1932

Abstract

Plant architecture fundamentally differs from that of other multicellular organisms in that individual cells serve as osmotic bricks, defined by the equilibrium between the internal turgor pressure and the mechanical resistance of the surrounding cell wall, which constitutes the interface between plant cells and their environment. The state and integrity of the cell wall are constantly monitored by cell wall surveillance pathways, which relay information to the cell interior. A recent surge of discoveries has led to significant advances in both mechanistic and conceptual insights into a multitude of cell wall response pathways that play diverse roles in the development, defense, stress response, and maintenance of structural integrity of the cell. However, these advances have also revealed the complexity of cell wall sensing, and many more questions remain to be answered, for example, regarding the mechanisms of cell wall perception, the molecular players in this process, and how cell wall–related signals are transduced and integrated into cellular behavior. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future discoveries in this exciting area of plant biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102820-095312
2022-05-20
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-102820-095312.html?itemId=/content/journals/10.1146/annurev-arplant-102820-095312&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Anderson CT, Kieber JJ. 2020. Dynamic construction, perception, and remodeling of plant cell walls. Annu. Rev. Plant Biol. 71:39–69
    [Google Scholar]
  2. 2.
    Atmodjo MA, Hao Z, Mohnen D. 2013. Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 64:747–79
    [Google Scholar]
  3. 3.
    Ayers AR, Valent B, Ebel J, Albersheim P. 1976. Host-pathogen interactions: XI. Composition and structure of wall-released elicitor fractions. Plant Physiol 57:5766–74
    [Google Scholar]
  4. 4.
    Bacete L, Mélida H, Miedes E, Molina A. 2018. Plant cell wall-mediated immunity: Cell wall changes trigger disease resistance responses. Plant J 93:4614–36
    [Google Scholar]
  5. 5.
    Bacete L, Schulz J, Engelsdorf T, Bartosova Z, Vaahtera L et al. 2022. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. PNAS 119:1e2119258119
    [Google Scholar]
  6. 6.
    Barghahn S, Arnal G, Jain N, Petutschnig E, Brumer H, Lipka V. 2021. Mixed linkage β-1,3/1,4-glucan oligosaccharides induce defense responses in Hordeum vulgare and Arabidopsis thaliana. Front. Plant Sci. 12:682439
    [Google Scholar]
  7. 7.
    Bar-On YM, Phillips R, Milo R 2018. The biomass distribution on Earth. PNAS 115:256506–11
    [Google Scholar]
  8. 8.
    Baskin TI. 2005. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21:203–22
    [Google Scholar]
  9. 9.
    Basu D, Tian L, Debrosse T, Poirier E, Emch K et al. 2016. Glycosylation of a fasciclin-like arabinogalactan-protein (SOS5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (FEI1/FEI2) pathway in Arabidopsis. PLOS ONE 11:1e0145092
    [Google Scholar]
  10. 10.
    Bellincampi D, Cardarelli M, Zaghi D, Serino G, Salvi G et al. 1996. Oligogalacturonides prevent rhizogenesis in rolB-transformed tobacco explants by inhibiting auxin-induced expression of the rolB gene. Plant Cell 8:477–87
    [Google Scholar]
  11. 11.
    Benedetti M, Pontiggia D, Raggi S, Cheng Z, Scaloni F et al. 2015. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. PNAS 112:175533–38
    [Google Scholar]
  12. 12.
    Beňová-Kákošová A, Digonnet C, Goubet F, Ranocha P, Jauneau A et al. 2006. Galactoglucomannans increase cell population density and alter the protoxylem/metaxylem tracheary element ratio in xylogenic cultures of zinnia. Plant Physiol 142:2696–709
    [Google Scholar]
  13. 13.
    Berger F, Taylor A, Brownlee C 1994. Cell fate determination by the cell wall in early Fucus development. Science 263:51521421–23
    [Google Scholar]
  14. 14.
    Birnbaum KD, Roudier F. 2017. Epigenetic memory and cell fate reprogramming in plants. Regeneration 4:115–20
    [Google Scholar]
  15. 15.
    Bischoff V, Cookson SJ, Wu S, Scheible W-R. 2009. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. J. Exp. Bot. 60:3955–65
    [Google Scholar]
  16. 16.
