1932

Abstract

The conversion of free-living cyanobacteria to photosynthetic organelles of eukaryotic cells through endosymbiosis transformed the biosphere and eventually provided the basis for life on land. Despite the presumable advantage conferred by the acquisition of photoautotrophy through endosymbiosis, only two independent cases of primary endosymbiosis have been documented: one that gave rise to the Archaeplastida, and the other to photosynthetic species of the thecate, filose amoeba . Here, we review recent genomics-informed insights into the primary endosymbiotic origins of cyanobacteria-derived organelles. Furthermore, we discuss the preconditions for the evolution of nitrogen-fixing organelles. Recent genomic data on previously undersampled cyanobacterial and protist taxa provide new clues to the origins of the host cell and endosymbiont, and proteomic approaches allow insights into the rearrangement of the endosymbiont proteome during organellogenesis. We conclude that in addition to endosymbiotic gene transfers, horizontal gene acquisitions from a broad variety of prokaryotic taxa were crucial to organelle evolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040209
2018-04-29
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040209.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040209&mimeType=html&fmt=ahah

Literature Cited

  1. Abdallah F, Salamini F, Leister D. 1.  2000. A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5:141–42 [Google Scholar]
  2. Abe T, Ii N, Togashi A, Sasahara T. 2.  2002. Large deletions in chloroplast DNA of rice calli after long-term culture. J. Plant Physiol. 159:917–23 [Google Scholar]
  3. Alves JMP, Klein CC, Da Silva FM, Costa-Martins AG, Serrano MG. 3.  et al. 2013. Endosymbiosis in trypanosomatids: The genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol. Biol. 13:190 [Google Scholar]
  4. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C. 4.  et al. 2008. Genome sequence of the β-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–83 [Google Scholar]
  5. Archibald JM.5.  2009. The puzzle of plastid evolution. Curr. Biol. 19:R81–88 [Google Scholar]
  6. Baker A, Schatz G. 6.  1987. Sequences from a prokaryotic genome or the mouse dihydrofolate reductase gene can restore the import of a truncated precursor protein into yeast mitochondria. PNAS 84:3117–21 [Google Scholar]
  7. Ball SG, Bhattacharya D, Qiu H, Weber APM. 7.  2016. Commentary: Plastid establishment did not require a chlamydial partner. Front. Cell. Infect. Microbiol. 6:93 [Google Scholar]
  8. Ball SG, Subtil A, Bhattacharya D, Moustafa A, Weber APM. 8.  et al. 2013. Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis?. Plant Cell 25:7–21 [Google Scholar]
  9. Bauwe H, Hagemann M, Fernie AR. 9.  2010. Photorespiration: players, partners and origin. Trends Plant Sci 15:330–36 [Google Scholar]
  10. Berney C, Pawlowski J. 10.  2006. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc. R. Soc. B 273:1867–72 [Google Scholar]
  11. Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N. 11.  et al. 2013. Genome of the red alga Porphyridium purpureum. Nat. Commun 4:1941 [Google Scholar]
  12. Bhattacharya D, Price DC, Yoon HS, Yang EC, Poulton NJ. 12.  et al. 2012. Single cell genome analysis supports a link between phagotrophy and primary plastid endosymbiosis. Sci. Rep. 2:356 [Google Scholar]
  13. Bock R.13.  2010. The give-and-take of DNA: horizontal gene transfer in plants. Trends Plant Sci 15:11–22 [Google Scholar]
  14. Bodył A, Mackiewicz P, Stiller JW. 14.  2010. Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins. Plant Biol 12:639–49 [Google Scholar]
  15. Bölter B, Soll J. 15.  2017. Ycf1/Tic214 is not essential for the accumulation of plastid proteins. Mol. Plant 10:219–21 [Google Scholar]
  16. Bombar D, Heller P, Sanchez-Baracaldo P, Carter BJ, Zehr JP. 16.  2014. Comparative genomics reveals surprising divergence of two closely related strains of uncultivated UCYN-A cyanobacteria. ISME J 8:2530–42 [Google Scholar]
  17. Borza T, Popescu CE, Lee RW. 17.  2005. Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii. Eukaryot. Cell 4:253–61 [Google Scholar]
