1932

Abstract

Historically, pancreatic islet beta cells have been viewed as principal regulators of glycemia, with type 2 diabetes (T2D) resulting when insulin secretion fails to compensate for peripheral tissue insulin resistance. However, glycemia is also regulated by insulin-independent mechanisms that are dysregulated in T2D. Based on evidence supporting its role both in adaptive coupling of insulin secretion to changes in insulin sensitivity and in the regulation of insulin-independent glucose disposal, the central nervous system (CNS) has emerged as a fundamental player in glucose homeostasis. Here, we review and expand upon an integrative model wherein the CNS, together with the islet, establishes and maintains the defended level of glycemia. We discuss the implications of this model for understanding both normal glucose homeostasis and T2D pathogenesis and highlight centrally targeted therapeutic approaches with the potential to restore normoglycemia to patients with T2D.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052220-010446
2022-01-06
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-052220-010446.html?itemId=/content/journals/10.1146/annurev-pharmtox-052220-010446&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Grayson BE, Seeley RJ, Sandoval DA. 2013. Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nature 14:124–37
    [Google Scholar]
  2. 2. 
    Schwartz MW, Seeley RJ, Tschöp MH, Woods SC, Morton GJ et al. 2013. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 503:747459–66
    [Google Scholar]
  3. 3. 
    Turner RC, Holman RR, Matthews D, Hockaday TDR, Peto J. 1979. Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolis 28:111086–96
    [Google Scholar]
  4. 4. 
    Edelman SV, Polonsky WH. 2017. Type 2 diabetes in the real world: the elusive nature of glycemic control. Diabetes Care 40:111425–32
    [Google Scholar]
  5. 5. 
    Kahn SE, Cooper ME, Prato SD 2014. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383:99221068–83
    [Google Scholar]
  6. 6. 
    Kahn SE, Hull R, Utzschneider K. 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–46
    [Google Scholar]
  7. 7. 
    Esterson YB, Carey M, Boucai L, Goyal A, Raghavan P et al. 2016. Central regulation of glucose production may be impaired in type 2 diabetes. Diabetes 65:92569–79
    [Google Scholar]
  8. 8. 
    Hawkins M, Gabriely I, Wozniak R, Reddy K, Rossetti L, Shamoon H 2002. Glycemic control determines hepatic and peripheral glucose effectiveness in type 2 diabetic subjects. Diabetes 51:72179–89
    [Google Scholar]
  9. 9. 
    Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN et al. 1994. The contribution of insulin-dependent and insulin-independent glucose uptake to intravenous glucose tolerance in healthy human subjects. Diabetes 43:4587–92
    [Google Scholar]
  10. 10. 
    Baron AD, Brechtel G, Wallace P, Edelman SV 1988. Fasting decreases rates of noninsulin-mediated glucose uptake in man. J. Clin. Endocrinol. Metab. 67:3532–40
    [Google Scholar]
  11. 11. 
    Bergman RN, Phillips LS, Cobelli C. 1981. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Investig. 68:61456–67
    [Google Scholar]
  12. 12. 
    Martin BC, Warram JH, Krolewski AS, Soeldner JS, Kahn CR et al. 1992. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340:8825925–29
    [Google Scholar]
  13. 13. 
    Carey M, Lontchi-Yimagou E, Mitchell W, Reda S, Zhang K et al. 2020. Central KATP channels modulate glucose effectiveness in humans and rodents. Diabetes 69:61140–48
    [Google Scholar]
  14. 14. 
    Morton GJ, Muta K, Kaiyala KJ, Rojas JM, Scarlett JM et al. 2017. Evidence that the sympathetic nervous system elicits rapid, coordinated, and reciprocal adjustments of insulin secretion and insulin sensitivity during cold exposure. Diabetes 66:4823–34
    [Google Scholar]
  15. 15. 
    Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. 1922. Pancreatic extracts in the treatment of diabetes mellitus. Can. Med. Assoc. J. 12:3141–46
    [Google Scholar]
  16. 16. 
    Cnop M, Vidal J, Hull RL, Utzschneider KM, Carr DB et al. 2007. Progressive loss of β-cell function leads to worsening glucose tolerance in first-degree relatives of subjects with type 2 diabetes. Diabetes Care 30:3677–82
    [Google Scholar]
  17. 17. 
    Ahrén B. 2000. Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia 43:4393–410
    [Google Scholar]
  18. 18. 
    Rodriguez-Diaz R, Caicedo A. 2014. Neural control of the endocrine pancreas. Best Pract. Res. Clin. Endocrinol. Metab. 28:5745–56
    [Google Scholar]
  19. 19. 
    Faber CL, Deem JD, Campos CA, Taborsky GJ, Morton GJ. 2020. CNS control of the endocrine pancreas. Diabetologia 63:102086–94
    [Google Scholar]
  20. 20. 
    Chien H-J, Chiang T-C, Peng S-J, Chung M-H, Chou Y-H et al. 2019. Human pancreatic afferent and efferent nerves: mapping and 3-D illustration of exocrine, endocrine, and adipose innervation. Am. J. Physiol. Gastrointest. Liver Physiol. 317:5G694–706
    [Google Scholar]
  21. 21. 
    Tang S-C, Baeyens L, Shen C-N, Peng S-J, Chien H-J et al. 2018. Human pancreatic neuro-insular network in health and fatty infiltration. Diabetologia 61:1168–81
    [Google Scholar]
  22. 22. 
    Gautam D, Han S-J, Hamdan FF, Jeon J, Li B et al. 2006. A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 3:6449–61
    [Google Scholar]
  23. 23. 
    D'Alessio DA, Kieffer TJ, Taborsky GJ, Havel PJ. 2001. Activation of the parasympathetic nervous system is necessary for normal meal-induced insulin secretion in rhesus macaques. J. Clin. Endocrinol. Metab. 86:31253–59
    [Google Scholar]
  24. 24. 
    Henderson JR, Jefferys DB, Jones RH, Stanley D. 1976. The effect of atropine on the insulin release caused by oral and intravenous glucose in human subjects. Acta. Endocrinol. 83:4772–80
    [Google Scholar]
  25. 25. 
    de Lartigue G. 2016. Role of the vagus nerve in the development and treatment of diet-induced obesity. J. Physiol. 594:205791–815
    [Google Scholar]
  26. 26. 