    Boisson-Dernier A, Franck CM, Lituiev DS, Grossniklaus U. 2015. Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. PNAS 112:3912211–16
    [Google Scholar]
  17. 17.
    Boisson-Dernier A, Lituiev DS, Nestorova A, Franck CM, Thirugnanarajah S, Grossniklaus U 2013. ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLOS Biol 11:11e1001719
    [Google Scholar]
  18. 18.
    Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA et al. 2014. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509:7500376–80
    [Google Scholar]
  19. 19.
    Borassi C, Sede AR, Mecchia MA, Salgado Salter JD, Marzol E et al. 2016. An update on cell surface proteins containing extensin-motifs. J. Exp. Bot. 67:2477–87
    [Google Scholar]
  20. 20.
    Bosch M, Cheung AY, Hepler PK. 2005. Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:31334–46
    [Google Scholar]
  21. 21.
    Bosch M, Hepler PK. 2006. Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223:4736–45
    [Google Scholar]
  22. 22.
    Bou Daher F, Chen Y, Bozorg B, Clough J, Jönsson H, Braybrook SA. 2018. Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry. eLife 7:e38161
    [Google Scholar]
  23. 23.
    Branca C, Lorenzo GD, Cervone F. 1988. Competitive inhibition of the auxin-induced elongation by α-d-oligogalacturonides in pea stem segments. Physiol. Plant. 72:3499–504
    [Google Scholar]
  24. 24.
    Bringmann M, Li E, Sampathkumar A, Kocabek T, Hauser M-T, Persson S 2012. POM-POM2/CELLULOSE SYNTHASE INTERACTING1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell 24:1163–77
    [Google Scholar]
  25. 25.
    Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. 2010. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. PNAS 107:209452–57
    [Google Scholar]
  26. 26.
    Burton RA, Gibeaut DM, Bacic A, Findlay K, Roberts K et al. 2000. Virus-induced silencing of a plant cellulose synthase gene. Plant Cell 12:691–705
    [Google Scholar]
  27. 27.
    Cabrera JC, Boland A, Cambier P, Frettinger P, Van Cutsem P. 2010. Chitosan oligosaccharides modulate the supramolecular conformation and the biological activity of oligogalacturonides in Arabidopsis. Glycobiology 20:6775–86
    [Google Scholar]
  28. 28.
    Cannon MC, Terneus K, Hall Q, Tan L, Wang Y et al. 2008. Self-assembly of the plant cell wall requires an extensin scaffold. PNAS 105:62226–31
    [Google Scholar]
  29. 29.
    Cano-Delgado A, Penfield S, Smith C, Catley M, Bevan M 2003. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34:3351–62
    [Google Scholar]
  30. 30.
    Carpin S, Crèvecoeur M, de Meyer M, Simon P, Greppin H, Penel C 2001. Identification of a Ca2+-pectate binding site on an apoplastic peroxidase. Plant Cell 13:3511–20
    [Google Scholar]
  31. 31.
    Chaudhary A, Chen X, Gao J, Leśniewska B, Hammerl R et al. 2020. The Arabidopsis receptor kinase STRUBBELIG regulates the response to cellulose deficiency. PLOS Genet 16:1e1008433
    [Google Scholar]
  32. 32.
    Chaudhary A, Chen X, Leśniewska B, Boikine R, Gao J et al. 2021. Cell wall damage attenuates root hair patterning and tissue morphogenesis mediated by the receptor kinase STRUBBELIG. Development 148:14dev199425Unravels a link between cell wall integrity signaling and cell identity control through STRUBBELIG.
    [Google Scholar]
  33. 33.
    Chen L-H, Kračun SK, Nissen KS, Mravec J, Jørgensen B et al. 2021. A diverse member of the fungal Avr4 effector family interacts with de-esterified pectin in plant cell walls to disrupt their integrity. Sci. Adv. 7:19eabe0809
    [Google Scholar]
  34. 34.
    Chevalier D, Batoux M, Fulton L, Pfister K, Yadav RK et al. 2005. STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. PNAS 102:259074–79
    [Google Scholar]
  35. 35.
    Claverie J, Balacey S, Lemaître-Guillier C, Brulé D, Chiltz A et al. 2018. The cell wall-derived xyloglucan is a new DAMP triggering plant immunity in Vitis vinifera and Arabidopsis thaliana. Front. Plant Sci. 9:1725
    [Google Scholar]
  36. 36.