  18. Brandenburg F, Schoffman H, Kurz S, Kramer U, Keren N. 18.  et al. 2017. The Synechocystis manganese exporter Mnx is essential for manganese homeostasis in cyanobacteria. Plant Physiol 173:1798–810 [Google Scholar]
  19. Bruley C, Dupierris V, Salvi D, Rolland N, Ferro M. 19.  2012. AT_CHLORO: a chloroplast protein database dedicated to sub-plastidial localization. Front. Plant Sci. 3:205 [Google Scholar]
  20. Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ. 20.  et al. 2016. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc. R. Soc. B 283:20152802 [Google Scholar]
  21. Burns JA, Paasch A, Narechania A, Kim E. 21.  2015. Comparative genomics of a bacterivorous green alga reveals evolutionary causalities and consequences of phago-mixotrophic mode of nutrition. Genome Biol. Evol. 7:3047–61 [Google Scholar]
  22. Cahoon AB, Cunningham KA, Bollenbach TJ, Stern DB. 22.  2003. Maize BMS cultured cell lines survive with massive plastid gene loss. Curr. Genet. 44:104–13 [Google Scholar]
  23. Cenci U, Bhattacharya D, Weber APM, Colleoni C, Subtil A, Ball SG. 23.  2017. Biotic host-pathogen interactions as major drivers of plastid endosymbiosis. Trends Plant Sci 22:316–28 [Google Scholar]
  24. Cenci U, Nitschke F, Steup M, Minassian BA, Colleoni C, Ball SG. 24.  2014. Transition from glycogen to starch metabolism in Archaeplastida. Trends Plant Sci 19:18–28 [Google Scholar]
  25. Chen YL, Chen LJ, Li HM. 25.  2016. Polypeptide transport-associated domains of the Toc75 channel protein are located in the intermembrane space of chloroplasts. Plant Physiol 172:235–43 [Google Scholar]
  26. Church MJ, Short CM, Jenkins BD, Karl DM, Zehr JP. 26.  2005. Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl. Environ. Microbiol. 71:5362–70 [Google Scholar]
  27. Colleoni C, Linka M, Deschamps P, Handford MG, Dupree P. 27.  et al. 2010. Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis. Mol. Biol. Evol. 27:2691–701 [Google Scholar]
  28. Criscuolo A, Gribaldo S. 28.  2011. Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Mol. Biol. Evol. 28:3019–32 [Google Scholar]
  29. Czernic P, Gully D, Cartieaux F, Moulin L, Guefrachi I. 29.  et al. 2015. Convergent evolution of endosymbiont differentiation in dalbergioid and IRLC legumes mediated by nodule-specific cysteine-rich peptides. Plant Physiol 169:1254–65 [Google Scholar]
  30. Dagan T, Roettger M, Stucken K, Landan G, Koch R. 30.  et al. 2013. Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol. Evol. 5:31–44 [Google Scholar]
  31. de Koning AP, Keeling PJ. 31.  2006. The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol 4:12 [Google Scholar]
  32. de Souza A, Wang JZ, Dehesh K. 32.  2017. Retrograde signals: integrators of interorganellar communication and orchestrators of plant development. Annu. Rev. Plant Biol 68:85–108 [Google Scholar]
  33. de Vries J, Archibald JM. 33.  2017. Endosymbiosis: Did plastids evolve from a freshwater cyanobacterium?. Curr. Biol. 27:R103–5 [Google Scholar]
  34. de Vries J, Stanton A, Archibald JM, Gould SB. 34.  2016. Streptophyte terrestrialization in light of plastid evolution. Trends Plant Sci 21:467–76 [Google Scholar]
  35. Delannoy E, Fujii S, des Francs-Small CC, Brundrett M, Small I. 35.  2011. Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol. Biol. Evol. 28:2077–86 [Google Scholar]
  36. Delaye L, Valadez Cano C, Pérez Zamorano B. 36.  2016. How really ancient is Paulinella chromatophora?. PLOS Currents Tree of Life blog March 15. https://doi.org/10.1371/currents.tol.e68a099364bb1a1e129a17b4e06b0c6b
  37. Delwiche CF, Palmer JD. 37.  1996. Rampant horizontal transfer and duplication of Rubisco genes in eubacteria and plastids. Mol. Biol. Evol. 13:873–82 [Google Scholar]
  38. Deschamps P, Colleoni C, Nakamura Y, Suzuki E, Putaux JL. 38.  et al. 2008. Metabolic symbiosis and the birth of the plant kingdom. Mol. Biol. Evol. 25:536–48 [Google Scholar]
  39. Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV. 39.  et al. 2008. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol. Biol. Evol. 25:748–61 [Google Scholar]
  40. Domman D, Horn M, Embley TM, Williams TA. 40.  2015. Plastid establishment did not require a chla-mydial partner. Nat. Commun. 6:6421 [Google Scholar]