    Lin EE, Scott-Solomon E, Kuruvilla R 2021. Peripheral innervation in the regulation of glucose homeostasis. Trends Neurosci 44:3189–202
    [Google Scholar]
  27. 27. 
    Cheung GWC, Kokorovic A, Lam CKL, Chari M, Lam TKT. 2009. Intestinal cholecystokinin controls glucose production through a neuronal network. Cell Metab 10:299–109
    [Google Scholar]
  28. 28. 
    Varin EM, Mulvihill EE, Baggio LL, Koehler JA, Cao X et al. 2019. Distinct neural sites of GLP-1R expression mediate physiological versus pharmacological control of incretin action. Cell Rep 27:113371–84.e3
    [Google Scholar]
  29. 29. 
    Razavi R, Chan Y, Afifiyan FN, Liu XJ, Wan X et al. 2006. TRPV1+ sensory neurons control β cell stress and islet inflammation in autoimmune diabetes. Cell 127:61123–35
    [Google Scholar]
  30. 30. 
    Akiba Y, Kato S, Katsube K, Nakamura M, Takeuchi Ket al 2004. Transient receptor potential vanilloid subfamily 1 expressed in pancreatic islet β cells modulates insulin secretion in rats. Biochem. Biophys. Res. Commun. 321:1219–25
    [Google Scholar]
  31. 31. 
    Gram DX, Ahrén B, Nagy I, Olsen UB, Brand CL et al. 2007. Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur. J. Neurosci. 25:1213–23
    [Google Scholar]
  32. 32. 
    Bai L, Mesgarzadeh S, Ramesh KS, Huey EL, Liu Y et al. 2019. Genetic identification of vagal sensory neurons that control feeding. Cell 179:51129–43.e23
    [Google Scholar]
  33. 33. 
    Makhmutova M, Weitz J, Tamayo A, Pereira E, Boulina M et al. 2021. Pancreatic β-cells communicate with vagal sensory neurons. Gastroenterology 160:3875–88.e11
    [Google Scholar]
  34. 34. 
    Alvarsson A, Jimenez-Gonzalez M, Li R, Rosselot C, Tzavaras N et al. 2020. A 3D atlas of the dynamic and regional variation of pancreatic innervation in diabetes. Sci. Adv. 6:41eaaz9124
    [Google Scholar]
  35. 35. 
    Eizirik DL, Korbutt GS, Hellerström C. 1992. Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the beta-cell function. J. Clin. Investig. 90:41263–68
    [Google Scholar]
  36. 36. 
    Kaneto H. 2015. Pancreatic β-cell glucose toxicity in type 2 diabetes mellitus. Curr. Diabetes Rev. 11:12–6
    [Google Scholar]
  37. 37. 
    Nicol LE, Grant WF, Grant WR, Comstock SM, Nguyen ML et al. 2013. Pancreatic inflammation and increased islet macrophages in insulin-resistant juvenile primates. J. Endocrinol. 217:2207–13
    [Google Scholar]
  38. 38. 
    Dula SB, Jecmenica M, Wu R, Jahanshahi P, Verrilli GM et al. 2010. Evidence that low-grade systemic inflammation can induce islet dysfunction as measured by impaired calcium handling. Cell Calcium 48:2–3133–42
    [Google Scholar]
  39. 39. 
    Krentz NAJ, Gloyn AL. 2020. Insights into pancreatic islet cell dysfunction from type 2 diabetes mellitus genetics. Nat. Rev. Endocrinol. 16:4202–12
    [Google Scholar]
  40. 40. 
    Stanley S, Domingos AI, Kelly L, Garfield A, Damanpour S et al. 2013. Profiling of glucose-sensing neurons reveals that GHRH neurons are activated by hypoglycemia. Cell Metab 18:4596–607
    [Google Scholar]
  41. 41. 
    Xu J, Bartolome CL, Low CS, Yi X, Chien C-H et al. 2018. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature 556:7702505–9
    [Google Scholar]
  42. 42. 
    Foster ED, Bridges ND, Feurer ID, Eggerman TL, Hunsicker LG et al. 2018. Improved health-related quality of life in a phase 3 islet transplantation trial in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care 41:51001–8
    [Google Scholar]
  43. 43. 
    Vallerand AL, Perusse F, Bukowiecki LJ 1987. Cold exposure potentiates the effect of insulin on in vivo glucose uptake. Am. J. Physiol. 253:2E179–86
    [Google Scholar]
  44. 44. 
    Maickel RP, Matussek N, Stern DN, Brodie BB. 1967. The sympathetic nervous system as a homeostatic mechanism. I. Absolute need for sympathetic nervous function in body temperature maintenance of cold-exposed rats. J. Pharmacol. Exp. Ther. 157:1103–10
    [Google Scholar]
  45. 45. 
    Stefanovski D, Richey JM, Woolcott O, Lottati M, Zheng Det al 2011. Consistency of the disposition index in the face of diet induced insulin resistance: potential role of FFA. PLOS ONE 6:3e18134
    [Google Scholar]
  46. 46. 
    Morrison SF. 2016. Central neural control of thermoregulation and brown adipose tissue. Auton. Neurosci. 196:14–24
    [Google Scholar]
  47. 47. 
    Young JB, Landsberg L. 1979. Effect of diet and cold exposure on norepinephrine turnover in pancreas and liver. Am. J. Physiol. 236:5E524–33
    [Google Scholar]
  48. 48. 
    Bergman RN, Ider YZ, Bowden CR, Cobelli C. 1979. Quantitative estimation of insulin sensitivity. Am. J. Physiol. 236:6E667–77
    [Google Scholar]
  49. 49. 
    Shulman GI, Liljenquist JE, Williams PE, Lacy WW, Cherrington AD 1978. Glucose disposal during insulinopenia in somatostatin-treated dogs. J. Clin. Investig. 62:2487–91
    [Google Scholar]
  50. 50. 
    Kahn SE, Klaff LJ, Schwartz MW, Beard JC, Bergman RN et al. 1990. Treatment with a somatostatin analog decreases pancreatic B-cell and whole body sensitivity to glucose. J. Clin. Endocrinol. Metab. 71:4994–1002
    [Google Scholar]
  51. 51. 
    D'Alessio DA, Kahn SE, Leusner CR, Ensinck JW. 1994. Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J. Clin. Investig. 93:52263–66
    [Google Scholar]
  52. 52. 
