1932

Abstract

The strong interaction among hadrons has been measured in the past by scattering experiments. Although this technique has been extremely successful in providing information about the nucleon–nucleon and pion–nucleon interactions, when unstable hadrons are considered the experiments become more challenging. In the last few years, the analysis of correlations in the momentum space for pairs of stable and unstable hadrons measured in and +Pb collisions by the ALICE Collaboration at the LHC has provided a new method to investigate the strong interaction among hadrons. In this article, we review the numerous results recently achieved for hyperon–nucleon, hyperon–hyperon, and kaon–nucleon pairs, which show that this new method opens the possibility of measuring the residual strong interaction of any hadron pair.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102419-034438
2021-09-21
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-102419-034438.html?itemId=/content/journals/10.1146/annurev-nucl-102419-034438&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Arndt R, Briscoe W, Strakovsky I, Workman R. Phys. Rev. C 76:025209 2007.
  2. 2. 
    Navarro Pérez R, Amaro J, Ruiz Arriola E. Phys. Rev. C 88:024002 (2013). Erratum. Phys. Rev. C 88:069902 2013.
  3. 3. 
    Mast TS, et al. Phys. Rev. D 14:13 1976.
  4. 4. 
    Ciborowski J, et al. J. Phys. G 8:13 1982.
  5. 5. 
    Eisele F, et al. Phys. Lett. B 37:204 1971.
  6. 6. 
    Alexander G, et al. Phys. Rev. 173:1452 1968.
  7. 7. 
    Sechi-Zorn B, Kehoe B, Twitty J, Burnstein R. Phys. Rev. 175:1735 1968.
  8. 8. 
    Weissenborn S, Chatterjee D, Schaffner-Bielich J. Nucl. Phys. A 881:62 2012.
  9. 9. 
    Lonardoni D, Lovato A, Gandolfi S, Pederiva F. Phys. Rev. Lett. 114:092301 2015.
  10. 10. 
    Gerstung D, Kaiser N, Weise W. Eur. Phys. J. A 56:175 2020.
  11. 11. 
    Hanbury Brown R, Twiss R. Nature 178:1046 1956.
  12. 12. 
    Goldhaber G, Goldhaber S, Lee W, Pais A. Phys. Rev. 120:300 1960.
  13. 13. 
    Gyulassy M, Kauffmann SK, Wilson LW. Phys. Rev. C 20:2267 1979.
  14. 14. 
    Zajc WA, et al. Phys. Rev. C 29:2173 1984.
  15. 15. 
    Fung SY, et al. Phys. Rev. Lett. 41:1592 1978.
  16. 16. 
    Wiedemann UA, Heinz UW. Phys. Rep. 319:145 1999.
  17. 17. 
    Podgoretsky M. Fiz. Elem. Chast. Atom. Yadra 20:628 1989.
  18. 18. 
    Adamczewski-Musch J, et al. Phys. Rev. C 94:025201 2016.
  19. 19. 
    Agakishiev G, et al. Phys. Rev. C 82:021901 2010.
  20. 20. 
    Abbott T, et al. Phys. Rev. Lett. 69:1030 1992.
  21. 21. 
    Barrette J, et al. Phys. Lett. B 333:33 1994.
  22. 22. 
    Bamberger A, et al. Z. Phys. C 38:79 1988.
  23. 23. 
    Bamberger A, et al. Phys. Lett. B 203:320 1988.
  24. 24. 
    Heinz UW, Kolb PF Two RHIC puzzles: early thermalization and the HBT problem. Proceedings of the 18th Winter Workshop on Nuclear Dynamics R Bellwied, J Harris, W Bauer 205–16 Debrecen, Hung: EP Systema 2002.
    [Google Scholar]
  25. 25. 
    Khachatryan V, et al. Phys. Rev. Lett. 105:032001 2010.
  26. 26. 
    Chojnacki M, Kisiel A, Florkowski W, Broniowski W. Comput. Phys. Commun. 183:746 2012.
  27. 27. 
    Adam J, et al. Phys. Rev. C 92:054908 2015.
  28. 28. 
    Lednický R. Phys. Atom. Nucl. 67:72 2004.
  29. 29. 
    Shapoval VM, Erazmus B, Lednicky R, Sinyukov YM. Phys. Rev. C 92:034910 2015.
  30. 30. 
    Adamczyk L, et al. Phys. Rev. Lett. 114:022301 2015.
  31. 31. 
    Adamczyk L, et al. Nature 527:345 2015.
  32. 32. 
    Adam J, et al. Phys. Lett. B 790:490 2019.
  33. 33. 
    Lisa MA, Pratt S, Soltz R, Wiedemann U. Annu. Rev. Nucl. Part. Sci. 55:357 2005.
  34. 34. 
    Morita K, Furumoto T, Ohnishi A. Phys. Rev. C 91:024916 2015.
