1932

Abstract

Cholinergic regulation of dopamine (DA) signaling has significant implications for numerous disorders, including schizophrenia, substance use disorders, and mood-related disorders. The activity of midbrain DA neurons and DA release patterns in terminal regions are tightly regulated by cholinergic neurons found in both the striatum and the hindbrain. These cholinergic neurons can modulate DA circuitry by activating numerous receptors, including muscarinic acetylcholine receptor (mAChR) subtypes. This review specifically focuses on the complex role of M2, M4, and M5 mAChR subtypes in regulating DA neuron activity and DA release and the potential clinical implications of targeting these mAChR subtypes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-023858
2024-01-23
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-051921-023858.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-023858&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Salamone JD, Correa M. 2012. The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–85
    [Google Scholar]
  2. 2.
    Howe MW, Dombeck DA. 2016. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535:505–10
    [Google Scholar]
  3. 3.
    Ott T, Nieder A. 2019. Dopamine and cognitive control in prefrontal cortex. Trends Cogn. Sci. 23:213–34
    [Google Scholar]
  4. 4.
    Poulin JF, Caronia G, Hofer C, Cui Q, Helm B et al. 2018. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat. Neurosci. 21:1260–71
    [Google Scholar]
  5. 5.
    Parent A, Hazrati LN. 1995. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Brain Res. Rev. 20:91–127
    [Google Scholar]
  6. 6.
    Graybiel AM. 2008. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31:359–87
    [Google Scholar]
  7. 7.
    O'Hare JK, Ade KK, Sukharnikova T, Van Hooser SD, Palmeri ML et al. 2016. Pathway-specific striatal substrates for habitual behavior. Neuron 89:472–79
    [Google Scholar]
  8. 8.
    Jurado-Parras MT, Safaie M, Sarno S, Louis J, Karoutchi C et al. 2020. The dorsal striatum energizes motor routines. Curr. Biol. 30:4362–72.e6
    [Google Scholar]
  9. 9.
    Markowitz JE, Gillis WF, Jay M, Wood J, Harris RW et al. 2023. Spontaneous behaviour is structured by reinforcement without explicit reward. Nature 614:108–17
    [Google Scholar]
  10. 10.
    Kupferschmidt DA, Juczewski K, Cui G, Johnson KA, Lovinger DM. 2017. Parallel, but dissociable, processing in discrete corticostriatal inputs encodes skill learning. Neuron 96:476–89.e5
    [Google Scholar]
  11. 11.
    Seiler JL, Cosme CV, Sherathiya VN, Schaid MD, Bianco JM et al. 2022. Dopamine signaling in the dorsomedial striatum promotes compulsive behavior. Curr. Biol. 32:1175–88.e5
    [Google Scholar]
  12. 12.
    Yin HH, Ostlund SB, Knowlton BJ, Balleine BW. 2005. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22:513–23
    [Google Scholar]
  13. 13.
    Patriarchi T, Cho JR, Merten K, Howe MW, Marley A et al. 2018. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:eaat4422
    [Google Scholar]
  14. 14.
    Mohebi A, Pettibone JR, Hamid AA, Wong JT, Vinson LT et al. 2019. Dissociable dopamine dynamics for learning and motivation. Nature 570:65–70
    [Google Scholar]
  15. 15.
    Kutlu MG, Zachry JE, Melugin PR, Cajigas SA, Chevee MF et al. 2021. Dopamine release in the nucleus accumbens core signals perceived saliency. Curr. Biol. 31:4748–61.e8
    [Google Scholar]
  16. 16.
    Bordia T, Perez XA, Heiss J, Zhang D, Quik M. 2016. Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias. Neurobiol. Dis. 91:47–58
    [Google Scholar]
  17. 17.
    Moehle MS, Conn PJ. 2019. Roles of the M4 acetylcholine receptor in the basal ganglia and the treatment of movement disorders. Mov. Disord. 34:1089–99
    [Google Scholar]
  18. 18.
    Duvoisin RC. 1967. Cholinergic-anticholinergic antagonism in parkinsonism. Arch. Neurol. 17:124–36
    [Google Scholar]
  19. 19.
    Barbeau A. 1962. The pathogenesis of Parkinson's disease: a new hypothesis. Can. Med. Assoc. J. 87:802–7
    [Google Scholar]
  20. 20.
    Nunes EJ, Kebede N, Bagdas D, Addy NA. 2022. Cholinergic and dopaminergic-mediated motivated behavior in healthy states and in substance use and mood disorders. J. Exp. Anal. Behav. 117:404–19
    [Google Scholar]
  21. 21.