    Colin L, Chevallier A, Tsugawa S, Gacon F, Godin C et al. 2020. Cortical tension overrides geometrical cues to orient microtubules in confined protoplasts. PNAS 117:5132731–38
    [Google Scholar]
  37. 37.
    Cosgrove DJ. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6:11850–61
    [Google Scholar]
  38. 38.
    Cosgrove DJ. 2014. Re-constructing our models of cellulose and primary cell wall assembly. Curr. Opin. Plant Biol. 22:122–31
    [Google Scholar]
  39. 39.
    Cosgrove DJ. 2016. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J. Exp. Bot. 67:2463–76
    [Google Scholar]
  40. 40.
    Cosgrove DJ. 2018. Diffuse growth of plant cell walls. Plant Physiol 176:116–27
    [Google Scholar]
  41. 41.
    Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof Y-D et al. 2009. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21:41141–54
    [Google Scholar]
  42. 42.
    David V, Martin A, Lafage-Proust M-H, Malaval L, Peyroche S et al. 2007. Mechanical loading down-regulates peroxisome proliferator-activated receptor γ in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148:52553–62
    [Google Scholar]
  43. 43.
    Davidsson P, Broberg M, Kariola T, Sipari N, Pirhonen M, Palva ET 2017. Short oligogalacturonides induce pathogen resistance-associated gene expression in Arabidopsis thaliana. BMC Plant Biol 17:119
    [Google Scholar]
  44. 44.
    de Azevedo Souza C, Li S, Lin AZ, Boutrot F, Grossmann G et al. 2017. Cellulose-derived oligomers act as damage-associated molecular patterns and trigger defense-like responses. Plant Physiol 173:42383–98
    [Google Scholar]
  45. 45.
    DeBolt S, Gutierrez R, Ehrhardt DW, Somerville C. 2007. Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyl cells following 2,6-dichlorobenzonitrile treatment. Plant Physiol 145:2334–38
    [Google Scholar]
  46. 46.
    Decreux A, Messiaen J. 2005. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:2268–78
    [Google Scholar]
  47. 47.
    Decreux A, Thomas A, Spies B, Brasseur R, Cutsem P, Messiaen J 2006. In vitro characterization of the homogalacturonan-binding domain of the wall-associated kinase WAK1 using site-directed mutagenesis. Phytochemistry 67:111068–79
    [Google Scholar]
  48. 48.
    Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P et al. 2011. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156:31364–74
    [Google Scholar]
  49. 49.
    Desprez T, Vernhettes S, Fagard M, Refrégier G, Desnos T et al. 2002. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol 128:2482–90
    [Google Scholar]
  50. 50.
    Diener AC, Ausubel FM. 2005. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:1305–21
    [Google Scholar]
  51. 51.
    Domozych DS, Lambiasse L, Kiemle SN, Gretz MR. 2009. Cell-wall development and bipolar growth in the desmid Penium margaritaceum (Zygnematophyceae, Streptophyta). Asymmetry in a symmetric world. J. Phycol. 45:4879–93
    [Google Scholar]
  52. 52.
    Domozych DS, Serfis A, Kiemle SN, Gretz MR. 2007. The structure and biochemistry of charophycean cell walls: I. Pectins of Penium margaritaceum. Protoplasma 230:1–299–115
    [Google Scholar]
  53. 53.
    Domozych DS, Sørensen I, Popper ZA, Ochs J, Andreas A et al. 2014. Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol 165:1105–18
    [Google Scholar]
  54. 54.
    Du C, Li X, Chen J, Chen W, Li B et al. 2016. Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis. PNAS 113:51E8326–34
    [Google Scholar]
  55. 55.
    Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L et al. 2014. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat. Commun. 5:13129
    [Google Scholar]
  56. 56.
    Duan Q, Liu M-CJ, Kita D, Jordan SS, Yeh F-LJ et al. 2020. FERONIA controls pectin- and nitric oxide-mediated male–female interaction. Nature 579:7800561–66
    [Google Scholar]
  57. 57.
    Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J. 2019. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J 38:7e100353
    [Google Scholar]
  58. 58.
    Ellis C, Karafyllidis I, Wasternack C, Turner JG 2002. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:71557–66
    [Google Scholar]
  59. 59.