    Baron AD, Brechtel G, Wallace P, Edelman SV 1988. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am. J. Physiol. 255:6E769–74
    [Google Scholar]
  53. 53. 
    Ward GM, Weber KM, Walters IM, Aitken PM, Lee B et al. 1991. A modified minimal model analysis of insulin sensitivity and glucose-mediated glucose disposal in insulin-dependent diabetes. Metabolis 40:14–9
    [Google Scholar]
  54. 54. 
    Finegood DT, Hramiak IM, Dupre J. 1990. A modified protocol for estimation of insulin sensitivity with the minimal model of glucose kinetics in patients with insulin-dependent diabetes. J. Clin. Endocrinol. Metab. 70:61538–49
    [Google Scholar]
  55. 55. 
    Welch S, Gebhart SSP, Bergman RN, Phillips LS. 1990. Minimal model analysis of intravenous glucose tolerance test-derived insulin sensitivity in diabetic subjects. J. Clin. Endocrinol. Metab. 71:61508–18
    [Google Scholar]
  56. 56. 
    Martin BC, Warram JH, Krolewski AS, Soeldner JS, Kahn CR et al. 1992. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340:8825925–29
    [Google Scholar]
  57. 57. 
    DeFronzo RA. 2009. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58:4773–95
    [Google Scholar]
  58. 58. 
    Esser N, Utzschneider KM, Kahn SE. 2020. Early beta cell dysfunction versus insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia 63:102007–21
    [Google Scholar]
  59. 59. 
    Pimenta W, Korytkowski M, Mitrakou A, Jenssen T, Yki-Jarvinen H et al. 1995. Pancreatic beta-cell dysfunction as the primary genetic lesion in NIDDM: evidence from studies in normal glucose-tolerant individuals with a first-degree NIDDM relative. JAMA 273:231855–61
    [Google Scholar]
  60. 60. 
    van Haeften TW, Dubbeldam S, Zonderland ML, Erkelens DW. 1998. Insulin secretion in normal glucose-tolerant relatives of type 2 diabetic subjects: assessments using hyperglycemic glucose clamps and oral glucose tolerance tests. Diabetes Care 21:2278–82
    [Google Scholar]
  61. 61. 
    Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB et al. 2009. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 32:2335–41
    [Google Scholar]
  62. 62. 
    Staimez LR, Weber MB, Ranjani H, Ali MK, Echouffo-Tcheugui JB et al. 2013. Evidence of reduced β-cell function in Asian Indians with mild dysglycemia. Diabetes Care 36:92772–78
    [Google Scholar]
  63. 63. 
    Tricò D, Natali A, Arslanian S, Mari A, Ferrannini E 2018. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight 3:24e124912
    [Google Scholar]
  64. 64. 
    Brøns C, Jensen CB, Storgaard H, Hiscock NJ, White A et al. 2009. Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men. J. Physiol. 587:102387–97
    [Google Scholar]
  65. 65. 
    Ferrannini E, Natali A, Bell P, Cavallo-Perin P, Lalic N, Mingrone G 1997. Insulin resistance and hypersecretion in obesity. J. Clin. Investig. 100:51166–73
    [Google Scholar]
  66. 66. 
    Loves S, van Groningen L, Filius M, Mekking M, Brandon T et al. 2018. High-dose, diazoxide-mediated insulin suppression boosts weight loss induced by lifestyle intervention. J. Clin. Endocrinol Metab. 103:114014–22
    [Google Scholar]
  67. 67. 
    Dankner R, Chetrit A, Shanik MH, Raz I, Roth J 2009. Basal-state hyperinsulinemia in healthy normoglycemic adults is predictive of type 2 diabetes over a 24-year follow-up. Diabetes Care 32:81464–66
    [Google Scholar]
  68. 68. 
    Rizza RA, Mandarino LJ, Genest J, Baker BA, Gerich JE. 1985. Production of insulin resistance by hyperinsulinaemia in man. Diabetologia 28:270–75
    [Google Scholar]
  69. 69. 
    Martin C, Desai KS, Steiner G. 1983. Receptor and postreceptor insulin resistance induced by in vivo hyperinsulinemia. Can. J. Physiol. Pharm. 61:8802–7
    [Google Scholar]
  70. 70. 
    Kobayashi M, Olefsky JM. 1978. Effect of experimental hyperinsulinemia on insulin binding and glucose transport in isolated rat adipocytes. Am. J. Physiol. 235:1E53–62
    [Google Scholar]
  71. 71. 
    Roth Flach RJ, Danai LV, DiStefano MT, Kelly M, Menendez LG et al. 2016. Protein kinase mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) promotes obesity-induced hyperinsulinemia. J. Biol. Chem. 291:3116221–30
    [Google Scholar]
  72. 72. 
    Templeman NM, Clee SM, Johnson JD. 2015. Suppression of hyperinsulinaemia in growing female mice provides long-term protection against obesity. Diabetologia 58:102392–402
    [Google Scholar]
  73. 73. 
    Mehran AE, Templeman NM, Brigidi GS, Lim GE, Chu K-Y et al. 2012. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 16:6723–37
    [Google Scholar]
  74. 74. 
    Czech MP. 2017. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 23:7804–14
    [Google Scholar]
  75. 75. 
    Sbraccia P, D'Adamo M, Leonetti F, Caiola S, Iozzo P et al. 1996. Chronic primary hyperinsulinaemia is associated with altered insulin receptor mRNA splicing in muscle of patients with insulinoma. Diabetologia 39:2220–25
    [Google Scholar]
  76. 76. 
    Pontiroli AE, Alberetto M, Capra F, Pozza G 1990. The glucose clamp technique for the study of patients with hypoglycemia: insulin resistance as a feature of insulinoma. J. Endocrinol. Investig. 13:3241–45
    [Google Scholar]
  77. 77. 
    Prato SD, Leonetti F, Simonson DC, Sheehan P, Matsuda M, DeFronzo RA 1994. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia 37:101025–35
    [Google Scholar]
  78. 78. 
    Alemzadeh R, Langley G, Upchurch L, Smith P, Slonim AE 1998. Beneficial effect of diazoxide in obese hyperinsulinemic adults. J. Clin. Endocrinol. Metab. 83:61911–15
    [Google Scholar]
  79. 79. 
    Gavin JR, Roth J, Neville DM, Meyts PD, Buell DN. 1974. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. PNAS 71:184–88
    [Google Scholar]
  80. 80. 