  35. 35. 
    Acharya S et al.arXiv:2005.11124 [nucl-ex] 2020.
  36. 36. 
    Acharya S, et al. Phys. Lett. B 802:135223 2020.
  37. 37. 
    Acharya S, et al. Phys. Rev. C 99:024001 2019.
  38. 38. 
    Acharya S, et al. Phys. Rev. Lett. 124:092301 2020.
  39. 39. 
    Acharya S, et al. Phys. Lett. B 805:135419 2020.
  40. 40. 
    Acharya S, et al. Phys. Lett. B 797:134822 2019.
  41. 41. 
    Acharya S, et al. Phys. Rev. Lett. 123:112002 2019.
  42. 42. 
    Acharya S, et al. Nature 588:232 2020.
  43. 43. 
    Pratt S. Phys. Rev. D 33:1314 1986.
  44. 44. 
    Lednický R, Lyuboshitz V. Sov. J. Nucl. Phys. 35:770 1982.
  45. 45. 
    Mihaylov D, et al. Eur. Phys. J. C 78:394 2018.
  46. 46. 
    Morita K, et al. Phys. Rev. C 101:015201 2020.
  47. 47. 
    Acharya S, et al. Phys. Rev. C 96:064613 2017.
  48. 48. 
    Lisa MA, Pratt S. arXiv:0811.1352 [nucl-ex] 2009.
  49. 49. 
    Bearden I, et al. Eur. Phys. J. C 18:317 2000.
  50. 50. 
    Adam J, et al. Phys. Rev. C 92:054908 2015.
  51. 51. 
    Khachatryan V, et al. Phys. Lett. B 765:193 2017.
  52. 52. 
    Khachatryan V, et al. J. High Energy Phys. 1009:91 2010.
  53. 53. 
    Adam J, et al. Nat. Phys. 13:535 2017.
  54. 54. 
    Acharya S, et al. Phys. Rev. C 99:024906 2019.
  55. 55. 
    Sirunyan AM, et al. Phys. Rev. C 97:064912 2018.
  56. 56. 
    Aad G, et al. Eur. Phys. J. C 75:466 2015.
  57. 57. 
    Abelev B, et al. Phys. Rev. D 87:052016 2013.
  58. 58. 
    Abelev B, et al. Phys. Lett. B 717:151 2012.
  59. 59. 
    Sirunyan AM, et al. J. High Energy Phys. 2003:14 2020.
  60. 60. 
    Acharya S, et al. Phys. Lett. B 811:135849 2020.
  61. 61. 
    Sinyukov Y, Shapoval V, Naboka V. Nucl. Phys. A 946:227 2016.
  62. 62. 
    Wiedemann UA, Heinz UW. Phys. Rev. C 56:3265 1997.
  63. 63. 
    Vovchenko V, Stoecker H. Comput. Phys. Commun. 244:295 2019.
  64. 64. 
    Becattini F, Passaleva G. Eur. Phys. J. C 23:551 2002.
  65. 65. 
    Wheaton S, Cleymans J. Comput. Phys. Commun. 180:84 2009.
  66. 66. 
    Pierog T, et al. Phys. Rev. C 92:034906 2015.
  67. 67. 
    Wiringa RB, Stoks V, Schiavilla R. Phys. Rev. C 51:38 1995.
  68. 68. 
    Hashimoto O, Tamura H. Prog. Part. Nucl. Phys. 57:564 2006.
  69. 69. 
    Polinder H, Haidenbauer J, Meißner UG. Nucl. Phys. A 779:244 2006.
  70. 70. 
    Haidenbauer J, Meißner UG, Nogga A. Eur. Phys. J. A 56:91 2020.
  71. 71. 
    Humphrey WE, Ross RR. Phys. Rev. 127:1305 1962.
  72. 72. 
    Watson MB, Ferro-Luzzi M, Tripp RD. Phys. Rev. 131:2248 1963.
  73. 73. 
    Nowak RJ, et al. Nucl. Phys. B 139:61 1978.
  74. 74. 
    Hadjimichef D, Haidenbauer J, Krein G. Phys. Rev. C 66:055214 2002.
  75. 75. 
    Sasaki K, et al. Nucl. Phys. A 998:121737 2020.
  76. 76. 
    Acharya S, et al. Phys. Rev. Lett. 123:112002 2019.
  77. 77. 
    Haidenbauer J. Nucl. Phys. A 981:1 2019.
  78. 78. 
    Takahashi H, et al. Phys. Rev. Lett. 87:212502 2001.
  79. 79. 
    Jaffe RL. Phys. Rev. Lett. 38:617 1977.
  80. 80. 
    Adam J, et al. Phys. Lett. B 752:267 2016.
  81. 81. 