    Ellis C, Turner JG. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13:51025–33
    [Google Scholar]
  60. 60.
    Endler A, Kesten C, Schneider R, Zhang Y, Ivakov A et al. 2015. A mechanism for sustained cellulose synthesis during salt stress. Cell 162:61353–64
    [Google Scholar]
  61. 61.
    Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L et al. 2018. The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci. Signal. 11:536eaao3070Systematic analysis of cell wall integrity signaling candidates and their contribution to the cell wall stress response.
    [Google Scholar]
  62. 62.
    Engler AJ, Sen S, Sweeney HL, Discher DE. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:4677–89
    [Google Scholar]
  63. 63.
    Eyckmans J, Boudou T, Yu X, Chen CS 2011. A hitchhiker's guide to mechanobiology. Dev. Cell 21:135–47
    [Google Scholar]
  64. 64.
    Fan T-F, Park S, Shi Q, Zhang X, Liu Q et al. 2020. Transformation of hard pollen into soft matter. Nat. Commun. 11:11449
    [Google Scholar]
  65. 65.
    Faria-Blanc N, Mortimer JC, Dupree P. 2018. A transcriptomic analysis of xylan mutants does not support the existence of a secondary cell wall integrity system in Arabidopsis. Front. Plant Sci. 9:384
    [Google Scholar]
  66. 66.
    Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V et al. 2018. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr. Biol. 28:5666–75.e5Shows that FERONIA is required for cell wall integrity during salt stress, possibly involving pectin sensing.
    [Google Scholar]
  67. 67.
    Feng W, Lindner H, Robbins NE, Dinneny JR. 2016. Growing out of stress: the role of cell- and organ-scale growth control in plant water-stress responses. Plant Cell 28:81769–82
    [Google Scholar]
  68. 68.
    Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, De Lorenzo G. 2013. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 4:49
    [Google Scholar]
  69. 69.
    Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C. 1997. Induction of leaf primordia by the cell wall protein expansin. Science 276:53171415–18
    [Google Scholar]
  70. 70.
    Francis KE, Lam SY, Copenhaver GP. 2006. Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:31004–13
    [Google Scholar]
  71. 71.
    Franck CM, Westermann J, Bürssner S, Lentz R, Lituiev DS, Boisson-Dernier A. 2018. The protein phosphatases ATUNIS1 and ATUNIS2 regulate cell wall integrity in tip-growing cells. Plant Cell 30:81906–23
    [Google Scholar]
  72. 72.
    Francoz E, Ranocha P, Le Ru A, Martinez Y, Fourquaux I et al. 2019. Pectin demethylesterification generates platforms that anchor peroxidases to remodel plant cell wall domains. Dev. Cell 48:2261–276.e8
    [Google Scholar]
  73. 73.
    Fulton L, Batoux M, Vaddepalli P, Yadav RK, Busch W et al. 2009. DETORQUEO, QUIRKY, and ZERZAUST represent novel components involved in organ development mediated by the receptor-like kinase STRUBBELIG in Arabidopsis thaliana. PLOS Genet 5:1e1000355
    [Google Scholar]
  74. 74.
    Gallego-Giraldo L, Escamilla-Trevino L, Jackson LA, Dixon RA 2011. Salicylic acid mediates the reduced growth of lignin down-regulated plants. PNAS 108:5120814–19
    [Google Scholar]
  75. 75.
    Gallego-Giraldo L, Liu C, Pose-Albacete S, Pattathil S, Peralta AG et al. 2020. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1) releases latent defense signals in stems with reduced lignin content. PNAS 117:63281–90Demonstrates how sensing of lignin alterations generates signaling-active pectin fragments that modify development.
    [Google Scholar]
  76. 76.
    Gallego-Giraldo L, Posé S, Pattathil S, Peralta AG, Hahn MG et al. 2018. Elicitors and defense gene induction in plants with altered lignin compositions. New Phytol 219:41235–51
    [Google Scholar]
  77. 77.
    Ge Z, Bergonci T, Zhao Y, Zou Y, Du S et al. 2017. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science 358:63701596–600
    [Google Scholar]
  78. 78.
    Ge Z, Zhao Y, Liu M-C, Zhou L-Z, Wang L et al. 2019. LLG2/3 are co-receptors in BUPS/ANX-RALF signaling to regulate Arabidopsis pollen tube integrity. Curr. Biol. 29:193256–3265.e5
    [Google Scholar]
  79. 79.