    Deleted in proof
  81. 81. 
    Pagliassotti MJ, Holste LC, Moore MC, Neal DW, Cherrington AD 1996. Comparison of the time courses of insulin and the portal signal on hepatic glucose and glycogen metabolism in the conscious dog. J. Clin. Investig. 97:181–91
    [Google Scholar]
  82. 82. 
    O-Sullivan I, Zhang W, Wasserman DH, Liew CW, Liu J et al. 2015. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat. Commun. 6:17079
    [Google Scholar]
  83. 83. 
    Basu A, Basu R, Shah P, Vella A, Johnson CM et al. 2000. Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism: evidence for a defect in hepatic glucokinase activity. Diabetes 49:2272–83
    [Google Scholar]
  84. 84. 
    Basu A, Basu R, Shah P, Vella A, Johnson CM et al. 2001. Type 2 diabetes impairs splanchnic uptake of glucose but does not alter intestinal glucose absorption during enteral glucose feeding: additional evidence for a defect in hepatic glucokinase activity. Diabetes 50:61351–62
    [Google Scholar]
  85. 85. 
    Pagliassotti MJ, Myers SR, Moore MC, Neal DW, Cherrington AD 1991. Magnitude of negative arterial-portal glucose gradient alters net hepatic glucose balance in conscious dogs. Diabetes 40:121659–68
    [Google Scholar]
  86. 86. 
    DiCostanzo CA, Dardevet DP, Neal DW, Lautz M, Allen E et al. 2006. Role of the hepatic sympathetic nerves in the regulation of net hepatic glucose uptake and the mediation of the portal glucose signal. Am. J. Physiol. Endocrinol. Metab. 290:1E9–16
    [Google Scholar]
  87. 87. 
    Adkins-Marshall B, Pagliassotti MJ, Asher JR, Connolly CC, Neal DW et al. 1992. Role of hepatic nerves in response of liver to intraportal glucose delivery in dogs. Am. J. Physiol. 262:5E679–86
    [Google Scholar]
  88. 88. 
    Coate KC, Kraft G, Irimia JM, Smith MS, Farmer B et al. 2013. Portal vein glucose entry triggers a coordinated cellular response that potentiates hepatic glucose uptake and storage in normal but not high-fat/high-fructose-fed dogs. Diabetes 62:2392–400
    [Google Scholar]
  89. 89. 
    Coate KC, Scott M, Farmer B, Moore MC, Smith M et al. 2010. Chronic consumption of a high-fat/high-fructose diet renders the liver incapable of net hepatic glucose uptake. Am. J. Physiol. 299:6E887–98
    [Google Scholar]
  90. 90. 
    Coate KC, Smith MS, Shiota M, Irimia JM, Roach PJ et al. 2013. Hepatic glucose metabolism in late pregnancy: normal versus high-fat and -fructose diet. Diabetes 62:3753–61
    [Google Scholar]
  91. 91. 
    Kraft G, Vrba A, Scott M, Allen E, Edgerton DS et al. 2019. Sympathetic denervation of the common hepatic artery lessens glucose intolerance in the fat- and fructose-fed dog. Diabetes 68:61143–55
    [Google Scholar]
  92. 92. 
    Martin IK, Weber KM, Boston RC, Alford FP, Best JD 1988. Effects of epinephrine infusion on determinants of intravenous glucose tolerance in dogs. Am. J. Physiol. 255:5E668–73
    [Google Scholar]
  93. 93. 
    Thorp AA, Schlaich MP. 2015. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J. Diabetes Res. 2015:341583
    [Google Scholar]
  94. 94. 
    Masuo K, Mikami H, Ogihara T, Tuck ML 1997. Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young, nonobese Japanese population. Am. J. Hypertens. 10:177–83
    [Google Scholar]
  95. 95. 
    Flaa A, Aksnes TA, Kjeldsen SE, Eide I, Rostrup M. 2008. Increased sympathetic reactivity may predict insulin resistance: an 18-year follow-up study. Metabolis 57:101422–27
    [Google Scholar]
  96. 96. 
    Carnethon MR, Golden SH, Folsom AR, Haskell W, Liao D 2003. Prospective investigation of autonomic nervous system function and the development of type 2 diabetes. Circulation 107:172190–95
    [Google Scholar]
  97. 97. 
    Coopmans C, Zhou TL, Henry RMA, Heijman J, Schaper NC et al. 2020. Both prediabetes and type 2 diabetes are associated with lower heart rate variability: the Maastricht study. Diabetes Care 43:51126–33
    [Google Scholar]
  98. 98. 
    Lee DY, Lee MY, Cho JH, Kwon H, Rhee E-J et al. 2020. Decreased vagal activity and deviation in sympathetic activity precedes development of diabetes. Diabetes Care 43:61336–43
    [Google Scholar]
  99. 99. 
    Straznicky NE, Grima MT, Sari CI, Eikelis N, Lambert EA et al. 2012. Neuroadrenergic dysfunction along the diabetes continuum: a comparative study in obese metabolic syndrome subjects. Diabetes 61:102506–16
    [Google Scholar]
  100. 100. 
    Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Mackintosh AF, Mary DASG. 2003. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation 108:253097–101
    [Google Scholar]
  101. 101. 
    Straznicky NE, Lambert EA, Lambert GW, Masuo K, Esler MD, Nestel PJ. 2005. Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome. J. Clin. Endocrinol. Metab. 90:115998–6005
    [Google Scholar]
  102. 102. 
    Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M 1997. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation 96:103423–29
    [Google Scholar]
  103. 103. 
    Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfranchi A et al. 1995. Sympathetic activation in obese normotensive subjects. Hypertension 25:4560–63
    [Google Scholar]
  104. 104. 
    Grassi G, Dell'Oro R, Facchini A, Trevano FQ, Bolla GB, Mancia G. 2004. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J. Hypertens. 22:122363–69
    [Google Scholar]
  105. 105. 
    Muntzel MS, Al-Naimi OAS, Barclay A, Ajasin D 2018. Cafeteria diet increases fat mass and chronically elevates lumbar sympathetic nerve activity in rats. Hypertension 60:61498–1502
    [Google Scholar]
  106. 106. 
    Rosario W, Singh I, Wautlet A, Patterson C, Flak J et al. 2016. The brain-to-pancreatic islet neuronal map reveals differential glucose regulation from distinct hypothalamic regions. Diabetes 65:92711–23
    [Google Scholar]
  107. 107. 