  41. Dubilier N, Bergin C, Lott C. 41.  2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6:725–40 [Google Scholar]
  42. Ducat DC, Avelar-Rivas JA, Way JC, Silver PA. 42.  2012. Rerouting carbon flux to enhance photosynthetic productivity. Appl. Environ. Microbiol. 78:2660–68 [Google Scholar]
  43. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM. 43.  et al. 2003. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. PNAS 100:10020–25 [Google Scholar]
  44. Dyall SD, Brown MT, Johnson PJ. 44.  2004. Ancient invasions: from endosymbionts to organelles. Science 304:253–57 [Google Scholar]
  45. Facchinelli F, Colleoni C, Ball SG, Weber APM. 45.  2013. Chlamydia, cyanobiont, or host: Who was on top in the ménage à trois?. Trends Plant Sci 18:673–79 [Google Scholar]
  46. Facchinelli F, Pribil M, Oster U, Ebert NJ, Bhattacharya D. 46.  et al. 2012. Proteomic analysis of the Cyanophora paradoxa muroplast provides clues on early events in plastid endosymbiosis. Planta 237:637–51 [Google Scholar]
  47. Facchinelli F, Weber APM. 47.  2015. Analysis of Cyanophora paradoxa tells important lessons on plastid evolution. Perspect. Phycol. 2:3–10 [Google Scholar]
  48. Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A. 48.  2015. When the lights go out: the evolutionary fate of free-living colorless green algae. New Phytol 206:972–82 [Google Scholar]
  49. Fischer K, Weber A. 49.  2002. Transport of carbon in non-green plastids. Trends Plant Sci 7:345–51 [Google Scholar]
  50. Flügge UI, Fischer K, Gross A, Sebald W, Lottspeich F, Eckerskorn C. 50.  1998. The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J 8:39–46 [Google Scholar]
  51. Flügge UI, Weber A, Fischer K, Lottspeich F, Eckerskorn C. 51.  et al. 1991. The major chloroplast envelope polypeptide is the phosphate translocator and not the protein import receptor. Nature 353:364–67 [Google Scholar]
  52. Fujisawa T, Narikawa R, Maeda S-I, Watanabe S, Kanesaki Y. 52.  et al. 2017. CyanoBase: a large-scale update on its 20th anniversary. Nucleic Acids Res 45:D551–54 [Google Scholar]
  53. Gagat P, Mackiewicz P. 53.  2014. Protein translocons in photosynthetic organelles of Paulinella chromatophora. Acta Soc. Bot. Pol 83:399–407 [Google Scholar]
  54. Garg SG, Gould SB. 54.  2016. The role of charge in protein targeting evolution. Trends Cell Biol 26:894–905 [Google Scholar]
  55. Geitler L.55.  1977. Life history of the Epithemiaceae Epithemia, Rhopalodia and Denticula (Diatomophyceae) and their presumable symbiotic spheroid bodies. Plant Syst. Evol. 128:259–75 [Google Scholar]
  56. Gould SB, Waller RR, McFadden GI. 56.  2008. Plastid evolution. Annu. Rev. Plant Biol. 59:491–517 [Google Scholar]
  57. Gross J, Bhattacharya D. 57.  2009. Revaluating the evolution of the Toc and Tic protein translocons. Trends Plant Sci 14:13–20 [Google Scholar]
  58. Hagemann M, Kern R, Maurino VG, Hanson DT, Weber APM. 58.  et al. 2016. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. J. Exp. Bot. 67:2963–76 [Google Scholar]
  59. Hansen AK, Moran NA. 59.  2011. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. PNAS 108:2849–54 [Google Scholar]
  60. Hodges M, Dellero Y, Keech O, Betti M, Raghavendra AS. 60.  et al. 2016. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. J. Exp. Bot. 67:3015–26 [Google Scholar]
  61. Hongoh Y, Sharma VK, Prakash T, Noda S, Taylor TD. 61.  et al. 2008. Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. PNAS 105:5555–60 [Google Scholar]
  62. Janouškovec J, Liu SL, Martone PT, Carré W, Leblanc C. 62.  et al. 2013. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLOS ONE 8:e59001 [Google Scholar]
  63. Johnson PW, Hargraves PE, Sieburth JM. 63.  1988. Ultrastructure and ecology of Calycomonas ovalis Wulff, 1919 (Chrysophyceae), and its redescription as a testate rhizopod, Paulinella ovalis n. comb. (Filosea: Euglyphina). J. Protozool. 35:618–26 [Google Scholar]
  64. Karkar S, Facchinelli F, Price DC, Weber APM, Bhattacharya D. 64.  2015. Metabolic connectivity as a driver of host and endosymbiont integration. PNAS 112:10208–15 [Google Scholar]
  65. Karnkowska A, Vacek V, Zubácová Z, Treitli SC, Petrzelkova R. 65.  et al. 2016. A eukaryote without a mitochondrial organelle. Curr. Biol. 26:1–11 [Google Scholar]
