1932

Abstract

It has been a dominant dogma in plant biology that the self-organizing polar auxin transport system is necessary and sufficient to generate auxin maxima and minima that are essential for almost all aspects of plant growth and development. However, in the past few years, it has become clear that local auxin biosynthesis is required for a suite of developmental processes, including embryogenesis, endosperm development, root development, and floral initiation and patterning. Moreover, it was discovered that local auxin biosynthesis maintains optimal plant growth in response to environmental signals, including light, temperature, pathogens, and toxic metals. In this article, I discuss the recent progress in auxin biosynthesis research and the paradigm shift in recognizing the important roles of local auxin biosynthesis in plant biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040226
2018-04-29
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040226.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040226&mimeType=html&fmt=ahah

Literature Cited

  1. Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D. 1.  et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602 [Google Scholar]
  2. Bennett MJ, Marchant A, Green HG, May ST, Ward SP. 2.  et al. 1996. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–50 [Google Scholar]
  3. Bernardi J, Lanubile A, Li QB, Kumar D, Kladnik A. 3.  et al. 2012. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol 160:1318–28 [Google Scholar]
  4. Bhalerao RP, Bennett MJ. 4.  2003. The case for morphogens in plants. Nat. Cell Biol. 5:939–43 [Google Scholar]
  5. Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I. 5.  et al. 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44 [Google Scholar]
  6. Bohn-Courseau I.6.  2010. Auxin: a major regulator of organogenesis. C. R. Biol. 333:290–96 [Google Scholar]
  7. Brumos J, Alonso JM, Stepanova AN. 7.  2014. Genetic aspects of auxin biosynthesis and its regulation. Physiol. Plant 151:3–12 [Google Scholar]
  8. Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V. 8.  et al. 2012. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–6 [Google Scholar]
  9. Casal JJ.9.  2012. Shade avoidance. Arabidopsis Book 10:e0157 [Google Scholar]
  10. Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M. 10.  2008. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–74 [Google Scholar]
  11. Cecchetti V, Celebrin D, Napoli N, Ghelli R, Brunetti P. 11.  et al. 2017. An auxin maximum in the middle layer controls stamen development and pollen maturation in Arabidopsis. New Phytol 213:1194–207 [Google Scholar]
  12. Chen L, Tong J, Xiao L, Ruan Y, Liu J. 12.  et al. 2016. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. J. Exp. Bot 67:4273–84 [Google Scholar]
  13. Chen Q, Dai X, De-Paoli H, Cheng Y, Takebayashi Y. 13.  et al. 2014. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol 55:1072–79Investigates the contribution of auxin transported from shoots to root growth. [Google Scholar]
  14. Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH. 14.  1998. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. PNAS 95:15112–17 [Google Scholar]
  15. Cheng Y, Dai X, Zhao Y. 15.  2006. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–99 [Google Scholar]
  16. Cheng Y, Dai X, Zhao Y. 16.  2007. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–39 [Google Scholar]
  17. Choi H, Oh E. 17.  2016. PIF4 integrates multiple environmental and hormonal signals for plant growth regulation in Arabidopsis. Mol. Cells 39:587–93 [Google Scholar]
  18. Chourey PS, Li QB, Kumar D. 18.  2010. Sugar-hormone cross-talk in seed development: two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize. Mol. Plant 3:1026–36 [Google Scholar]
  19. Collett CE, Harberd NP, Leyser O. 19.  2000. Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol 124:553–62 [Google Scholar]
  20. Covington MF, Harmer SL. 20.  2007. The circadian clock regulates auxin signaling and responses in Arabidopsis. PLOS Biol 5:e222 [Google Scholar]
  21. Dai X, Mashiguchi K, Chen Q, Kasahara H, Kamiya Y. 21.  et al. 2013. The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA flavin-containing monooxygenase. J. Biol. Chem. 288:1448–57 [Google Scholar]
  22. Delker C, Sonntag L, James GV, Janitza P, Ibanez C. 22.  et al. 2014. The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep 9:1983–89 [Google Scholar]