    Yoon NA, Diano S. 2021. Hypothalamic glucose-sensing mechanisms. Diabetologia 64:985–93
    [Google Scholar]
  108. 108. 
    Thorens B. 2015. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58:2221–32
    [Google Scholar]
  109. 109. 
    Routh VH, Hao L, Santiago AM, Sheng Z, Zhou C. 2014. Hypothalamic glucose sensing: making ends meet. Front. Syst. Neurosci. 8:236
    [Google Scholar]
  110. 110. 
    Backer ID, Hussain SS, Bloom SR, Gardiner JV. 2016. Insights into the role of neuronal glucokinase. Am. J. Physiol. Endocrinol. Metab. 311:1E42–55
    [Google Scholar]
  111. 111. 
    Abi-Saab WM, Maggs DG, Jones T, Jacob R, Srihari V et al. 2002. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J. Cereb. Blood Flow Metab. 22:3271–79
    [Google Scholar]
  112. 112. 
    Brooks GA. 2018. The science and translation of lactate shuttle theory. Cell Metab 27:4757–85
    [Google Scholar]
  113. 113. 
    Fujita S, Bohland M, Sanchez-Watts G, Watts AG, Donovan CM. 2007. Hypoglycemic detection at the portal vein is mediated by capsaicin-sensitive primary sensory neurons. Am. J. Physiol. Endocrinol. Metab. 293:1E96–101
    [Google Scholar]
  114. 114. 
    Donovan CM, Watts AG. 2014. Peripheral and central glucose sensing in hypoglycemic detection. Physiology 29:5314–24
    [Google Scholar]
  115. 115. 
    Garcia-Luna C, Sanchez-Watts G, Arnold M, de Lartigue G, DeWalt N et al. 2021. The medullary targets of neurally conveyed sensory information from the rat hepatic portal and superior mesenteric veins. eNeuro 8:1ENEURO.0419-20.2021
    [Google Scholar]
  116. 116. 
    Douglass JD, Dorfman MD, Thaler JP. 2017. Glia: silent partners in energy homeostasis and obesity pathogenesis. Diabetologia 60:2226–36
    [Google Scholar]
  117. 117. 
    Arntfield ME, van der Kooy D. 2011. β-Cell evolution: how the pancreas borrowed from the brain. Bioessays 33:8582–87
    [Google Scholar]
  118. 118. 
    Rorsman P, Ashcroft FM. 2018. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98:1117–214
    [Google Scholar]
  119. 119. 
    Zhou C, Teegala SB, Khan BA, Gonzalez C, Routh VH. 2018. Hypoglycemia: role of hypothalamic glucose-inhibited (GI) neurons in detection and correction. Front Physiol 9:192
    [Google Scholar]
  120. 120. 
    Meek TH, Nelson JT, Matsen ME, Dorfman MD, Guyenet SJ et al. 2016. Functional identification of a neurocircuit regulating blood glucose. PNAS 113:14E2073–82
    [Google Scholar]
  121. 121. 
    Faber CL, Matsen ME, Velasco KR, Damian V, Phan BA et al. 2018. Distinct neuronal projections from the hypothalamic ventromedial nucleus mediate glycemic and behavioral effects. Diabetes 67:12db180380
    [Google Scholar]
  122. 122. 
    Stanley SA, Kelly L, Latcha KN, Schmidt SF, Yu X et al. 2016. Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 531:7596647–50
    [Google Scholar]
  123. 123. 
    Flak JN, Goforth P, Dell'Orco J, Sabatini PV, Li C et al. 2020. Ventromedial hypothalamic nucleus neuronal subset regulates blood glucose independently of insulin. J. Clin. Investig. 130:62943–52
    [Google Scholar]
  124. 124. 
    Khodai T, Nunn N, Worth AA, Feetham CH, Belle MDC et al. 2018. PACAP neurons in the ventromedial hypothalamic nucleus are glucose inhibited and their selective activation induces hyperglycaemia. Front. Endocrinol. 9:632
    [Google Scholar]
  125. 125. 
    Spyer G, Hattersley AT, MacDonald I, Amiel S, MacLeod KM 2000. Hypoglycaemic counter-regulation at normal blood glucose concentrations in patients with well controlled type-2 diabetes. Lancet 356:92461970–74
    [Google Scholar]
  126. 126. 
    Chakera AJ, Hurst PS, Spyer G, Ogunnowo-Bada EO, Marsh WJ et al. 2018. Molecular reductions in glucokinase activity increase counter-regulatory responses to hypoglycemia in mice and humans with diabetes. Mol. Metab. 17:17–27
    [Google Scholar]
  127. 127. 
    Ma Y, Ratnasabapathy R, Izzi-Engbeaya C, Nguyen-Tu M, Richardson E et al. 2018. Hypothalamic arcuate nucleus glucokinase regulates insulin secretion and glucose homeostasis. Diabetes Obes. Metab. 20:92246–54
    [Google Scholar]
  128. 128. 
    Hwang JJ, Jiang L, Hamza M, Rangel ES, Dai F et al. 2017. Blunted rise in brain glucose levels during hyperglycemia in adults with obesity and T2DM. JCI Insight 2:20e95913
    [Google Scholar]
  129. 129. 
    Li W, Risacher SL, Huang E, Saykin AJ. 2016. Type 2 diabetes mellitus is associated with brain atrophy and hypometabolism in the ADNI cohort. Neurology 87:6595–600
    [Google Scholar]
  130. 130. 
    Thaler JP, Yi C-X, Schur EA, Guyenet SJ, Hwang BH et al. 2012. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Investig. 122:1153–62
    [Google Scholar]
  131. 131. 
    Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR et al. 2017. Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab 26:1185–97.e3
    [Google Scholar]
  132. 132. 
    Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A et al. 2016. Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165:4882–95
    [Google Scholar]
  133. 133. 
    Yi C-X, Gericke M, Krüger M, Alkemade A, Kabra DG et al. 2012. High calorie diet triggers hypothalamic angiopathy. Mol. Metab. 1:1–295–100
    [Google Scholar]
  134. 134. 
    Schur EA, Melhorn SJ, Oh S, Lacy JM, Berkseth KE et al. 2015. Radiologic evidence that hypothalamic gliosis is associated with obesity and insulin resistance in humans. Obesity 23:112142–48
    [Google Scholar]
  135. 135. 