    Ohnishi A, Morita K, Miyahara K, Hyodo T. Nucl. Phys. A 954:294 2016.
  82. 82. 
    Adamczyk L, et al. Phys. Rev. Lett. 114:022301 2015.
  83. 83. 
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes: The Art of Scientific Computing New York: Cambridge Univ. Press. , 3rd ed.. ( 2007.
  84. 84. 
    Ueda T, et al. Prog. Theor. Phys. 99:891 1998.
  85. 85. 
    Nagels MM, Rijken TA, de Swart JJ. Phys. Rev. D 15:2547 1977.
  86. 86. 
    Nagels MM, Rijken TA, de Swart JJ. Phys. Rev. D 20:1633 1979.
  87. 87. 
    Rijken TA, Nagels MM, Yamamoto Y. Prog. Theor. Phys. Suppl. 185:14 2010.
  88. 88. 
    Filikhin I, Gal A. Nucl. Phys. A 707:491 2002.
  89. 89. 
    Hiyama E, et al. Phys. Rev. C 66:024007 2002.
  90. 90. 
    Hatsuda T. Front. Phys. (Beijing) 13:132105 2018.
  91. 91. 
    Sekihara T, Kamiya Y, Hyodo T. Phys. Rev. C 98:015205 2018.
  92. 92. 
    Iritani T, et al. Phys. Lett. B 792:284 2019.
  93. 93. 
    Morita K, Ohnishi A, Etminan F, Hatsuda T. Phys. Rev. C 94:031901 (2016). Erratum. Phys. Rev. C 100:069902 2019.
  94. 94. 
    Etminan F, et al. Nucl. Phys. A 928:89 2014.
  95. 95. 
    Hall JMM, et al. Phys. Rev. Lett. 114:132002 2015.
  96. 96. 
    Miyahara K, Hyodo T. Phys. Rev. C 93:015201 2016.
  97. 97. 
    Kamiya Y, et al. Phys. Rev. Lett. 124:132501 2020.
  98. 98. 
    Abd El-Samad S, et al. Eur. Phys. J. A 49:41 2013.
  99. 99. 
    Münzer R, et al. Phys. Lett. B 785:574 2018.
  100. 100. 
    Borissov A. EPJ Web Conf. 222:02002 2019.
  101. 101. 
    Van Buren G. Rom. Rep. Phys. 58:069 2006.
  102. 102. 
    Acharya S et al.Exploring the NΛ-NΣ coupled system with high precision correlation techniques at the LHC. Rep. CERN-EP-2021-51, CERN, Geneva 2021.
  103. 103. 
    Logoteta D, Vidana I, Bombaci I. Eur. Phys. J. A 55:207 2019.
  104. 104. 
    Özel F, Freire P. Annu. Rev. Astron. Astrophys. 54:401 2016.
  105. 105. 
    Riley TE, et al. Astrophys. J. Lett. 887:L21 2019.
  106. 106. 
    Demorest P, et al. Nature 467:1081 2010.
  107. 107. 
    Antoniadis J, et al. Science 340:6131 2013.
  108. 108. 
    Cromartie HT, et al. Nat. Astron. 4:72 2019.
  109. 109. 
    Djapo H, Schaefer BJ, Wambach J. Phys. Rev. C 81:035803 2010.
  110. 110. 
    Tolos L, Fabbietti L. Prog. Part. Nucl. Phys. 112:103770 2020.
  111. 111. 
    Weissenborn S, Chatterjee D, Schaffner-Bielich J. Phys. Rev. C 85:065802 (2012). Erratum. Phys. Rev. C 90:019904 2014.
  112. 112. 
    Haidenbauer J, Meißner UG, Kaiser N, Weise W. Eur. Phys. J. A 53:121 2017.
  113. 113. 
    Inoue T. Proc. Sci. INPC2016:277 2016.
  114. 114. 
    Schaffner J, Mishustin IN. Phys. Rev. C 53:1416 1996.
  115. 115. 
    Hornick N, et al. Phys. Rev. C 98:065804 2018.
  116. 116. 
    Acharya S et al.Future high-energy pp programme with ALICE. Rep. ALICE-PUBLIC-2020-005, CERN-LHCC-2020-018, CERN, Geneva 2020.
  117. 117. 
    Curceanu C, et al. Nucl. Phys. A 914:251 2013.
  118. 118. 
    Gongyo S, et al. Phys. Rev. Lett. 120:212001 2018.
  119. 119. 
    Haidenbauer J. Phys. Rev. C 102:034001 2020.
  120. 120. 
    Bethe H. Phys. Rev. 76:38 1949.
  121. 121. 
    Haidenbauer J, et al. Nucl. Phys. A 915:24 2013.
/content/journals/10.1146/annurev-nucl-102419-034438
Loading
/content/journals/10.1146/annurev-nucl-102419-034438
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error