, Muthunayake NS, Samad MA et al. 2020. BR-bodies provide selectively permeable condensates that stimulate mRNA decay and prevent release of decay intermediates. Mol. Cell 78:670–82.e8
    [Google Scholar]
  6. 6.
    Axelrod D, Burghardt TP, Thompson NL. 1984. Total internal reflection fluorescence. Annu. Rev. Biophys. Bioeng. 13:247–68
    [Google Scholar]
  7. 7.
    Bakshi S, Siryaporn A, Goulian M, Weisshaar JC. 2012. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85:21–38
    [Google Scholar]
  8. 8.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:285–98
    [Google Scholar]
  9. 9.
    Bandyra KJ, Bouvier M, Carpousis AJ, Luisi BF. 2013. The social fabric of the RNA degradosome. Biochim. Biophys. Acta Gene Regul. Mech. 1829:514–22
    [Google Scholar]
  10. 10.
    Basturea GN, Zundel MA, Deutscher MP. 2011. Degradation of ribosomal RNA during starvation: comparison to quality control during steady-state growth and a role for RNase PH. RNA 17:338–45
    [Google Scholar]
  11. 11.
    Bayas CA, Wang J, Lee MK, Schrader JM, Shapiro L, Moerner WE. 2018. Spatial organization and dynamics of RNase E and ribosomes in Caulobacter crescentus. PNAS 115:E3712–21
    [Google Scholar]
  12. 12.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–45
    [Google Scholar]
  13. 13.
    Bohne A-V. 2014. The nucleoid as a site of rRNA processing and ribosome assembly. Front. Plant Sci. 5:257
    [Google Scholar]
  14. 14.
    Callaghan AJ, Aurikko JP, Ilag LL, Gunter Grossmann J, Chandran V et al. 2004. Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. J. Mol. Biol. 340:965–79
    [Google Scholar]
  15. 15.
    Callaghan AJ, Marcaida MJ, Stead JA, McDowall KJ, Scott WG, Luisi BF. 2005. Structure of Escherichia coli RNase E catalytic domain and implications for RNA turnover. Nature 437:1187–91
    [Google Scholar]
  16. 16.
    Cambrée A, Aertsen A. 2020. Bacterial vivisection: how fluorescence-based imaging techniques shed a light on the inner workings of bacteria. Microbiol. Mol. Biol. Rev. 84:4e00008–20
    [Google Scholar]
  17. 17.
    Carpousis AJ. 2007. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol. 61:71–87
    [Google Scholar]
  18. 18.
    Carpousis AJ, Luisi BF, McDowall KJ. 2009. Endonucleolytic initiation of mRNA decay in Escherichia coli. Prog. Mol. Biol. Transl. Sci. 85:91–135
    [Google Scholar]
  19. 19.
    Cascante-Estepa N, Gunka K, Stülke J. 2016. Localization of components of the RNA-degrading machine in Bacillus subtilis. Front. Microbiol. 7:1492
    [Google Scholar]
  20. 20.
    Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D et al. 2009. Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. Mol. Cell Proteom. 8:1350–60
    [Google Scholar]
  21. 21.
    Davis JH, Williamson JR. 2017. Structure and dynamics of bacterial ribosome biogenesis. Philos. Trans. R. Soc. B 372:171620160181
    [Google Scholar]
  22. 22.
    DeLoughery A, Lalanne JB, Losick R, Li GW. 2018. Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillus subtilis. PNAS 115:E5585–94
    [Google Scholar]
  23. 23.
    Deutscher MP. 2009. Maturation and degradation of ribosomal RNA in bacteria. Prog. Mol. Biol. Transl. Sci. 85:369–91
    [Google Scholar]
  24. 24.
    Durisic N, Laparra-Cuervo L, Sandoval-Alvarez Á, Borbely JS, Lakadamyali M. 2014. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat. Methods 11:156–62
    [Google Scholar]
  25. 25.
    El Mortaji L, Aubert S, Galtier E, Schmitt C, Anger K et al. 2018. The sole DEAD-box RNA helicase of the gastric pathogen Helicobacter pylori is essential for colonization. mBio 9:2e02071–17
    [Google Scholar]
  26. 26.