    García-Cáceres C, Balland E, Prevot V, Luquet S, Woods SC et al. 2019. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22:17–14
    [Google Scholar]
  136. 136. 
    Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J 2018. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39:3333–68
    [Google Scholar]
  137. 137. 
    Mandelblat-Cerf Y, Ramesh RN, Burgess CR, Patella P, Yang Z et al. 2015. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. eLife 4:e07122
    [Google Scholar]
  138. 138. 
    Chen Y, Lin Y-C, Kuo T-W, Knight ZA. 2015. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 160:5829–41
    [Google Scholar]
  139. 139. 
    Deem J, Faber CL, Pedersen C, Phan BA, Larsen SA et al. 2020. Cold-induced hyperphagia requires AgRP-neuron activation in mice. eLife 9:e58764
    [Google Scholar]
  140. 140. 
    Aponte Y, Atasoy D, Sternson SM 2011. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14:3351–55
    [Google Scholar]
  141. 141. 
    Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC et al. 2011. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Investig. 121:41424–28
    [Google Scholar]
  142. 142. 
    Steculorum SM, Ruud J, Karakasilioti I, Backes H, Ruud LE et al. 2016. AgRP neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell 165:1125–38
    [Google Scholar]
  143. 143. 
    Krashes MJ, Lowell BB, Garfield AS 2016. Melanocortin-4 receptor-regulated energy homeostasis. Nat. Neurosci. 19:2206–19
    [Google Scholar]
  144. 144. 
    Lee YS, Challis BG, Thompson DA, Yeo GSH, Keogh JM et al. 2006. A POMC variant implicates β-melanocyte-stimulating hormone in the control of human energy balance. Cell Metab 3:2135–40
    [Google Scholar]
  145. 145. 
    Mencarelli M, Zulian A, Cancello R, Alberti L, Gilardini L et al. 2012. A novel missense mutation in the signal peptide of the human POMC gene: a possible additional link between early-onset type 2 diabetes and obesity. Eur. J. Hum. Genet. 20:121290–94
    [Google Scholar]
  146. 146. 
    Dubern B, Lubrano-Berthelier C, Mencarelli M, Ersoy B, Frelut M-L et al. 2008. Mutational analysis of the pro-opiomelanocortin gene in French obese children led to the identification of a novel deleterious heterozygous mutation located in the α-melanocyte stimulating hormone domain. Pediatr. Res. 63:2211–16
    [Google Scholar]
  147. 147. 
    Üner AG, Keçik O, Quaresma PGF, Araujo TMD, Lee H et al. 2019. Role of POMC and AgRP neuronal activities on glycaemia in mice. Sci. Rep. 9:113068
    [Google Scholar]
  148. 148. 
    Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B et al. 2007. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449:7159228–32
    [Google Scholar]
  149. 149. 
    da Silva AA, do Carmo JM, Hall JE. 2020. CNS regulation of glucose homeostasis: role of the leptin-melanocortin system. Curr. Diabetes Rep. 20:729
    [Google Scholar]
  150. 150. 
    Tanida M, Yamamoto N, Morgan DA, Kurata Y, Shibamoto T, Rahmouni K. 2015. Leptin receptor signaling in the hypothalamus regulates hepatic autonomic nerve activity via phosphatidylinositol 3-kinase and AMP-activated protein kinase. J. Neurosci. 35:2474–84
    [Google Scholar]
  151. 151. 
    German JP, Thaler JP, Wisse BE, Oh-I S, Sarruf DA et al. 2011. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology 152:2394–404
    [Google Scholar]
  152. 152. 
    Fujikawa T, Chuang J-C, Sakata I, Ramadori G, Coppari R 2010. Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. PNAS 107:4017391–96
    [Google Scholar]
  153. 153. 
    Meek TH, Wisse BE, Thaler JP, Guyenet SJ, Matsen ME et al. 2013. BDNF action in the brain attenuates diabetic hyperglycemia via insulin-independent inhibition of hepatic glucose production. Diabetes 62:51512–18
    [Google Scholar]
  154. 154. 
    Meek TH, Matsen ME, Dorfman MD, Guyenet SJ, Damian V et al. 2013. Leptin action in the ventromedial hypothalamic nucleus is sufficient, but not necessary, to normalize diabetic hyperglycemia. Endocrinology 154:93067–76
    [Google Scholar]
  155. 155. 
    Obici S, Zhang BB, Karkanias G, Rossetti L 2002. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8:121376–82
    [Google Scholar]
  156. 156. 
    Pocai A, Lam TKT, Gutierrez-Juarez R, Obici S, Schwartz GJ et al. 2005. Hypothalamic KATP channels control hepatic glucose production. Nature 434:70361026–31
    [Google Scholar]
  157. 157. 
    Ruud J, Steculorum SM, Brüning JC. 2017. Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat. Commun. 8:115259
    [Google Scholar]
  158. 158. 
    Stenvers DJ, Scheer FAJL, Schrauwen P, la Fleur SE, Kalsbeek A. 2019. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 15:275–89
    [Google Scholar]
  159. 159. 
    van de Sande-Lee S, Melhorn SJ, Rachid B, Rodovalho S, De-Lima-Junior JC et al. 2020. Radiologic evidence that hypothalamic gliosis is improved after bariatric surgery in obese women with type 2 diabetes. Int. J. Obesity 44:1178–85
    [Google Scholar]
  160. 160. 
    Thorens B. 2011. Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes. Metab. 13:S182–88
    [Google Scholar]
  161. 161. 
    Tarussio D, Metref S, Seyer P, Mounien L, Vallois D et al. 2014. Nervous glucose sensing regulates postnatal β cell proliferation and glucose homeostasis. J. Clin. Investig. 124:1413–24
    [Google Scholar]
  162. 162. 
    Moullé VS, Tremblay C, Castell A-L, Vivot K, Ethier M et al. 2019. The autonomic nervous system regulates pancreatic β-cell proliferation in adult male rats. Am. J. Physiol. Endocrinol. Metab. 317:2E234–43
    [Google Scholar]
  163. 163. 
    Lausier J, Diaz WC, Roskens V, LaRock K, Herzer K et al. 2010. Vagal control of pancreatic β-cell proliferation. Am. J. Physiol. Endocrinol. Metab. 299:5E786–93
    [Google Scholar]
  164. 164. 