    Geng Y, Wu R, Wee CW, Xie F, Wei X et al. 2013. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25:62132–54
    [Google Scholar]
  80. 80.
    Gigli-Bisceglia N, Engelsdorf T, Strnad M, Vaahtera L, Khan GA et al. 2018. Cell wall integrity modulates Arabidopsis thaliana cell cycle gene expression in a cytokinin- and nitrate reductase-dependent manner. Development 145:19dev166678
    [Google Scholar]
  81. 81.
    Gilbert HJ, Knox JP, Boraston AB 2013. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr. Opin. Struct. Biol. 23:5669–77
    [Google Scholar]
  82. 82.
    Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA et al. 2010. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:59951078–81
    [Google Scholar]
  83. 83.
    Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L et al. 2018. Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr. Biol. 28:152452–2458.e4
    [Google Scholar]
  84. 84.
    González-Pérez L, Perrotta L, Acosta A, Orellana E, Spadafora N et al. 2014. In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control. Mol. Biol. Rep. 41:106803–16
    [Google Scholar]
  85. 85.
    Goswami R, Asnacios A, Hamant O, Chabouté M-E. 2020. Is the plant nucleus a mechanical rheostat?. Curr. Opin. Plant Biol. 57:155–63
    [Google Scholar]
  86. 86.
    Goswami R, Asnacios A, Milani P, Graindorge S, Houlné G et al. 2020. Mechanical shielding in plant nuclei. Curr. Biol. 30:112013–25.e3
    [Google Scholar]
  87. 87.
    Gouget A, Senchou V, Govers F, Sanson A, Barre A et al. 2006. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis. Plant Physiol 140:181–90
    [Google Scholar]
  88. 88.
    Grantham NJ, Wurman-Rodrich J, Terrett OM, Lyczakowski JJ, Stott K et al. 2017. An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat. Plants 3:11859–65
    [Google Scholar]
  89. 89.
    Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A et al. 2010. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. PNAS 107:2912866–71
    [Google Scholar]
  90. 90.
    Gutierrez R, Lindeboom JJ, Paredez AR, Emons AMC, Ehrhardt DW. 2009. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11:7797–806
    [Google Scholar]
  91. 91.
    Haas KT, Wightman R, Meyerowitz EM, Peaucelle A. 2020. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 367:64811003–7Indicates that the state of methylesterification governs pectin phase separation and growth directionality.
    [Google Scholar]
  92. 92.
    Haas KT, Wightman R, Peaucelle A, Höfte H 2021. The role of pectin phase separation in plant cell wall assembly and growth. Cell Surf 7:100054
    [Google Scholar]
  93. 93.
    Hahn MG, Darvill AG, Albersheim P. 1981. Host-pathogen interactions 1: XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol 68:51161–69
    [Google Scholar]
  94. 94.
    Hamann T, Bennett M, Mansfield J, Somerville C. 2009. Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses. Plant J 57:61015–26
    [Google Scholar]
  95. 95.
    Hamant O. 2013. Widespread mechanosensing controls the structure behind the architecture in plants. Curr. Opin. Plant Biol. 16:5654–60
    [Google Scholar]
  96. 96.
    Hamant O, Haswell ES. 2017. Life behind the wall: sensing mechanical cues in plants. BMC Biol 15:159
    [Google Scholar]
  97. 97.
    Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M et al. 2008. Developmental patterning by mechanical signals in Arabidopsis. Science 322:59081650–55
    [Google Scholar]
  98. 98.
    Hamilton ES, Jensen GS, Maksaev G, Katims A, Sherp AM, Haswell ES. 2015. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350:6259438–41
    [Google Scholar]
  99. 99.
    Harpaz-Saad S, McFarlane HE, Xu S, Divi UK, Forward B et al. 2011. Cellulose synthesis via the FEI2 RLK/SOS5 pathway and CELLULOSE SYNTHASE 5 is required for the structure of seed coat mucilage in Arabidopsis. Plant J 68:6941–53
    [Google Scholar]
  100. 100.
    Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. 2014. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:6169408–11
    [Google Scholar]
  101. 101.
    Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse J-M. 2008. Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr. Biol. 18:10730–34
    [Google Scholar]
  102. 102.