  66. Karpowicz SJ, Prochnik SE, Grossman AR, Merchant SS. 66.  2011. The greenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. J. Biol. Chem. 286:21427–39 [Google Scholar]
  67. Kies L.67.  1974. Electron microscopical investigations on Paulinella chromatophora Lauterborn, a thecamoeba containing blue-green endosymbionts (cyanelles). Protoplasma 80:69–89 [Google Scholar]
  68. Kikuchi S, Bedard J, Hirano M, Hirabayashi Y, Oishi M. 68.  et al. 2013. Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339:571–74 [Google Scholar]
  69. Kim S, Park MG. 69.  2016. Paulinella longichromatophora sp. nov., a new marine photosynthetic testate amoeba containing a chromatophore. Protist 167:1–12 [Google Scholar]
  70. Kneip C, Voss C, Lockhart PJ, Maier UG. 70.  2008. The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol. Biol. 8:30 [Google Scholar]
  71. Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ. 71.  et al. 2015. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524:427–32 [Google Scholar]
  72. Larsson J, Nylander JAA, Bergman B. 72.  2011. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol. Biol. 11:187 [Google Scholar]
  73. Leister D.73.  2016. Towards understanding the evolution and functional diversification of DNA-containing plant organelles. F1000Research 5:330 [Google Scholar]
  74. Lhee D, Yang EC, Kim JI, Nakayama T, Zuccarello G. 74.  et al. 2017. Diversity of the photosynthetic Paulinella species, with the description of Paulinella micropora sp. nov. and the chromatophore genome sequence for strain KR01. Protist 168:155–70 [Google Scholar]
  75. Linka N, Hurka H, Lang BF, Burger G, Winkler HH. 75.  et al. 2003. Phylogenetic relationships of non-mitochondrial nucleotide transport proteins in bacteria and eukaryotes. Gene 306:27–35 [Google Scholar]
  76. Loganathan N, Tsai YCC, Mueller-Cajar O. 76.  2016. Characterization of the heterooligomeric red-type Rubisco activase from red algae. PNAS 113:14019–24 [Google Scholar]
  77. MacLean AM, Finan TM, Sadowsky MJ. 77.  2007. Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144:615–22 [Google Scholar]
  78. Marchetti M, Capela D, Glew M, Cruveiller S, Chane-Woon-Ming B. 78.  et al. 2010. Experimental evolution of a plant pathogen into a legume symbiont. PLOS Biol 8:e1000280 [Google Scholar]
  79. Mariappan M, Mateja A, Dobosz M, Bove E, Hegde RS, Keenan RJ. 79.  2011. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477:61–69 [Google Scholar]
  80. Marin B, Nowack ECM, Glöckner G, Melkonian M. 80.  2007. The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like γ-proteobacterium. BMC Evol. Biol. 7:85 [Google Scholar]
  81. Marin B, Nowack ECM, Melkonian M. 81.  2005. A plastid in the making: evidence for a second primary endosymbiosis. Protist 156:425–32 [Google Scholar]
  82. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S. 82.  et al. 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. PNAS 99:12246–51 [Google Scholar]
  83. Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV. 83.  1998. Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–65 [Google Scholar]
  84. Maruyama S, Kim E. 84.  2013. A modern descendant of early green algal phagotrophs. Curr. Biol. 23:1081–84 [Google Scholar]
  85. Maruyama S, Kim E. 85.  2017. Symbiosis in eukaryotic cell evolution: genomic consequences and changing classification. Cells in Evolutionary Biology BK Hall, SA Moody 1–48 Portland, OR: Taylor & Francis [Google Scholar]
  86. Matasci N, Hung LH, Yan ZX, Carpenter EJ, Wickett NJ. 86.  et al. 2014. Data access for the 1,000 Plants (1KP) project. Gigascience 3:17 [Google Scholar]
  87. McCutcheon JP, Keeling PJ. 87.  2014. Endosymbiosis: protein targeting further erodes the organelle/symbiont distinction. Curr. Biol. 24:R654–55 [Google Scholar]
  88. McCutcheon JP, Moran NA. 88.  2012. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10:13–26 [Google Scholar]
  89. Méheust R, Zelzion E, Bhattacharya D, Lopez P, Bapteste E. 89.  2016. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis. PNAS 113:3579–84 [Google Scholar]
  90. Merckx V, Freudenstein JV. 90.  2010. Evolution of mycoheterotrophy in plants: a phylogenetic perspective. New Phytol 185:605–9 [Google Scholar]