    Etienne TA, Cocaign-Bousquet M, Ropers D. 2020. Competitive effects in bacterial mRNA decay. J. Theor. Biol. 504:110333
    [Google Scholar]
  27. 27.
    Gaal T, Bratton BP, Sanchez-Vazquez P, Sliwicki A, Sliwicki K et al. 2016. Colocalization of distant chromosomal loci in space in E. coli: a bacterial nucleolus. Genes Dev 30:2272–85
    [Google Scholar]
  28. 28.
    Gray WT, Govers SK, Xiang Y, Parry BR, Campos M et al. 2019. Nucleoid size scaling and intracellular organization of translation across bacteria. Cell 177:1632–48.e20
    [Google Scholar]
  29. 29.
    Hadjeras L, Poljak L, Bouvier M, Morin-Ogier Q, Canal I et al. 2019. Detachment of the RNA degradosome from the inner membrane of Escherichia coli results in a global slowdown of mRNA degradation, proteolysis of RNase E and increased turnover of ribosome-free transcripts. Mol. Microbiol. 111:1715–31
    [Google Scholar]
  30. 30.
    Hamouche L, Billaudeau C, Rocca A, Chastanet A, Ngo S et al. 2020. Dynamic membrane localization of RNase Y in Bacillus subtilis. mBio 11:1e03337–19
    [Google Scholar]
  31. 31.
    Hamouche L, Poljak L, Carpousis AJ. 2021. Polyribosome-dependent clustering of membrane-anchored RNA degradosomes to form sites of mRNA degradation in Escherichia coli. mBio 12:5e0193221
    [Google Scholar]
  32. 32.
    Hamouche L, Poljak L, Carpousis AJ. 2021. Ribosomal RNA degradation induced by the bacterial RNA polymerase inhibitor rifampicin. RNA 27:8946–58
    [Google Scholar]
  33. 33.
    Hardwick SW, Chan VS, Broadhurst RW, Luisi BF. 2011. An RNA degradosome assembly in Caulobacter crescentus. Nucleic Acids Res 39:1449–59
    [Google Scholar]
  34. 34.
    Hiraga S. 2000. Dynamic localization of bacterial and plasmid chromosomes. Annu. Rev. Genet. 34:21–59
    [Google Scholar]
  35. 35.
    Huang B, Babcock H, Zhuang X. 2010. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–58
    [Google Scholar]
  36. 36.
    Huang B, Wang W, Bates M, Zhuang X. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–13
    [Google Scholar]
  37. 37.
    Hunt A, Rawlins JP, Thomaides HB, Errington J. 2006. Functional analysis of 11 putative essential genes in Bacillus subtilis. Microbiology 152:2895–907
    [Google Scholar]
  38. 38.
    Irastortza-Olaziregi M, Amster-Choder O. 2020. Coupled transcription-translation in prokaryotes: an old couple with new surprises. Front. Microbiol. 11:624830
    [Google Scholar]
  39. 39.
    Jager S, Fuhrmann O, Heck C, Hebermehl M, Schiltz E et al. 2001. An mRNA degrading complex in Rhodobacter capsulatus. Nucleic Acids Res 29:4581–88
    [Google Scholar]
  40. 40.
    Jager S, Hebermehl M, Schiltz E, Klug G. 2004. Composition and activity of the Rhodobacter capsulatus degradosome vary under different oxygen concentrations. J. Mol. Microbiol. Biotechnol. 7:148–54
    [Google Scholar]
  41. 41.
    Jain C. 2020. RNase AM, a 5′ to 3′ exonuclease, matures the 5′ end of all three ribosomal RNAs in E. coli. Nucleic Acids Res 48:5616–23
    [Google Scholar]
  42. 42.
    Johnson GE, Lalanne JB, Peters ML, Li GW. 2020. Functionally uncoupled transcription-translation in Bacillus subtilis. Nature 585:124–28
    [Google Scholar]
  43. 43.
    Kaberdin VR, Miczak A, Jakobsen JS, Lin-Chao S, McDowall KJ, von Gabain A. 1998. The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. PNAS 95:11637–42
    [Google Scholar]
  44. 44.