    He Z-H, Fujiki M, Kohorn BD. 1996. A cell wall-associated, receptor-like protein kinase. J. Biol. Chem. 271:3319789–93
    [Google Scholar]
  103. 103.
    Heisenberg C-P, Bellaïche Y. 2013. Forces in tissue morphogenesis and patterning. Cell 153:5948–62
    [Google Scholar]
  104. 104.
    Hématy K, Sado P-E, Van Tuinen A, Rochange S, Desnos T et al. 2007. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr. Biol. 17:11922–31First identification of a receptor kinase involved in cell wall signaling.
    [Google Scholar]
  105. 105.
    His I, Driouich A, Nicol F, Jauneau A, Höfte H 2001. Altered pectin composition in primary cell walls of korrigan, a dwarf mutant of Arabidopsis deficient in a membrane-bound endo-1,4-β-glucanase. Planta 212:3348–58
    [Google Scholar]
  106. 106.
    Hoffmann N, King S, Samuels AL, McFarlane HE. 2021. Subcellular coordination of plant cell wall synthesis. Dev. Cell 56:7933–48
    [Google Scholar]
  107. 107.
    Höfte H, Voxeur A. 2017. Plant cell walls. Curr. Biol. 27:17R865–70
    [Google Scholar]
  108. 108.
    Hohmann U, Lau K, Hothorn M. 2017. The structural basis of ligand perception and signal activation by receptor kinases. Annu. Rev. Plant Biol. 68:109–37
    [Google Scholar]
  109. 109.
    Holst J, Watson S, Lord MS, Eamegdool SS, Bax DV et al. 2010. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat. Biotechnol. 28:101123–28
    [Google Scholar]
  110. 110.
    Holzwart E, Huerta AI, Glöckner N, Garnelo Gómez B, Wanke F et al. 2018. BRI1 controls vascular cell fate in the Arabidopsis root through RLP44 and phytosulfokine signaling. PNAS 115:4611838–43
    [Google Scholar]
  111. 111.
    Holzwart E, Wanke F, Glöckner N, Höfte H, Harter K, Wolf S. 2020. A mutant allele uncouples the brassinosteroid-dependent and independent functions of BRASSINOSTEROID INSENSITIVE 1. Plant Physiol 182:1669–78
    [Google Scholar]
  112. 112.
    Huck N, Moore JM, Federer M, Grossniklaus U. 2003. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:102149–59
    [Google Scholar]
  113. 113.
    Hynes RO. 2009. The extracellular matrix: not just pretty fibrils. Science 326:59571216–19
    [Google Scholar]
  114. 114.
    Jendretzki A, Wittland J, Wilk S, Straede A, Heinisch JJ 2011. How do I begin? Sensing extracellular stress to maintain yeast cell wall integrity. Eur. J. Cell Biol. 90:9740–44
    [Google Scholar]
  115. 115.
    Jiang L, Yang S-L, Xie L-F, Puah CS, Zhang X-Q et al. 2005. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:2584–96
    [Google Scholar]
  116. 116.
    Jiao C, Sørensen I, Sun X, Sun H, Behar H et al. 2020. The Penium margaritaceum genome: hallmarks of the origins of land plants. Cell 181:51097–111.e12
    [Google Scholar]
  117. 117.
    Jiménez-Gutiérrez E, Alegría-Carrasco E, Sellers-Moya Á, Molina M, Martín H 2020. Not just the wall: the other ways to turn the yeast CWI pathway on. Int. Microbiol. 23:1107–19
    [Google Scholar]
  118. 118.
    Johnson JM, Thürich J, Petutschnig EK, Altschmied L, Meichsner D et al. 2018. A poly(A) ribonuclease controls the cellotriose-based interaction between Piriformospora indica and its host Arabidopsis. Plant Physiol 176:32496–514
    [Google Scholar]
  119. 119.
    Jonsson K, Lathe RS, Kierzkowski D, Routier-Kierzkowska A-L, Hamant O, Bhalerao RP 2021. Mechanochemical feedback mediates tissue bending required for seedling emergence. Curr. Biol. 31:61154–64.e3
    [Google Scholar]
  120. 120.
    Kessler SA, Lindner H, Jones DS, Grossniklaus U. 2015. Functional analysis of related CrRLK1L receptor-like kinases in pollen tube reception. EMBO Rep 16:1107–15
    [Google Scholar]
  121. 121.