  91. Mergaert P, Kikuchi Y, Shigenobu S, Nowack ECM. 91.  2017. Metabolic integration of bacterial endosymbionts through antimicrobial peptides. Trends Microbiol 25:703–12 [Google Scholar]
  92. Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D. 92.  et al. 2003. A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol 132:161–73 [Google Scholar]
  93. Mira A, Ochman H, Moran NA. 93.  2001. Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–96 [Google Scholar]
  94. Molina J, Hazzouri KM, Nickrent D, Geisler M, Meyer RS. 94.  et al. 2014. Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol. Biol. Evol. 31:793–803 [Google Scholar]
  95. Moreira D, Deschamps P. 95.  2014. What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes. Cold Spring Harb. Perspect. Biol. 6:a016014 [Google Scholar]
  96. Moreira D, Tavera R, Benzerara K, Skouri-Panet F, Couradeau E. 96.  et al. 2017. Description of Gloeomargarita lithophora gen. nov., sp nov., a thylakoid-bearing, basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov. Int. J. Syst. Evol. Microbiol. 67:653–58 [Google Scholar]
  97. Moustafa A, Bhattacharya D. 97.  2008. PhyloSort: a user-friendly phylogenetic sorting tool and its application to estimating the cyanobacterial contribution to the nuclear genome of Chlamydomonas. BMC Evol. Biol. 8:6 [Google Scholar]
  98. Moya A, Peretó J, Gil R, Latorre A. 98.  2008. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat. Rev. Genet. 9:218–29 [Google Scholar]
  99. Mueller-Cajar O, Stotz M, Wendler P, Hartl FU, Bracher A, Hayer-Hartl M. 99.  2011. Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase. Nature 479:194–99 [Google Scholar]
  100. Muñoz-Gómez SA, Mejía-Franco FG, Durnin K, Colp M, Grisdale CJ. 100.  et al. 2017. The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known. Curr. Biol. 27:1677–84 [Google Scholar]
  101. Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima SY. 101.  2014. Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Curr. Biol. 24:R640–41 [Google Scholar]
  102. Nakai M.102.  2015. The TIC complex uncovered: the alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts. Biochim. Biophys. Acta 1847:957–67 [Google Scholar]
  103. Nakayama T, Archibald JM. 103.  2012. Evolving a photosynthetic organelle. BMC Biol 10:35 [Google Scholar]
  104. Nakayama T, Ikegami Y, Ishida KI, Inagaki Y, Inouye I. 104.  2011. Spheroid bodies in rhopalodiacean diatoms were derived from a single endosymbiotic cyanobacterium. J. Plant Res. 124:93–97 [Google Scholar]
  105. Nakayama T, Ishida K. 105.  2009. Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora. Curr. Biol 19:R284–85 [Google Scholar]
  106. Nakayama T, Kamikawa R, Tanifuji G, Kashiyama Y, Ohkouchi N. 106.  et al. 2014. Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. PNAS 111:11407–12 [Google Scholar]
  107. Nicholls KH.107.  2009. Six new marine species of the genus Paulinella (Rhizopoda: Filosea, or Rhizaria: Cercozoa). J. Mar. Biol. Assoc. U.K. 89:1415–25 [Google Scholar]
  108. Nilsson AI, Koskiniemi S, Eriksson S, Kugelberg E, Hinton JCD, Andersson DI. 108.  2005. Bacterial genome size reduction by experimental evolution. PNAS 102:12112–16 [Google Scholar]
  109. Nowack ECM.109.  2014. Paulinella chromatophora—rethinking the transition from endosymbiont to organelle. Acta Soc. Bot. Pol. 83:387–97 [Google Scholar]
  110. Nowack ECM, Grossman AR. 110.  2012. Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. PNAS 109:5340–45 [Google Scholar]
  111. Nowack ECM, Melkonian M. 111.  2010. Endosymbiotic associations within protists. Philos. Trans. R. Soc. B 365:699–712 [Google Scholar]
  112. Nowack ECM, Melkonian M, Glöckner G. 112.  2008. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr. Biol. 18:410–18 [Google Scholar]
  113. Nowack ECM, Price DC, Bhattacharya D, Singer A, Melkonian M, Grossman AR. 113.  2016. Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. PNAS 113:12214–19 [Google Scholar]
  114. Nowack ECM, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G. 114.  2011. Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol. Biol. Evol 28:407–22 [Google Scholar]
  115. Ochoa de Alda JAG, Esteban R, Luz Diago M, Houmard J. 115.  2014. The plastid ancestor originated among one of the major cyanobacterial lineages. Nat. Commun. 5:4937 [Google Scholar]