    Kaberdina AC, Szaflarski W, Nierhaus KH, Moll I 2009. An unexpected type of ribosomes induced by kasugamycin: a look into ancestral times of protein synthesis?. Mol. Cell 33:227–36
    [Google Scholar]
  45. 45.
    Keiler KC. 2011. RNA localization in bacteria. Curr. Opin. Microbiol. 14:155–59
    [Google Scholar]
  46. 46.
    Khemici V, Poljak L, Luisi BF, Carpousis AJ. 2008. The RNase E of Escherichia coli is a membrane-binding protein. Mol. Microbiol. 70:799–813
    [Google Scholar]
  47. 47.
    Khemici V, Prados J, Linder P, Redder P. 2015. Decay-initiating endoribonucleolytic cleavage by RNase Y is kept under tight control via sequence preference and sub-cellular localisation. PLOS Genet 11:e1005577
    [Google Scholar]
  48. 48.
    Ladouceur AM, Parmar BS, Biedzinski S, Wall J, Tope SG et al. 2020. Clusters of bacterial RNA polymerase are biomolecular condensates that assemble through liquid-liquid phase separation. PNAS 117:18540–49
    [Google Scholar]
  49. 49.
    Lee K, Cohen SN. 2003. A Streptomyces coelicolor functional orthologue of Escherichia coli RNase E shows shuffling of catalytic and PNPase-binding domains. Mol. Microbiol. 48:349–60
    [Google Scholar]
  50. 50.
    Lehnik-Habrink M, Newman J, Rothe FM, Solovyova AS, Rodrigues C et al. 2011. RNase Y in Bacillus subtilis: a natively disordered protein that is the functional equivalent of RNase E from Escherichia coli. J. Bacteriol. 193:5431–41
    [Google Scholar]
  51. 51.
    Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J et al. 2021. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1:39
    [Google Scholar]
  52. 52.
    Leroy A, Vanzo NF, Sousa S, Dreyfus M, Carpousis AJ. 2002. Function in Escherichia coli of the non-catalytic part of RNase E: role in the degradation of ribosome-free mRNA. Mol. Microbiol. 45:1231–43
    [Google Scholar]
  53. 53.
    Lewis PJ, Thaker SD, Errington J. 2000. Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J 19:710–18
    [Google Scholar]
  54. 54.
    Li H, Vaughan JC. 2018. Switchable fluorophores for single-molecule localization microscopy. Chem. Rev. 118:9412–54
    [Google Scholar]
  55. 55.
    Liu Z, Lavis LD, Betzig E. 2015. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58:644–59
    [Google Scholar]
  56. 56.
    Llopis PM, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J et al. 2010. Spatial organization of the flow of genetic information in bacteria. Nature 466:77–81
    [Google Scholar]
  57. 57.
    Lopez PJ, Marchand I, Joyce SA, Dreyfus M. 1999. The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol. Microbiol. 33:188–99
    [Google Scholar]
  58. 58.
    Mackie GA. 2013. RNase E: at the interface of bacterial RNA processing and decay. Nat. Rev. Microbiol. 11:45–57
    [Google Scholar]
  59. 59.
    Malagon F. 2013. RNase III is required for localization to the nucleoid of the 5′ pre-rRNA leader and for optimal induction of rRNA synthesis in E. coli. RNA 19:1200–7
    [Google Scholar]
  60. 60.
    Marcaida MJ, DePristo MA, Chandran V, Carpousis AJ, Luisi BF. 2006. The RNA degradosome: life in the fast lane of adaptive molecular evolution. Trends Biochem. Sci. 31:359–65
    [Google Scholar]
  61. 61.
    McQuail J, Carpousis AJ, Wigneshweraraj S. 2022. The association between Hfq and RNase E in long-term nitrogen-starved Escherichia coli. Mol. Microbiol. 117:154–66
    [Google Scholar]
  62. 62.
    Miller OL Jr., Hamkalo BA, Thomas CA Jr. 1970. Visualization of bacterial genes in action. Science 169:392–95
    [Google Scholar]
  63. 63.