  23. Dimitrov P, Zucker SW. 23.  2006. A constant production hypothesis guides leaf venation patterning. PNAS 103:9363–68 [Google Scholar]
  24. Dubrovsky JG, Napsucialy-Mendivil S, Duclercq J, Cheng Y, Shishkova S. 24.  et al. 2011. Auxin minimum defines a developmental window for lateral root initiation. New Phytol 191:970–83 [Google Scholar]
  25. Eklund DM, Ishizaki K, Flores-Sandoval E, Kikuchi S, Takebayashi Y. 25.  et al. 2015. Auxin produced by the indole-3-pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. Plant Cell 27:1650–69 [Google Scholar]
  26. Eklund DM, Staldal V, Valsecchi I, Cierlik I, Eriksson C. 26.  et al. 2010. The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22:349–63 [Google Scholar]
  27. Figueiredo DD, Batista RA, Roszak PJ, Kohler C. 27.  2015. Auxin production couples endosperm development to fertilization. Nat. Plants 1:15184Fertilization induces local auxin biosynthesis that triggers the central cell division. [Google Scholar]
  28. Franklin KA.28.  2008. Shade avoidance. New Phytol 179:930–44 [Google Scholar]
  29. Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK. 29.  et al. 2011. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. PNAS 108:20231–35 [Google Scholar]
  30. Friml J.30.  2003. Auxin transport — shaping the plant. Curr. Opin. Plant Biol. 6:7–12 [Google Scholar]
  31. Friml J, Benková E, Blilou I, Wisniewska J, Hamann T. 31.  et al. 2002. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–73 [Google Scholar]
  32. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H. 32.  et al. 2003. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–53 [Google Scholar]
  33. Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D. 33.  et al. 2008. sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. PNAS 105:15196–201 [Google Scholar]
  34. Galweiler L, Guan C, Müller A, Wisman E, Mendgen K. 34.  et al. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–30 [Google Scholar]
  35. Gao Y, Dai X, Zheng Z, Kasahara H, Kamiya Y. 35.  et al. 2016. Overexpression of the bacterial tryptophan oxidase RebO affects auxin biosynthesis and Arabidopsis development. Sci. Bull. 61:859–67 [Google Scholar]
  36. Goyal A, Karayekov E, Galvao VC, Ren H, Casal JJ, Fankhauser C. 36.  2016. Shade promotes phototropism through phytochrome b-controlled auxin production. Curr. Biol. 26:3280–87 [Google Scholar]
  37. Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M. 37.  1998. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. PNAS 95:7197–202 [Google Scholar]
  38. Grieneisen VA, Xu J, Maree AF, Hogeweg P, Scheres B. 38.  2007. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–13 [Google Scholar]
  39. Habets ME, Offringa R. 39.  2014. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytol 203:362–77 [Google Scholar]
  40. Hagen G, Martin G, Li Y, Guilfoyle TJ. 40.  1991. Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol. Biol. 17:567–79 [Google Scholar]
  41. He W, Brumos J, Li H, Ji Y, Ke M. 41.  et al. 2011. A small-molecule screen identifies l-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–60 [Google Scholar]
  42. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV. 42.  et al. 2005. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15:1899–911 [Google Scholar]
  43. Hersch M, Lorrain S, de Wit M, Trevisan M, Ljung K. 43.  et al. 2014. Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis. PNAS 111:6515–20 [Google Scholar]
  44. Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K. 44.  et al. 2012. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71:699–711 [Google Scholar]
  45. Ishida JK, Wakatake T, Yoshida S, Takebayashi Y, Kasahara H. 45.  et al. 2016. Local auxin biosynthesis mediated by a YUCCA flavin monooxygenase regulates haustorium development in the parasitic plant Phtheirospermum japonicum. Plant Cell 28:1795–814Local auxin biosynthesis mediated by YUC is necessary and sufficient for the development of a haustorium. [Google Scholar]
  46. Johansson H, Jones HJ, Foreman J, Hemsted JR, Stewart K. 46.  et al. 2014. Arabidopsis cell expansion is controlled by a photothermal switch. Nat. Commun. 5:4848 [Google Scholar]
  47. Jonsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E. 47.  2006. An auxin-driven polarized transport model for phyllotaxis. PNAS 103:1633–38 [Google Scholar]