    Kim S-J, Brandizzi F. 2014. The plant secretory pathway: an essential factory for building the plant cell wall. Plant Cell Physiol 55:4687–93
    [Google Scholar]
  122. 122.
    Kohorn BD. 2015. The state of cell wall pectin monitored by wall associated kinases: a model. Plant Signal. Behav. 10:7e1035854
    [Google Scholar]
  123. 123.
    Kohorn BD, Johansen S, Shishido A, Todorova T, Martinez R et al. 2009. Pectin activation of MAP kinase and gene expression is WAK2 dependent. Plant J 60:6974–82
    [Google Scholar]
  124. 124.
    Kohorn BD, Kobayashi M, Johansen S, Riese J, Huang L-F et al. 2006. An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J 46:2307–16
    [Google Scholar]
  125. 125.
    Kohorn BD, Kohorn SL. 2012. The cell wall-associated kinases, WAKs, as pectin receptors. Front. Plant Sci. 3:88
    [Google Scholar]
  126. 126.
    Kohorn BD, Kohorn SL, Saba NJ, Martinez VM 2014. Requirement for pectin methyl esterase and preference for fragmented over native pectins for wall-associated kinase-activated, EDS1/PAD4-dependent stress response in Arabidopsis. J. Biol. Chem. 289:2718978–86
    [Google Scholar]
  127. 127.
    Kohorn BD, Kohorn SL, Todorova T, Baptiste G, Stansky K, McCullough M. 2012. A dominant allele of Arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by MPK6 but not MPK3 mutations. Mol. Plant. 5:4841–51
    [Google Scholar]
  128. 128.
    Kwak S-H, Shen R, Schiefelbein J. 2005. Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science 307:57121111–13
    [Google Scholar]
  129. 129.
    Lally D, Ingmire P, Tong HY, He ZH. 2001. Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology. Plant Cell 13:61317–31
    [Google Scholar]
  130. 130.
    Landrein B, Kiss A, Sassi M, Chauvet A, Das P et al. 2015. Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. eLife 4:e07811
    [Google Scholar]
  131. 131.
    Lecuit T, Yap AS. 2015. E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat. Cell Biol. 17:5533–39
    [Google Scholar]
  132. 132.
    Levin DE. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:41145–75
    [Google Scholar]
  133. 133.
    Li C, Yeh F-L, Cheung AY, Duan Q, Kita D et al. 2015. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 4:e06587
    [Google Scholar]
  134. 134.
    Lin L, Zhong S-H, Cui X-F, Li J, He Z-H 2012. Characterization of temperature-sensitive mutants reveals a role for receptor-like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development. Plant J 72:5707–20
    [Google Scholar]
  135. 135.
    Lin W, Tang W, Pan X, Huang A, Gao X et al. 2021. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr. Biol. In press. https://doi.org/10.1016/j.cub.2021.11.030 Links cell wall binding by FER to intracellular signaling outputs and development.
    [Crossref] [Google Scholar]
  136. 136.
    Locci F, Benedetti M, Pontiggia D, Citterico M, Caprari C et al. 2019. An Arabidopsis berberine bridge enzyme-like protein specifically oxidizes cellulose oligomers and plays a role in immunity. Plant J 98:3540–54
    [Google Scholar]
  137. 137.
    Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav S-R et al. 2013. The plant vascular system: evolution, development and functions. J. Integr. Plant Biol. 55:4294–388
    [Google Scholar]
  138. 138.
    Man Ha C, Fine D, Bhatia A, Rao X, Martin MZ et al. 2019. Ectopic defense gene expression is associated with growth defects in Medicago truncatula lignin pathway mutants. Plant Physiol 181:163–84
    [Google Scholar]
  139. 139.
    Manfield IW, Orfila C, McCartney L, Harholt J, Bernal AJ et al. 2004. Novel cell wall architecture of isoxaben-habituated Arabidopsis suspension-cultured cells: global transcript profiling and cellular analysis. Plant J 40:2260–75
    [Google Scholar]
  140. 140.
    Martiniére A, Lavagi I, Nageswaran G, Rolfe DJ, Maneta-Peyret L et al. 2012. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. PNAS 109:3112805–10
    [Google Scholar]
  141. 141.