    Moffitt JR, Pandey S, Boettiger AN, Wang S, Zhuang X 2016. Spatial organization shapes the turnover of a bacterial transcriptome. eLife 5:e13065
    [Google Scholar]
  64. 64.
    Müller C, Sokol L, Vesper O, Sauert M, Moll I 2016. Insights into the stress response triggered by kasugamycin in Escherichia coli. Antibiotics 5:219
    [Google Scholar]
  65. 65.
    Murashko ON, Kaberdin VR, Lin-Chao S. 2012. Membrane binding of Escherichia coli RNase E catalytic domain stabilizes protein structure and increases RNA substrate affinity. PNAS 109:7019–24
    [Google Scholar]
  66. 66.
    Murashko ON, Lin-Chao S. 2017. Escherichia coli responds to environmental changes using enolasic degradosomes and stabilized DicF sRNA to alter cellular morphology. PNAS 114:E8025–34
    [Google Scholar]
  67. 67.
    Muthunayake NS, Tomares DT, Childers WS, Schrader JM. 2020. Phase-separated bacterial ribonucleoprotein bodies organize mRNA decay. Wiley Interdiscip. Rev. RNA 11:e1599
    [Google Scholar]
  68. 68.
    Nevo-Dinur K, Govindarajan S, Amster-Choder O. 2012. Subcellular localization of RNA and proteins in prokaryotes. Trends Genet. 28:314–22
    [Google Scholar]
  69. 69.
    Nouaille S, Mondeil S, Finoux AL, Moulis C, Girbal L, Cocaign-Bousquet M. 2017. The stability of an mRNA is influenced by its concentration: a potential physical mechanism to regulate gene expression. Nucleic Acids Res 45:11711–24
    [Google Scholar]
  70. 70.
    Ow MC, Liu Q, Kushner SR. 2000. Analysis of mRNA decay and rRNA processing in Escherichia coli in the absence of RNase E-based degradosome assembly. Mol. Microbiol. 38:854–66
    [Google Scholar]
  71. 71.
    Paul BJ, Ross W, Gaal T, Gourse RL. 2004. rRNA transcription in Escherichia coli. Annu. Rev. Genet. 38:749–70
    [Google Scholar]
  72. 72.
    Redder P. 2018. Molecular and genetic interactions of the RNA degradation machineries in Firmicute bacteria. Wiley Interdiscip. Rev. RNA 9:e1460
    [Google Scholar]
  73. 73.
    Redko Y, Aubert S, Stachowicz A, Lenormand P, Namane A et al. 2013. A minimal bacterial RNase J-based degradosome is associated with translating ribosomes. Nucleic Acids Res 41:288–301
    [Google Scholar]
  74. 74.
    Robinow C, Kellenberger E. 1994. The bacterial nucleoid revisited. Microbiol. Rev. 58:211–32
    [Google Scholar]
  75. 75.
    Roux CM, DeMuth JP, Dunman PM. 2011. Characterization of components of the Staphylococcus aureus mRNA degradosome holoenzyme-like complex. J. Bacteriol. 193:5520–26
    [Google Scholar]
  76. 76.
    Rust MJ, Bates M, Zhuang X. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–95
    [Google Scholar]
  77. 77.
    Schermelleh L, Heintzmann R, Leonhardt H. 2010. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190:165–75
    [Google Scholar]
  78. 78.
    Shahbabian K, Jamalli A, Zig L, Putzer H. 2009. RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 28:2523–33
    [Google Scholar]
  79. 79.
    Shajani Z, Sykes MT, Williamson JR. 2011. Assembly of bacterial ribosomes. Annu. Rev. Biochem. 80:501–26
    [Google Scholar]
  80. 80.
    Shaner NC, Steinbach PA, Tsien RY. 2005. A guide to choosing fluorescent proteins. Nat. Methods 2:905–9
    [Google Scholar]
  81. 81.
    Shapiro L, McAdams HH, Losick R. 2009. Why and how bacteria localize proteins. Science 326:1225–28
    [Google Scholar]
  82. 82.