    Edvell A, Lindström P. 1998. Vagotomy in young obese hyperglycemic mice: effects on syndrome development and islet proliferation. Am. J. Physiol. Endocrinol. Metab. 274:6E1034–39
    [Google Scholar]
  165. 165. 
    Kiba T, Tanaka K, Numata K, Hoshino M, Misugi K, Inoue S 1996. Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology 110:3885–93
    [Google Scholar]
  166. 166. 
    Morton GJ, Matsen ME, Bracy DP, Meek TH, Nguyen HT et al. 2013. FGF19 action in the brain induces insulin-independent glucose lowering. J. Clin. Investig. 123:114799–808
    [Google Scholar]
  167. 167. 
    Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T et al. 2009. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models—association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 297:5E1105–14
    [Google Scholar]
  168. 168. 
    Scarlett JM, Rojas JM, Matsen ME, Kaiyala KJ, Stefanovski D et al. 2016. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat. Med. 22:7800–6
    [Google Scholar]
  169. 169. 
    Scarlett JM, Muta K, Brown JM, Rojas JM, Matsen ME et al. 2018. Peripheral mechanisms mediating the sustained anti-diabetic action of FGF1 in the brain. Diabetes 68:3db180498
    [Google Scholar]
  170. 170. 
    Brown JM, Scarlett JM, Matsen ME, Nguyen HT, Secher A et al. 2019. The hypothalamic arcuate nucleus-median eminence is a target for sustained diabetes remission induced by fibroblast growth factor 1. Diabetes 68:51054–61
    [Google Scholar]
  171. 171. 
    Tennant KG, Lindsley SR, Kirigiti MA, True C, Kievit P. 2019. Central and peripheral administration of fibroblast growth factor 1 improves pancreatic islet insulin secretion in diabetic mouse models. Diabetes 68:71462–72
    [Google Scholar]
  172. 172. 
    Alonge KM, Mirzadeh Z, Scarlett JM, Logsdon AF, Brown JM et al. 2020. Hypothalamic perineuronal net assembly is required for sustained diabetes remission induced by fibroblast growth factor 1 in rats. Nat. Metab. 2:1025–33
    [Google Scholar]
  173. 173. 
    Bentsen MA, Rausch DM, Mirzadeh Z, Muta K, Scarlett JM et al. 2020. Transcriptomic analysis links diverse hypothalamic cell types to fibroblast growth factor 1-induced sustained diabetes remission. Nat. Commun. 11:14458
    [Google Scholar]
  174. 174. 
    Aroda VR, Rosenstock J, Terauchi Y, Altuntas Y, Lalic NM et al. 2019. PIONEER 1: randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care 42:91724–32
    [Google Scholar]
  175. 175. 
    Nauck MA, Meier JJ. 2019. Management of endocrine disease: Are all GLP-1 agonists equal in the treatment of type 2 diabetes?. Eur. J. Endocrinol. 181:6R211–34
    [Google Scholar]
  176. 176. 
    Wilding JPH, Batterham RL, Calanna S, Davies M, Gaal LFV et al. 2021. Once-weekly semaglutide in adults with overweight or obesity. New Engl. J. Med. 384:989–1002
    [Google Scholar]
  177. 177. 
    Capozzi ME, DiMarchi RD, Tschöp MH, Finan B, Campbell JE 2018. Targeting the incretin/glucagon system with triagonists to treat diabetes. Endocr. Rev. 39:5719–38
    [Google Scholar]
  178. 178. 
    Sachs S, Niu L, Geyer P, Jall S, Kleinert M et al. 2021. Plasma proteome profiles treatment efficacy of incretin dual agonism in diet-induced obese female and male mice. Diabetes Obes. Metab. 23:1195–207
    [Google Scholar]
  179. 179. 
    Finan B, Yang B, Ottaway N, Smiley DL, Ma T et al. 2015. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21:127–36
    [Google Scholar]
  180. 180. 
    Sheetz M, Bray R, Tham LS, Jones C, Kinsella J, Violante-Ortiz R. 2017. Results of a phase 2 study of the oxyntomodulin (OXM) analogue LY2944876 in patients with type 2 diabetes (T2DM). Paper presented at the 77th Scientific Session of the American Diabetes Association San Diego, CA:
    [Google Scholar]
  181. 181. 
    Posch M, Tillner J, Hüser A, Teichert L, Einig C et al. 2017. Safety, pharmacokinetics, and pharmacodynamics of the novel dual GLP-1/glucagon agonist SAR425899 in healthy subjects and diabetes patients Paper presented at the 77th Scientific Session of the American Diabetes Association San Diego, CA:
  182. 182. 
    Ramsey JJ, Kemnitz JW, Colman RJ, Cunningham D, Swick AG. 1998. Different central and peripheral responses to leptin in rhesus monkeys: brain transport may be limited. J. Clin. Endocrinol. Metab. 83:93230–35
    [Google Scholar]
  183. 183. 
    Tang-Christensen M, Havel PJ, Jacobs RR, Larsen PJ, Cameron JL. 1999. Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. J. Clin. Endocrinol. Metab. 84:2711–17
    [Google Scholar]
  184. 184. 
    Vasandani C, Clark GO, Adams-Huet B, Quittner C, Garg A 2017. Efficacy and safety of metreleptin therapy in patients with type 1 diabetes: a pilot study. Diabetes Care 40:5694–97
    [Google Scholar]
  185. 185. 
    Gubitosi-Klug RA, Braffett BH, White NH, Sherwin RS, Service FJ et al. 2017. Risk of severe hypoglycemia in type 1 diabetes over 30 years of follow-up in the DCCT/EDIC study. Diabetes Care 40:81010–16
    [Google Scholar]
  186. 186. 
    Boucher-Berry C, Parton EA, Alemzadeh R. 2016. Excess weight gain during insulin pump therapy is associated with higher basal insulin doses. J. Diabetes Metab. Disord. 15:147
    [Google Scholar]
  187. 187. 
    Banks WA. 2016. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15:4275–92
    [Google Scholar]
  188. 188. 
    Pires A, Fortuna A, Alves G, Falcão A 2009. Intranasal drug delivery: How, why and what for?. J. Pharm. Pharm. Sci. 12:3288–311
    [Google Scholar]
  189. 189. 