    Foster DJ, Bryant ZK, Conn PJ. 2021. Targeting muscarinic receptors to treat schizophrenia. Behav. Brain Res. 405:113201
    [Google Scholar]
  22. 22.
    Wang HL, Morales M. 2009. Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur. J. Neurosci. 29:340–58
    [Google Scholar]
  23. 23.
    Holmstrand EC, Sesack SR. 2011. Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons. Brain Struct. Funct. 216:331–45
    [Google Scholar]
  24. 24.
    Maskos U. 2010. Role of endogenous acetylcholine in the control of the dopaminergic system via nicotinic receptors. J. Neurochem. 114:641–46
    [Google Scholar]
  25. 25.
    Moehle MS, Pancani T, Byun N, Yohn SE, Wilson GH 3rd et al. 2017. Cholinergic projections to the substantia nigra pars reticulata inhibit dopamine modulation of basal ganglia through the M4 muscarinic receptor. Neuron 96:1358–72.e4
    [Google Scholar]
  26. 26.
    Lodge DJ, Grace AA. 2006. The laterodorsal tegmentum is essential for burst firing of ventral tegmental area dopamine neurons. PNAS 103:5167–72
    [Google Scholar]
  27. 27.
    Pan WX, Hyland BI. 2005. Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J. Neurosci. 25:4725–32
    [Google Scholar]
  28. 28.
    Floresco SB, West AR, Ash B, Moore H, Grace AA. 2003. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6:968–73
    [Google Scholar]
  29. 29.
    Zhang YF, Reynolds JNJ, Cragg SJ. 2018. Pauses in cholinergic interneuron activity are driven by excitatory input and delayed rectification, with dopamine modulation. Neuron 98:918–25.e3
    [Google Scholar]
  30. 30.
    Xiao C, Zhou CY, Jiang JH, Yin C. 2020. Neural circuits and nicotinic acetylcholine receptors mediate the cholinergic regulation of midbrain dopaminergic neurons and nicotine dependence. Acta Pharmacol. Sin. 41:1–9
    [Google Scholar]
  31. 31.
    Exley R, Cragg SJ. 2008. Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br. J. Pharmacol. 153:Suppl. 1S283–97
    [Google Scholar]
  32. 32.
    Faure P, Tolu S, Valverde S, Naude J. 2014. Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience 282:86–100
    [Google Scholar]
  33. 33.
    Picciotto MR, Kenny PJ. 2021. Mechanisms of nicotine addiction. Cold Spring Harb. Perspect. Med. 11:a039610
    [Google Scholar]
  34. 34.
    Foster DJ, Conn PJ. 2017. Allosteric modulation of GPCRs: new insights and potential utility for treatment of schizophrenia and other CNS disorders. Neuron 94:431–46
    [Google Scholar]
  35. 35.
    Scarpa M, Molloy C, Jenkins L, Strellis B, Budgett RF et al. 2021. Biased M1 muscarinic receptor mutant mice show accelerated progression of prion neurodegenerative disease. PNAS 118:e2107389118
    [Google Scholar]
  36. 36.
    van der Westhuizen ET, Choy KHC, Valant C, McKenzie-Nickson S, Bradley SJ et al. 2020. Fine tuning muscarinic acetylcholine receptor signaling through allostery and bias. Front. Pharmacol. 11:606656
    [Google Scholar]
  37. 37.
    Gould RW, Gunter BW, Bubser M, Matthews RT, Teal LB et al. 2019. Acute negative allosteric modulation of M5 muscarinic acetylcholine receptors inhibits oxycodone self-administration and cue-induced reactivity with no effect on antinociception. ACS Chem. Neurosci. 10:3740–50
    [Google Scholar]
  38. 38.
    Vilaro MT, Palacios JM, Mengod G. 1990. Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci. Lett. 114:154–59
    [Google Scholar]
  39. 39.
    Weiner DM, Levey AI, Brann MR. 1990. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. PNAS 87:7050–54
    [Google Scholar]
  40. 40.
    Garzon M, Pickel VM. 2016. Electron microscopic localization of M2-muscarinic receptors in cholinergic and noncholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei of the rat mesopontine tegmentum. J. Comp. Neurol. 524:3084–103
    [Google Scholar]
  41. 41.
    Tzavara ET, Bymaster FP, Davis RJ, Wade MR, Perry KW et al. 2004. M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J. 18:1410–12
    [Google Scholar]
  42. 42.