  116. O'Neil PK, Richardson LGL, Paila YD, Piszczek G, Chakravarthy S. 116.  et al. 2017. The POTRA domains of Toc75 exhibit chaperone-like function to facilitate import into chloroplasts. PNAS 114:E4868–76 [Google Scholar]
  117. Paila YD, Richardson LGL, Inoue H, Parks ES, McMahon J. 117.  et al. 2016. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import. eLife 5:e12631 [Google Scholar]
  118. Papaefthimiou D, Van Hove C, Lejeune A, Rasmussen U, Wilmotte A. 118.  2008. Diversity and host specificity of Azolla cyanobionts. J. Phycol. 44:60–70 [Google Scholar]
  119. Pedroza-Garcia JA, Domenichini S, Bergounioux C, Benhamed M, Raynaud C. 119.  2016. Chloroplasts around the plant cell cycle. Curr. Opin. Plant Biol. 34:107–13 [Google Scholar]
  120. Peters GA, Meeks JC. 120.  1989. The Azolla-Anabaena symbiosis: basic biology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40:193–210 [Google Scholar]
  121. Pick TR, Bräutigam A, Schulz MA, Obata T, Fernie AR, Weber APM. 121.  2013. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. PNAS 110:3185–90 [Google Scholar]
  122. Pombert J-F, Blouin NA, Lane C, Boucias D, Keeling PJ. 122.  2014. A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLOS Genet 10:e1004355 [Google Scholar]
  123. Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. 123.  2017. An early-branching freshwater cyanobacterium at the origin of plastids. Curr. Biol. 27:386–91 [Google Scholar]
  124. Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier UG. 124.  2004. Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol. Biol. Evol. 21:1477–81 [Google Scholar]
  125. Price DC, Chan CX, Yoon HS, Yang EC, Qiu H. 125.  et al. 2012. Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–47 [Google Scholar]
  126. Qiu H, Price DC, Weber APM, Facchinelli F, Yoon HS, Bhattacharya D. 126.  2013. Assessing the bacterial contribution to the plastid proteome. Trends Plant Sci 18:680–87 [Google Scholar]
  127. Qiu H, Yang EC, Bhattacharya D, Yoon HS. 127.  2012. Ancient gene paralogy may mislead inference of plastid phylogeny. Mol. Biol. Evol. 29:3333–43 [Google Scholar]
  128. Ran L, Larsson J, Vigil-Stenman T, Nylander JAA, Ininbergs K. 128.  et al. 2010. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLOS ONE 5:e11486 [Google Scholar]
  129. Raven JA.129.  2013. Cells inside cells: symbiosis and continuing phagotrophy. Curr. Biol. 23:R530–31 [Google Scholar]
  130. Reinhold T, Alawady A, Grimm B, Beran KC, Jahns P. 130.  et al. 2007. Limitation of nocturnal import of ATP into Arabidopsis chloroplasts leads to photooxidative damage. Plant J 50:293–304 [Google Scholar]
  131. Remigi P, Capela D, Clerissi C, Tasse L, Torchet R. 131.  et al. 2014. Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer. PLOS Biol 12:e1001942 [Google Scholar]
  132. Renströmkellner E, Bergman B. 132.  1989. Glycolate metabolism in cyanobacteria. III. Nitrogen controls excretion and metabolism of glycolate in Anabaena cylindrica. Physiol. Plant 77:46–51 [Google Scholar]
  133. Reyes-Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D. 133.  2006. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr. Biol. 16:2320–25 [Google Scholar]
  134. Reyes-Prieto A, Yoon HS, Moustafa A, Yang EC, Andersen RA. 134.  et al. 2010. Differential gene retention in plastids of common recent origin. Mol. Biol. Evol. 27:1530–37 [Google Scholar]
  135. Ribeiro CW, Baldacci-Cresp F, Pierre O, Larousse M, Benyamina S. 135.  et al. 2017. Regulation of differentiation of nitrogen-fixing bacteria by microsymbiont targeting of plant thioredoxin s1. Curr. Biol. 27:250–56 [Google Scholar]
  136. Salomaki ED, Lane CE. 136.  2014. Are all red algal parasites cut from the same cloth?. Acta Soc. Bot. Pol. 83:369–75 [Google Scholar]
  137. Salomaki ED, Nickles KR, Lane CE. 137.  2015. The ghost plastid of Choreocolax polysiphoniae. J. Phycol 51:217–21 [Google Scholar]
  138. Sanderson MJ, Thorne JL, Wikström N, Bremer K. 138.  2004. Molecular evidence on plant divergence times. Am. J. Bot. 91:1656–65 [Google Scholar]
  139. Schmitz-Esser S, Linka N, Collingro A, Beier CL, Neuhaus HE. 139.  et al. 2004. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to chlamydiae and rickettsiae. J. Bacteriol. 186:683–91 [Google Scholar]