    Smith HS, Deer TR, Staats PS, Singh V, Sehgal N, Cordner H. 2008. Intrathecal drug delivery. Pain Phys 11:Suppl. 2S89–104
    [Google Scholar]
  190. 190. 
    Youngerman BE, Chan AK, Mikell CB, McKhann GM, Sheth SA. 2016. A decade of emerging indications: deep brain stimulation in the United States. J. Neurosurg. 125:2461–71
    [Google Scholar]
  191. 191. 
    Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C et al. 2019. Targeting huntingtin expression in patients with Huntington's disease. New Engl. . J Med 380:242307–16
    [Google Scholar]
  192. 192. 
    Christine CW, Bankiewicz KS, Van Laar AD, Richardson RM, Ravina B et al. 2019. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson's disease. Ann. Neurol. 85:5704–14
    [Google Scholar]
  193. 193. 
    Ahrén B, Taborsky GJ, Porte D. 1986. Neuropeptidergic versus cholinergic and adrenergic regulation of islet hormone secretion. Diabetologia 29:12827–36
    [Google Scholar]
  194. 194. 
    Gautam D, Han S-J, Hamdan FF, Jeon J, Li B et al. 2006. A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 3:6449–61
    [Google Scholar]
  195. 195. 
    Liu K, Yang L, Wang G, Liu J, Zhao X et al. 2021. Metabolic stress drives sympathetic neuropathy within the liver. Cell Metab 33:2666–75.e4
    [Google Scholar]
  196. 196. 
    Pocai A, Obici S, Schwartz GJ, Rossetti L. 2005. A brain-liver circuit regulates glucose homeostasis. Cell Metab 1:153–61
    [Google Scholar]
  197. 197. 
    Niijima A. 1983. Glucose-sensitive afferent nerve fibers in the liver and their role in food intake and blood glucose regulation. J. Autonom. Nerv. Syst. 9:1207–20
    [Google Scholar]
  198. 198. 
    Donovan CM, Hamilton-Wessler M, Halter JB, Bergman RN. 1994. Primacy of liver glucosensors in the sympathetic response to progressive hypoglycemia. PNAS 91:72863–67
    [Google Scholar]
  199. 199. 
    Saberi M, Bohland M, Donovan CM. 2008. The locus for hypoglycemic detection shifts with the rate of fall in glycemia: the role of portal-superior mesenteric vein glucose sensing. Diabetes 57:51380–86
    [Google Scholar]
  200. 200. 
    Berthoud H-R. 2004. Anatomy and function of sensory hepatic nerves. Anat. Rec. A Discov. Mol. Cell Evol. Biol 280:1827–35
    [Google Scholar]
  201. 201. 
    Niijima A. 1984. Reflex control of the autonomic nervous system activity from the glucose sensors in the liver in normal and midpontine-transected animals. J. Autonom. Nerv. Syst. 10:3–4279–85
    [Google Scholar]
  202. 202. 
    Payne SC, Ward G, MacIsaac RJ, Hyakumura T, Fallon JB, Villalobos J 2020. Differential effects of vagus nerve stimulation strategies on glycemia and pancreatic secretions. Physiol. Rep. 8:11e14479
    [Google Scholar]
  203. 203. 
    Yin J, Ji F, Gharibani P, Chen JD 2019. Vagal nerve stimulation for glycemic control in a rodent model of type 2 diabetes. Obes. Surg. 29:92869–77
    [Google Scholar]
  204. 204. 
    Meyers EE, Kronemberger A, Lira V, Rahmouni K, Stauss HM 2016. Contrasting effects of afferent and efferent vagal nerve stimulation on insulin secretion and blood glucose regulation. Physiol. Rep. 4:4e12718
    [Google Scholar]
  205. 205. 
    Shikora S, Toouli J, Herrera MF, Kulseng B, Zulewski H et al. 2013. Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J. Obes. 2013:245683
    [Google Scholar]
  206. 206. 
    Shikora SA, Toouli J, Herrera MF, Kulseng B, Brancatisano R et al. 2016. Intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study. Obes. Surg. 26:51021–28
    [Google Scholar]
  207. 207. 
    Deleted in proof
  208. 208. 
    Shimazu T. 1996. Innervation of the liver and glucoregulation: roles of the hypothalamus and autonomic nerves. Nutrition 12:165–66
    [Google Scholar]
  209. 209. 
    Burcelin R, Uldry M, Foretz M, Perrin C, Dacosta A et al. 2004. Impaired glucose homeostasis in mice lacking the α1b-adrenergic receptor subtype. J. Biol. Chem. 279:21108–15
    [Google Scholar]
  210. 210. 
    Hering D, Lambert EA, Marusic P, Walton AS, Krum H et al. 2013. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension 61:2457–64
    [Google Scholar]
  211. 211. 
    Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B et al. 2011. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension. Circulation 123:181940–46
    [Google Scholar]
  212. 212. 
    Zhang Z, Liu K, Xiao S, Chen X 2021. Effects of catheter-based renal denervation on glycemic control and lipid levels: a systematic review and meta-analysis. Acta Diabetol 58:5603–14
    [Google Scholar]
  213. 213. 
    Kiuchi MG, Ho JK, Gavidia LML, Schlaich MP. 2019. Shaping the future of renal denervation-the relevance of sham-controlled randomized trials and recent meta-analyses. Cardiovasc. Diagnosis Ther. 9:6601–6
    [Google Scholar]
  214. 214. 
    Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R et al. 2016. Comparison of 10-kHz high-frequency and traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: 24-month results from a multicenter, randomized, controlled pivotal trial. Neurosurgery 79:5667–77
    [Google Scholar]
  215. 215. 
    Linderoth B, Herregodts P, Meyerson BA. 1994. Sympathetic mediation of peripheral vasodilation induced by spinal cord stimulation. Neurosurgery 35:4711–19
    [Google Scholar]
  216. 216. 
    Lee KY, Bae C, Lee D, Kagan Z, Bradley K et al. 2020. Low-intensity, kilohertz frequency spinal cord stimulation differently affects excitatory and inhibitory neurons in the rodent superficial dorsal horn. Neuroscience 428:132–39
    [Google Scholar]
  217. 217. 
    Norrsell H, Eliasson T, Mannheimer C, Augustinsson LE, Bergh CHet al 1997. Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover. Eur. Heart J 18:1890–96
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052220-010446
Loading
/content/journals/10.1146/annurev-pharmtox-052220-010446
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error