  48. Kakei Y, Nakamura A, Yamamoto M, Ishida Y, Yamazaki C. 48.  et al. 2017. Biochemical and chemical biology study of rice OsTAR1 revealed that tryptophan aminotransferase is involved in auxin biosynthesis; identification of a potent OsTAR1 inhibitor, pyruvamine2031. Plant Cell Physiol 58:598–606 [Google Scholar]
  49. Kasahara H.49.  2015. Current aspects of auxin biosynthesis in plants. Biosci. Biotechnol. Biochem. 80:34–42 [Google Scholar]
  50. Kohnen MV, Schmid-Siegert E, Trevisan M, Petrolati LA, Senechal F. 50.  et al. 2016. Neighbor detection induces organ-specific transcriptomes, revealing patterns underlying hypocotyl-specific growth. Plant Cell 28:2889–904 [Google Scholar]
  51. Korasick DA, Enders TA, Strader LC. 51.  2013. Auxin biosynthesis and storage forms. J. Exp. Bot. 64:2541–55 [Google Scholar]
  52. Kriechbaumer V, Park WJ, Gierl A, Glawischnig E. 52.  2006. Auxin biosynthesis in maize. Plant Biol 8:334–39 [Google Scholar]
  53. Lee HJ, Jung JH, Cortes Llorca L, Kim SG, Lee S. 53.  et al. 2014. FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat. Commun 5:5473 [Google Scholar]
  54. Legris M, Klose C, Burgie ES, Rojas CC, Neme M. 54.  et al. 2016. Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900 [Google Scholar]
  55. Leyser O.55.  2005. Auxin distribution and plant pattern formation: How many angels can dance on the point of PIN?. Cell 121:819–22 [Google Scholar]
  56. Li L, Li C, Lee GI, Howe GA. 56.  2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. PNAS 99:6416–21 [Google Scholar]
  57. Li L, Ljung K, Breton G, Schmitz RJ, Pruneda-Paz J. 57.  et al. 2012. Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785–90 [Google Scholar]
  58. Lincoln C, Britton JH, Estelle M. 58.  1990. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071–80 [Google Scholar]
  59. Liu G, Gao S, Tian H, Wu W, Robert HS, Ding Z. 59.  2016. Local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis. PLOS Genet 12:e1006360Demonstrates that local auxin biosynthesis by YUC flavin monooxygenases is important for plants to respond to aluminum stress. [Google Scholar]
  60. Liu H, Xie WF, Zhang L, Valpuesta V, Ye ZW. 60.  et al. 2014. Auxin biosynthesis by the YUCCA6 flavin monooxygenase gene in woodland strawberry. J. Integr. Plant Biol. 56:350–63 [Google Scholar]
  61. Liu H, Yang C, Li L. 61.  2016. Shade-induced stem elongation in rice seedlings: implication of tissue-specific phytohormone regulation. J. Integr. Plant Biol. 58:614–17 [Google Scholar]
  62. Liu H, Ying YY, Zhang L, Gao QH, Li J. 62.  et al. 2012. Isolation and characterization of two YUCCA flavin monooxygenase genes from cultivated strawberry (Fragaria × ananassa Duch.). Plant Cell Rep 31:1425–35 [Google Scholar]
  63. Lortzing T, Steppuhn A. 63.  2016. Jasmonate signalling in plants shapes plant-insect interaction ecology. Curr. Opin. Insect Sci. 14:32–39 [Google Scholar]
  64. Luschnig C, Gaxiola RA, Grisafi P, Fink GR. 64.  1998. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–87 [Google Scholar]
  65. Ma D, Li X, Guo Y, Chu J, Fang S. 65.  et al. 2016. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. PNAS 113:224–29Investigates how cryptochrome 1 affects local auxin biosynthesis through the PIF-YUC module. [Google Scholar]
  66. Machado RA, Robert CA, Arce CC, Ferrieri AP, Xu S. 66.  et al. 2016. Auxin is rapidly induced by herbivore attack and regulates a subset of systemic, jasmonate-dependent defenses. Plant Physiol 172:521–32Reveals that local auxin biosynthesis is induced by herbivore attack prior to the production of jasmonate, a defense hormone. [Google Scholar]
  67. Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H. 67.  et al. 2011. The main auxin biosynthesis pathway in Arabidopsis. PNAS 108:18512–17 [Google Scholar]
  68. Mellor N, Band LR, Pencik A, Novak O, Rashed A. 68.  et al. 2016. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. PNAS 113:11022–27 [Google Scholar]
  69. Michaud O, Fiorucci AS, Xenarios I, Fankhauser C. 69.  2017. Local auxin production underlies a spatially restricted neighbor-detection response in Arabidopsis. PNAS 114:7444–49Elegantly shows that local auxin production at leaf tip is necessary and sufficient for local leaf hyponasty. [Google Scholar]
  70. Mironova VV, Omelyanchuk NA, Yosiphon G, Fadeev SI, Kolchanov NA. 70.  et al. 2010. A plausible mechanism for auxin patterning along the developing root. BMC Syst. Biol. 4:98 [Google Scholar]
  71. Müller-Moulé P, Nozue K, Pytlak ML, Palmer CM, Covington MF. 71.  et al. 2016. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance. PeerJ 4:e2574 [Google Scholar]