  140. Schneider A, Steinberger I, Herdean A, Gandini C, Eisenhut M. 140.  et al. 2016. The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in Arabidopsis. Plant Cell 28:892–910 [Google Scholar]
  141. Schönknecht G, Chen WH, Ternes CM, Barbier GG, Shrestha RP. 141.  et al. 2013. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–10 [Google Scholar]
  142. Schwoppe C, Winkler HH, Neuhaus HE. 142.  2002. Properties of the glucose-6-phosphate transporter from Chlamydia pneumoniae (HPTcp) and the glucose-6-phosphate sensor from Escherichia coli (UhpC). J. Bacteriol. 184:2108–15 [Google Scholar]
  143. Shi LX, Theg SM. 143.  2013. The chloroplast protein import system: from algae to trees. Biochim. Biophys. Acta 1833:314–31 [Google Scholar]
  144. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. 144.  2000. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86 [Google Scholar]
  145. Shih PM, Matzke NJ. 145.  2013. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. PNAS 110:12355–60 [Google Scholar]
  146. Shih PM, Wu DY, Latifi A, Axen SD, Fewer DP. 146.  et al. 2013. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. PNAS 110:1053–58 [Google Scholar]
  147. Singer A, Poschmann G, Mühlich C, Valadez-Cano C, Hänsch S. 147.  et al. 2017. Massive protein import into the early evolutionary stage photosynthetic organelle of the amoeba Paulinella chromatophora. Curr. Biol 27:2763–73 [Google Scholar]
  148. Smith DR, Lee RW. 148.  2014. A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella. Plant Physiol 164:1812–19 [Google Scholar]
  149. Sommer MS, Daum B, Gross LE, Weis BLM, Mirus O. 149.  et al. 2011. Chloroplast Omp85 proteins change orientation during evolution. PNAS 108:13841–46 [Google Scholar]
  150. South PF, Walker BJ, Cavanagh AP, Rolland V, Badger M, Ort DR. 150.  2017. Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana. Plant Cell 29:808–23 [Google Scholar]
  151. Stegemann S, Bock R. 151.  2006. Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus. Plant Cell 18:2869–78 [Google Scholar]
  152. Stegemann S, Hartmann S, Ruf S, Bock R. 152.  2003. High-frequency gene transfer from the chloroplast genome to the nucleus. PNAS 100:8828–33 [Google Scholar]
  153. Steiner JM, Löffelhardt W. 153.  2002. Protein import into cyanelles. Trends Plant Sci 7:72–77 [Google Scholar]
  154. Stiller JW.154.  2014. Toward an empirical framework for interpreting plastid evolution. J. Phycol. 50:462–71 [Google Scholar]
  155. Stirewalt VL, Michalowski CB, Löffelhardt W, Bohnert HJ, Bryant DA. 155.  1995. Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol. Biol. Rep 13:327–32 [Google Scholar]
  156. Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW. 156.  1995. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. PNAS 92:8985–89 [Google Scholar]
  157. Sun Q, Zybailov B, Majeran W, Friso G, Olinares PDB, van Wijk KJ. 157.  2009. PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37:D969–74 [Google Scholar]
  158. Suzuki K, Miyagishima SY. 158.  2010. Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol. Biol. Evol. 27:581–90 [Google Scholar]
  159. Tabita FR.159.  1999. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth. Res. 60:1–28 [Google Scholar]
  160. Theissen U, Martin W. 160.  2006. The difference between organelles and endosymbionts. Curr. Biol. 16:R1016–17 [Google Scholar]
  161. Timmis JN, Ayliffe MA, Huang CY, Martin W. 161.  2004. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5:123–35 [Google Scholar]
  162. Tonti-Filippini J, Nevill PG, Dixon K, Small I. 162.  2017. What can we do with 1000 plastid genomes?. Plant J 90:808–18 [Google Scholar]
  163. Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA. 163.  et al. 2010. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464:90–94 [Google Scholar]
  164. Turner S, Pryer KM, Miao VPW, Palmer JD. 164.  1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small submit rRNA sequence analysis. J. Eukaryot. Microbiol. 46:327–38 [Google Scholar]
  165. Tyra HM, Linka M, Weber APM, Bhattacharya D. 165.  2007. Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212 [Google Scholar]