    Forster GL, Blaha CD. 2000. Laterodorsal tegmental stimulation elicits dopamine efflux in the rat nucleus accumbens by activation of acetylcholine and glutamate receptors in the ventral tegmental area. Eur. J. Neurosci. 12:3596–604
    [Google Scholar]
  43. 43.
    Miller AD, Blaha CD. 2005. Midbrain muscarinic receptor mechanisms underlying regulation of mesoaccumbens and nigrostriatal dopaminergic transmission in the rat. Eur. J. Neurosci. 21:1837–46
    [Google Scholar]
  44. 44.
    Solecki W, Wickham RJ, Behrens S, Wang J, Zwerling B et al. 2013. Differential role of ventral tegmental area acetylcholine and N-methyl-d-aspartate receptors in cocaine-seeking. Neuropharmacology 75:9–18
    [Google Scholar]
  45. 45.
    Forster GL, Yeomans JS, Takeuchi J, Blaha CD. 2002. M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J. Neurosci. 22:RC190
    [Google Scholar]
  46. 46.
    Steidl S, Miller AD, Blaha CD, Yeomans JS. 2011. M5 muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PLOS ONE 6:e27538
    [Google Scholar]
  47. 47.
    Bender AM, Garrison AT, Lindsley CW. 2019. The muscarinic acetylcholine receptor M5: therapeutic implications and allosteric modulation. ACS Chem. Neurosci. 10:1025–34
    [Google Scholar]
  48. 48.
    Gentry PR, Kokubo M, Bridges TM, Cho HP, Smith E et al. 2014. Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. ChemMedChem 9:1677–82
    [Google Scholar]
  49. 49.
    Gentry PR, Kokubo M, Bridges TM, Kett NR, Harp JM et al. 2013. Discovery of the first M5-selective and CNS penetrant negative allosteric modulator (NAM) of a muscarinic acetylcholine receptor: (S)-9b-(4-chlorophenyl)-1-(3,4-difluorobenzoyl)-2,3-dihydro-1H-imidazo[2,1-a]isoi ndol-5(9bH)-one (ML375). J. Med. Chem. 56:9351–55
    [Google Scholar]
  50. 50.
    Garrison AT, Orsi DL, Capstick RA, Whomble D, Li J et al. 2022. Development of VU6019650: a potent, highly selective, and systemically active orthosteric antagonist of the M5 muscarinic acetylcholine receptor for the treatment of opioid use disorder. J. Med. Chem. 65:6273–86
    [Google Scholar]
  51. 51.
    Foster DJ, Gentry PR, Lizardi-Ortiz JE, Bridges TM, Wood MR et al. 2014. M5 receptor activation produces opposing physiological outcomes in dopamine neurons depending on the receptor's location. J. Neurosci. 34:3253–62
    [Google Scholar]
  52. 52.
    Baghdoyan HA, Lydic R, Fleegal MA. 1998. M2 muscarinic autoreceptors modulate acetylcholine release in the medial pontine reticular formation. J. Pharmacol. Exp. Ther. 286:1446–52
    [Google Scholar]
  53. 53.
    Coleman CG, Lydic R, Baghdoyan HA. 2004. M2 muscarinic receptors in pontine reticular formation of C57BL/6J mouse contribute to rapid eye movement sleep generation. Neuroscience 126:821–30
    [Google Scholar]
  54. 54.
    Roth MT, Fleegal MA, Lydic R, Baghdoyan HA. 1996. Pontine acetylcholine release is regulated by muscarinic autoreceptors. NeuroReport 7:3069–72
    [Google Scholar]
  55. 55.
    Mark GP, Shabani S, Dobbs LK, Hansen ST. 2011. Cholinergic modulation of mesolimbic dopamine function and reward. Physiol. Behav. 104:76–81
    [Google Scholar]
  56. 56.
    Doig NM, Magill PJ, Apicella P, Bolam JP, Sharott A. 2014. Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli. J. Neurosci. 34:3101–17
    [Google Scholar]
  57. 57.
    Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP et al. 2014. A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J. Neurosci. 34:4509–18
    [Google Scholar]
  58. 58.
    Dautan D, Huerta-Ocampo I, Gut NK, Valencia M, Kondabolu K et al. 2020. Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies. Nat. Commun. 11:1739
    [Google Scholar]
  59. 59.
    Brimblecombe KR, Threlfell S, Dautan D, Kosillo P, Mena-Segovia J, Cragg SJ. 2018. Targeted activation of cholinergic interneurons accounts for the modulation of dopamine by striatal nicotinic receptors. eNeuro 5:ENEURO.0397-17.2018
    [Google Scholar]
  60. 60.
    Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ. 2012. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:58–64
    [Google Scholar]
  61. 61.
    Zhang W, Basile AS, Gomeza J, Volpicelli LA, Levey AI, Wess J. 2002. Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J. Neurosci. 22:1709–17
    [Google Scholar]
  62. 62.
    Foster DJ, Wilson JM, Remke DH, Mahmood MS, Uddin MJ et al. 2016. Antipsychotic-like effects of M4 positive allosteric modulators are mediated by CB2 receptor-dependent inhibition of dopamine release. Neuron 91:1244–52
    [Google Scholar]
  63. 63.
    Shin JH, Adrover MF, Wess J, Alvarez VA. 2015. Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens. PNAS 112:8124–29
    [Google Scholar]
  64. 64.
    Threlfell S, Clements MA, Khodai T, Pienaar IS, Exley R et al. 2010. Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum. J. Neurosci. 30:3398–408
    [Google Scholar]
  65. 65.
    Mamaligas AA, Ford CP. 2016. Spontaneous synaptic activation of muscarinic receptors by striatal cholinergic neuron firing. Neuron 91:574–86
    [Google Scholar]
  66. 66.
    Pancani T, Bolarinwa C, Smith Y, Lindsley CW, Conn PJ, Xiang Z. 2014. M4 mAChR-mediated modulation of glutamatergic transmission at corticostriatal synapses. ACS Chem. Neurosci. 5:318–24
    [Google Scholar]
  67. 67.
    Shen W, Plotkin JL, Francardo V, Ko WK, Xie Z et al. 2015. M4 muscarinic receptor signaling ameliorates striatal plasticity deficits in models of L-DOPA-induced dyskinesia. Neuron 88:762–73
    [Google Scholar]
  68. 68.
    Cachope R, Mateo Y, Mathur BN, Irving J, Wang HL et al. 2012. Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep. 2:33–41
    [Google Scholar]
  69. 69.
    Bernard V, Normand E, Bloch B 1992. Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J. Neurosci. 12:3591–600
    [Google Scholar]
  70. 70.
    Jeon J, Dencker D, Wortwein G, Woldbye DP, Cui Y et al. 2010. A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J. Neurosci. 30:2396–405
    [Google Scholar]
  71. 71.
    Dencker D, Wortwein G, Weikop P, Jeon J, Thomsen M et al. 2011. Involvement of a subpopulation of neuronal M4 muscarinic acetylcholine receptors in the antipsychotic-like effects of the M1/M4 preferring muscarinic receptor agonist xanomeline. J. Neurosci. 31:5905–8
    [Google Scholar]
  72. 72.
    Ferranti AS, Foster DJ. 2022. Cannabinoid type-2 receptors: an emerging target for regulating schizophrenia-relevant brain circuits. Front. Neurosci. 16:925792
    [Google Scholar]
  73. 73.
    Byun NE, Grannan M, Bubser M, Barry RL, Thompson A et al. 2014. Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine receptor positive allosteric modulator VU0152100. Neuropsychopharmacology 39:1578–93
    [Google Scholar]
  74. 74.
    Razidlo JA, Fausner SML, Ingebretson AE, Wang LC, Petersen CM et al. 2022. Chronic loss of muscarinic M5 receptor function manifests disparate impairments in exploratory behavior in male and female mice despite common dopamine regulation. J. Neurosci. 42:6917–30
    [Google Scholar]
  75. 75.
    Moehle MS, Bender AM, Dickerson JW, Foster DJ, Qi A et al. 2021. Discovery of the first selective M4 muscarinic acetylcholine receptor antagonists with in vivo antiparkinsonian and antidystonic efficacy. ACS Pharmacol. Transl. Sci. 4:1306–21
    [Google Scholar]
  76. 76.
    Bendor J, Lizardi-Ortiz JE, Westphalen RI, Brandstetter M, Hemmings HC Jr. et al. 2010. AGAP1/AP-3-dependent endocytic recycling of M5 muscarinic receptors promotes dopamine release. EMBO J. 29:2813–26
    [Google Scholar]
  77. 77.
    Underhill SM, Amara SG. 2021. Acetylcholine receptor stimulation activates protein kinase C mediated internalization of the dopamine transporter. Front. Cell Neurosci. 15:662216
    [Google Scholar]
  78. 78.
    Kearney PJ, Bolden NC, Kahuno E, Conklin TL, Martin GE et al. 2023. Presynaptic Gq-coupled receptors drive biphasic dopamine transporter trafficking that modulates dopamine clearance and motor function. J. Biol. Chem. 299:102900
    [Google Scholar]
  79. 79.