    Stoppel R, Manavski N, Schein A, Schuster G, Teubner M et al. 2012. RHON1 is a novel ribonucleic acid-binding protein that supports RNase E function in the Arabidopsis chloroplast. Nucleic Acids Res 40:8593–606
    [Google Scholar]
  83. 83.
    Storz G, Vogel J, Wassarman KM. 2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43:880–91
    [Google Scholar]
  84. 84.
    Strahl H, Turlan C, Khalid S, Bond PJ, Kebalo JM et al. 2015. Membrane recognition and dynamics of the RNA degradosome. PLOS Genet 11:e1004961
    [Google Scholar]
  85. 85.
    Sulthana S, Basturea GN, Deutscher MP. 2016. Elucidation of pathways of ribosomal RNA degradation: an essential role for RNase E. RNA 22:1163–71
    [Google Scholar]
  86. 86.
    Sulthana S, Deutscher MP. 2013. Multiple exoribonucleases catalyze maturation of the 3′ terminus of 16S ribosomal RNA (rRNA). J. Biol. Chem. 288:12574–79
    [Google Scholar]
  87. 87.
    Surovtsev IV, Jacobs-Wagner C. 2018. Subcellular organization: a critical feature of bacterial cell replication. Cell 172:1271–93
    [Google Scholar]
  88. 88.
    Tejada-Arranz A, Galtier E, El Mortaji L, Turlin E, Ershov D, De Reuse H. 2020. The RNase J-based RNA degradosome is compartmentalized in the gastric pathogen Helicobacter pylori. mBio 11:5e01173–20
    [Google Scholar]
  89. 89.
    Tejada-Arranz A, Matos RG, Quentin Y, Bouilloux-Lafont M, Galtier E et al. 2021. RNase R is associated in a functional complex with the RhpA DEAD-box RNA helicase in Helicobacter pylori. Nucleic Acids Res 49:5249–64
    [Google Scholar]
  90. 90.
    Tokunaga M, Imamoto N, Sakata-Sogawa K. 2008. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5:159–61
    [Google Scholar]
  91. 91.
    Tsai YC, Du D, Dominguez-Malfavon L, Dimastrogiovanni D, Cross J et al. 2012. Recognition of the 70S ribosome and polysome by the RNA degradosome in Escherichia coli. Nucleic Acids Res 40:10417–31
    [Google Scholar]
  92. 92.
    Vanzo NF, Li YS, Py B, Blum E, Higgins CF et al. 1998. Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev 12:2770–81
    [Google Scholar]
  93. 93.
    Vogel J, Luisi BF. 2011. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 9:578–89
    [Google Scholar]
  94. 94.
    Voss JE, Luisi BF, Hardwick SW. 2014. Molecular recognition of RhlB and RNase D in the Caulobacter crescentus RNA degradosome. Nucleic Acids Res 42:13294–305
    [Google Scholar]
  95. 95.
    Wang S, Moffitt JR, Dempsey GT, Xie XS, Zhuang X. 2014. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging. PNAS 111:8452–57
    [Google Scholar]
  96. 96.
    Wang X, Reyes-Lamothe R, Sherratt DJ. 2008. Visualizing genetic loci and molecular machines in living bacteria. Biochem. Soc. Trans. 36:749–53
    [Google Scholar]
  97. 97.
    Weng X, Bohrer CH, Bettridge K, Lagda AC, Cagliero C et al. 2019. Spatial organization of RNA polymerase and its relationship with transcription in Escherichia coli. PNAS 116:20115–23
    [Google Scholar]
  98. 98.
    Yao Z, Carballido-López R. 2014. Fluorescence imaging for bacterial cell biology: from localization to dynamics, from ensembles to single molecules. Annu. Rev. Microbiol. 68:459–76
    [Google Scholar]
  99. 99.
    Young KD. 2006. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70:660–703
    [Google Scholar]
  100. 100.
    Zundel MA, Basturea GN, Deutscher MP. 2009. Initiation of ribosome degradation during starvation in Escherichia coli. RNA 15:977–83
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041020-113308
Loading
/content/journals/10.1146/annurev-micro-041020-113308
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error