  72. Nito K, Kajiyama T, Unten-Kobayashi J, Fujii A, Mochizuki N. 72.  et al. 2015. Spatial regulation of the gene expression response to shade in Arabidopsis seedlings. Plant Cell Physiol 56:1306–19 [Google Scholar]
  73. Nonhebel HM.73.  2015. Tryptophan-independent indole-3-acetic acid synthesis: critical evaluation of the evidence. Plant Physiol 169:1001–5 [Google Scholar]
  74. Normanly J, Cohen JD, Fink GR. 74.  1993. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. PNAS 90:10355–59 [Google Scholar]
  75. Pacheco-Villalobos D, Sankar M, Ljung K, Hardtke CS. 75.  2013. Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots. PLOS Genet 9:e1003564 [Google Scholar]
  76. Pantazopoulou CK, Bongers FJ, Kupers JJ, Reinen E, Das D. 76.  et al. 2017. Neighbor detection at the leaf tip adaptively regulates upward leaf movement through spatial auxin dynamics. PNAS 114:7450–55Shows that changes in local auxin biosynthesis triggered by spotted light treatments are responsible for local leaf movements. [Google Scholar]
  77. Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY. 77.  et al. 2009. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–68 [Google Scholar]
  78. Petrásek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M. 78.  et al. 2006. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–18 [Google Scholar]
  79. Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL. 79.  et al. 2011. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–66 [Google Scholar]
  80. Pinon V, Prasad K, Grigg SP, Sanchez-Perez GF, Scheres B. 80.  2013. Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. PNAS 110:1107–12 [Google Scholar]
  81. Porco S, Pěnčik A, Rashed A, Voß U, Casanova-Sáez R. 81.  et al. 2016. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. PNAS 113:11016–21 [Google Scholar]
  82. Press MO, Lanctot A, Queitsch C. 82.  2016. PIF4 and ELF3 act independently in Arabidopsis thaliana thermoresponsive flowering. PLOS ONE 11:e0161791 [Google Scholar]
  83. Proveniers MC, van Zanten M. 83.  2013. High temperature acclimation through PIF4 signaling. Trends Plant Sci 18:59–64 [Google Scholar]
  84. Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T. 84.  et al. 2009. Control of bud activation by an auxin transport switch. PNAS 106:17431–36 [Google Scholar]
  85. Qi J, Wang Y, Yu T, Cunha A, Wu B. 85.  et al. 2014. Auxin depletion from leaf primordia contributes to organ patterning. PNAS 111:18769–74 [Google Scholar]
  86. Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, van Zanten M. 86.  2016. Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2:15190 [Google Scholar]
  87. Raschke A, Ibañez C, Ullrich KK, Anwer MU, Becker S. 87.  et al. 2015. Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes. BMC Plant Biol 15:197 [Google Scholar]
  88. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T. 88.  et al. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–72 [Google Scholar]
  89. Sachs T.89.  2000. Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol 41:649–56 [Google Scholar]
  90. Sang YL, Cheng ZJ, Zhang XS. 90.  2016. Endogenous auxin biosynthesis and de novo root organogenesis. J. Exp. Bot. 67:4011–13 [Google Scholar]
  91. Scheres B, Xu J. 91.  2006. Polar auxin transport and patterning: grow with the flow. Genes Dev 20:922–26 [Google Scholar]
  92. Smith RS, Guyomarc'h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P. 92.  2006. A plausible model of phyllotaxis. PNAS 103:1301–6 [Google Scholar]
  93. Song J, Liu Q, Hu B, Wu W. 93.  2017. Photoreceptor PhyB involved in Arabidopsis temperature perception and heat-tolerance formation. Int. J. Mol. Sci. 18:1194 [Google Scholar]
  94. Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT. 94.  et al. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–27 [Google Scholar]
  95. Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY. 95.  et al. 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–91 [Google Scholar]
  96. Stepanova AN, Yun J, Robles LM, Novak O, He W. 96.  et al. 2011. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23:3961–73 [Google Scholar]
  97. Sun J, Qi L, Li Y, Chu J, Li C. 97.  2012. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLOS Genet 8:e1002594 [Google Scholar]
  98. Suzuki M, Yamazaki C, Mitsui M, Kakei Y, Mitani Y. 98.  et al. 2015. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. Plant Cell Rep 34:1343–52 [Google Scholar]