    Yohn SE, Weiden PJ, Felder CC, Stahl SM. 2022. Muscarinic acetylcholine receptors for psychotic disorders: bench-side to clinic. Trends Pharmacol. Sci. 43:1098–112
    [Google Scholar]
  80. 80.
    Basile AS, Fedorova I, Zapata A, Liu X, Shippenberg T et al. 2002. Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. PNAS 99:11452–57
    [Google Scholar]
  81. 81.
    Thomsen M, Woldbye DP, Wortwein G, Fink-Jensen A, Wess J, Caine SB. 2005. Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J. Neurosci. 25:8141–49
    [Google Scholar]
  82. 82.
    Berizzi AE, Perry CJ, Shackleford DM, Lindsley CW, Jones CK et al. 2018. Muscarinic M5 receptors modulate ethanol seeking in rats. Neuropsychopharmacology 43:1510–17
    [Google Scholar]
  83. 83.
    Gunter BW, Gould RW, Bubser M, McGowan KM, Lindsley CW, Jones CK. 2018. Selective inhibition of M5 muscarinic acetylcholine receptors attenuates cocaine self-administration in rats. Addict. Biol. 23:1106–16
    [Google Scholar]
  84. 84.
    Teal LB, Bubser M, Duncan E, Gould RW, Lindsley CW, Jones CK. 2023. Selective M5 muscarinic acetylcholine receptor negative allosteric modulator VU6008667 blocks acquisition of opioid self-administration. Neuropharmacology 227:109424
    [Google Scholar]
  85. 85.
    Nunes EJ, Rupprecht LE, Foster DJ, Lindsley CW, Conn PJ, Addy NA. 2020. Examining the role of muscarinic M5 receptors in VTA cholinergic modulation of depressive-like and anxiety-related behaviors in rats. Neuropharmacology 171:108089
    [Google Scholar]
  86. 86.
    Nunes EJ, Kebede N, Haight JL, Foster DJ, Lindsley C et al. 2023. Ventral tegmental area M5 muscarinic receptors mediate effort-choice responding and nucleus accumbens dopamine in a sex-specific manner. J. Pharmacol. Exp. Ther. 385:146–56
    [Google Scholar]
  87. 87.
    Thomsen M, Crittenden JR, Lindsley CW, Graybiel AM. 2022. Effects of acute and repeated administration of the selective M4 PAM VU0152099 on cocaine versus food choice in male rats. Addict. Biol. 27:e13145
    [Google Scholar]
  88. 88.
    Dall C, Weikop P, Dencker D, Molander AC, Wortwein G et al. 2017. Muscarinic receptor M4 positive allosteric modulators attenuate central effects of cocaine. Drug Alcohol Depend. 176:154–61
    [Google Scholar]
  89. 89.
    Klawonn AM, Wilhelms DB, Lindstrom SH, Singh AK, Jaarola M et al. 2018. Muscarinic M4 receptors on cholinergic and dopamine D1 receptor-expressing neurons have opposing functionality for positive reinforcement and influence impulsivity. Front. Mol. Neurosci. 11:139
    [Google Scholar]
  90. 90.
    Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC et al. 2000. Xanomeline, an M1/M4 preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr. Res. 42:249–59
    [Google Scholar]
  91. 91.
    Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dube S et al. 2008. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am. J. Psychiatry 165:1033–39
    [Google Scholar]
  92. 92.
    Broadley KJ, Kelly DR. 2001. Muscarinic receptor agonists and antagonists. Molecules 6:142–93
    [Google Scholar]
  93. 93.
    Brannan SK, Sawchak S, Miller AC, Lieberman JA, Paul SM, Breier A. 2021. Muscarinic cholinergic receptor agonist and peripheral antagonist for schizophrenia. N. Engl. J. Med. 384:717–26
    [Google Scholar]
  94. 94.
    Correll CU, Angelov AS, Miller AC, Weiden PJ, Brannan SK. 2022. Safety and tolerability of KarXT (xanomeline-trospium) in a phase 2, randomized, double-blind, placebo-controlled study in patients with schizophrenia. Schizophrenia 8:109
    [Google Scholar]
  95. 95.
    Krystal JH, Kane JM, Correll CU, Walling DP, Leoni M et al. 2022. Emraclidine, a novel positive allosteric modulator of cholinergic M4 receptors, for the treatment of schizophrenia: a two-part, randomised, double-blind, placebo-controlled, phase 1b trial. Lancet 400:2210–20
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-023858
Loading
/content/journals/10.1146/annurev-pharmtox-051921-023858
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error