  166. Van Aken O, Pogson BJ. 166.  2017. Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death Differ 24:955–60 [Google Scholar]
  167. van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H. 167.  et al. 2010. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–26 [Google Scholar]
  168. Weber APM, Linka M, Bhattacharya D. 168.  2006. Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot. Cell 5:609–12 [Google Scholar]
  169. Weeden NF.169.  1981. Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J. Mol. Evol. 17:133–39 [Google Scholar]
  170. Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET. 170.  2014. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat. Commun. 5:4087 [Google Scholar]
  171. Westwood JH, Yoder JI, Timko MP, dePamphilis CW. 171.  2010. The evolution of parasitism in plants. Trends Plant Sci 15:227–35 [Google Scholar]
  172. Wicke S, Müller KF, de Pamphilis CW, Quandt D, Wickett NJ. 172.  et al. 2013. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 25:3711–25 [Google Scholar]
  173. Wicke S, Müller KF, dePamphilis CW, Quandt D, Bellot S, Schneeweiss GM. 173.  2016. Mechanistic model of evolutionary rate variation en route to a nonphotosynthetic lifestyle in plants. PNAS 113:9045–50 [Google Scholar]
  174. Wollman FA.174.  2016. An antimicrobial origin of transit peptides accounts for early endosymbiotic events. Traffic 17:1322–28 [Google Scholar]
  175. Wunder T, Martin R, Löffelhardt W, Schleiff E, Steiner JM. 175.  2007. The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles. BMC Evol. Biol. 7:236 [Google Scholar]
  176. Yabuki A, Kamikawa R, Ishikawa SA, Kolisko M, Kim E. 176.  et al. 2014. Palpitomonas bilix represents a basal cryptist lineage: insight into the character evolution in Cryptista. Sci. Rep. 4:4641 [Google Scholar]
  177. Yan D, Wang Y, Murakami T, Shen Y, Gong JH. 177.  et al. 2015. Auxenochlorella protothecoides and Prototheca wickerhamii plastid genome sequences give insight into the origins of non-photosynthetic algae. Sci. Rep. 5:8 [Google Scholar]
  178. Yang X-F, Wang Y-T, Chen S-T, Li J-K, Shen H-T, Guo F-Q. 178.  2016. PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis. Cell Discov 2:16003 [Google Scholar]
  179. Yoon HS, Nakayama T, Reyes-Prieto A, Andersen RA, Boo SM. 179.  et al. 2009. A single origin of the photosynthetic organelle in different Paulinella lineages. BMC Evol. Biol. 9:11 [Google Scholar]
  180. Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D. 180.  2006. Minimal plastid genome evolution in the Paulinella endosymbiont. Curr. Biol. 16:R670–72 [Google Scholar]
  181. Young ND, Debellé F, Oldroyd GED, Geurts R, Cannon SB. 181.  et al. 2011. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–24 [Google Scholar]
  182. Yue J, Hu X, Sun H, Yang Y, Huang JL. 182.  2012. Widespread impact of horizontal gene transfer on plant colonization of land. Nat. Commun. 3:1152 [Google Scholar]
  183. Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F. 183.  et al. 2008. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322:1110–12 [Google Scholar]
  184. Zehr JP, Shilova IN, Farnelid HM, Muñoz-Maríncarmen MDC, Turk-Kubo KA. 184.  2016. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat. Microbiol. 2:16214 [Google Scholar]
  185. Zhang R, Nowack ECM, Price DC, Bhattacharya D, Grossman AR. 185.  2017. Impact of light intensity and quality on chromatophore and nuclear gene expression in Paulinella chromatophora, an amoeba with nascent photosynthetic organelles. Plant J 90:221–34 [Google Scholar]
  186. Zheng W, Bergman B, Chen B, Zheng S, Xiang G, Rasmussen U. 186.  2009. Cellular responses in the cyanobacterial symbiont during its vertical transfer between plant generations in the Azolla microphylla symbiosis. New Phytol 181:53–61 [Google Scholar]
  187. Zientz E, Dandekar T, Gross R. 187.  2004. Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol. Mol. Biol. Rev. 68:745–70 [Google Scholar]
  188. Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O. 188.  et al. 2008. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLOS ONE 3:19 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040209
Loading
/content/journals/10.1146/annurev-arplant-042817-040209
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error