  99. Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F. 99.  et al. 2008. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–76 [Google Scholar]
  100. Teale WD, Paponov IA, Palme K. 100.  2006. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7:847–59 [Google Scholar]
  101. Tobeña-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol JN. 101.  et al. 2002. FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev 16:753–63 [Google Scholar]
  102. Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K. 102.  et al. 2014. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLOS Genet 10:e1004416 [Google Scholar]
  103. Verna C, Sawchuk MG, Linh NM, Scarpella E. 103.  2015. Control of vein network topology by auxin transport. BMC Biol 13:94 [Google Scholar]
  104. Wang B, Chu J, Yu T, Xu Q, Sun X. 104.  et al. 2015. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. PNAS 112:4821–26 [Google Scholar]
  105. Wang Y, Wang J, Shi B, Yu T, Qi J. 105.  et al. 2014. The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis. Plant Cell 26:2055–67 [Google Scholar]
  106. Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K. 106.  et al. 2006. Polar PIN localization directs auxin flow in plants. Science 312:883 [Google Scholar]
  107. Won C, Shen X, Mashiguchi K, Zheng Z, Dai X. 107.  et al. 2011. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. PNAS 108:18518–23 [Google Scholar]
  108. Woo YM, Park HJ, Su'udi M, Yang JI, Park JJ. 108.  et al. 2007. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol. Biol. 65:125–36 [Google Scholar]
  109. Wright AD, Sampson MB, Neuffer MG, Michalczuk L, Slovin JP, Cohen JD. 109.  1991. Indole-3-acetic acid biosynthesis in the mutant maize orange pericarp, a tryptophan auxotroph. Science 254:998–1000 [Google Scholar]
  110. Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M. 110.  2009. The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–79 [Google Scholar]
  111. Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T. 111.  2007. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–71 [Google Scholar]
  112. Yang ZB, Geng X, He C, Zhang F, Wang R. 112.  et al. 2014. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26:2889–904 [Google Scholar]
  113. Yang ZB, Liu G, Liu J, Zhang B, Meng W. 113.  et al. 2017. Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis. EMBO Rep 18:1213–30 [Google Scholar]
  114. Ye M, Song Y, Long J, Wang R, Baerson SR. 114.  et al. 2013. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. PNAS 110:E3631–39 [Google Scholar]
  115. Yoshikawa T, Ito M, Sumikura T, Nakayama A, Nishimura T. 115.  et al. 2014. The rice FISH BONE gene encodes a tryptophan aminotransferase, which affects pleiotropic auxin-related processes. Plant J 78:927–36 [Google Scholar]
  116. Zhang J, Lin JE, Harris C, Campos Mastrotti Pereira F, Wu F. 116.  et al. 2016. DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. PNAS 113:11010–15 [Google Scholar]
  117. Zhang J, Peer WA. 117.  2017. Auxin homeostasis: the DAO of catabolism. J. Exp. Bot. 68:3145–54 [Google Scholar]
  118. Zhao Y.118.  2008. The role of local biosynthesis of auxin and cytokinin in plant development. Curr. Opin. Plant Biol. 11:16–22 [Google Scholar]
  119. Zhao Y.119.  2012. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant 5:334–38 [Google Scholar]
  120. Zhao Y.120.  2014. Auxin biosynthesis. Arabidopsis Book 12:e0173 [Google Scholar]
  121. Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD. 121.  et al. 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–9 [Google Scholar]
  122. Zhao Z, Zhang Y, Liu X, Zhang X, Liu S. 122.  et al. 2013. A role for a dioxygenase in auxin metabolism and reproductive development in rice. Dev. Cell 27:113–22 [Google Scholar]
  123. Zheng Z, Guo Y, Novak O, Chen W, Ljung K. 123.  et al. 2016. Local auxin metabolism regulates environment-induced hypocotyl elongation. Nat. Plants 2:16025Shows that local removal of auxin by conjugation is important for establishing an auxin gradient during shade avoidance response. [Google Scholar]
  124. Zheng Z, Guo Y, Novak O, Dai X, Zhao Y. 124.  et al. 2013. Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat. Chem. Biol. 9:244–46 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040226
Loading
/content/journals/10.1146/annurev-arplant-042817-040226
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error