    Masachis S, Segorbe D, Turrà D, Leon-Ruiz M, Fürst U et al. 2016. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat Microbiol 1:616043
    [Google Scholar]
  142. 142.
    McDougall GJ, Fry SC. 1989. Structure-activity relationships for xyloglucan oligosaccharides with antiauxin activity. Plant Physiol 89:3883–87
    [Google Scholar]
  143. 143.
    McDougall GJ, Fry SC. 1990. Xyloglucan oligosaccharides promote growth and activate cellulase: evidence for a role of cellulase in cell expansion. Plant Physiol 93:31042–48
    [Google Scholar]
  144. 144.
    McFarlane HE, Döring A, Persson S. 2014. The cell biology of cellulose synthesis. Annu. Rev. Plant Biol. 65:69–94
    [Google Scholar]
  145. 145.
    McKenna JF, Rolfe DJ, Webb SED, Tolmie AF, Botchway SW et al. 2019. The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. PNAS 116:2612857–62
    [Google Scholar]
  146. 146.
    Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A et al. 2017. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358:63701600–3
    [Google Scholar]
  147. 147.
    Mélida H, Sopeña-Torres S, Bacete L, Garrido-Arandia M, Jordá L et al. 2018. Non-branched β-1,3-glucan oligosaccharides trigger immune responses in Arabidopsis. Plant J 93:134–49
    [Google Scholar]
  148. 148.
    Merz D, Richter J, Gonneau M, Sanchez-Rodriguez C, Eder T et al. 2017. T-DNA alleles of the receptor kinase THESEUS1 with opposing effects on cell wall integrity signaling. J. Exp. Bot. 68:164583–93
    [Google Scholar]
  149. 149.
    Mielke S, Zimmer M, Meena MK, Dreos R, Stellmach H et al. 2021. Jasmonate biosynthesis arising from altered cell walls is prompted by turgor-driven mechanical compression. Sci. Adv. 7:7eabf0356
    [Google Scholar]
  150. 150.
    Mirabet V, Das P, Boudaoud A, Hamant O. 2011. The role of mechanical forces in plant morphogenesis. Annu. Rev. Plant Biol. 62:365–85
    [Google Scholar]
  151. 151.
    Molina A, Miedes E, Bacete L, Rodríguez T, Mélida H et al. 2021. Arabidopsis cell wall composition determines disease resistance specificity and fitness. PNAS 118:5e2010243118Identifies wall features correlated with disease resistance and unravels the complexity of cell wall DAMPs.
    [Google Scholar]
  152. 152.
    Moscatiello R. 2006. Transcriptional analysis of calcium-dependent and calcium-independent signalling pathways induced by oligogalacturonides. J. Exp. Bot. 57:112847–65
    [Google Scholar]
  153. 153.
    Moussu S, Augustin S, Roman A-O, Broyart C, Santiago J 2018. Crystal structures of two tandem malectin-like receptor kinases involved in plant reproduction. Acta Crystallogr. D Struct. Biol. 74:7671–80
    [Google Scholar]
  154. 154.
    Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H et al. 2007. Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. PNAS 104:93639–44
    [Google Scholar]
  155. 155.
    Nothnagel EA, McNeil M, Albersheim P, Dell A. 1983. Host-pathogen interactions: XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol 71:4916–26
    [Google Scholar]
  156. 156.
    Osorio S, Castillejo C, Quesada MA, Medina-Escobar N, Brownsey GJ et al. 2007. Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry (Fragaria vesca). Plant J 54:143–55
    [Google Scholar]
  157. 157.
    Palacio-Lopez K, Sun L, Reed R, Kang E, Sørensen I et al. 2020. Experimental manipulation of pectin architecture in the cell wall of the unicellular charophyte, Penium margaritaceum. Front. Plant Sci. 11:1032
    [Google Scholar]
  158. 158.
    Paredez AR, Somerville CR, Ehrhardt DW. 2006. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:57791491–95
    [Google Scholar]
  159. 159.
    Park YB, Cosgrove DJ. 2012. A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant Physiol 158:41933–43
    [Google Scholar]
  160. 160.
    Park YB, Cosgrove DJ. 2012. Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis. Plant Physiol 158:1465–75
    [Google Scholar]
  161. 161.
    Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H 2011. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21:201720–26
    [Google Scholar]
  162. 162.
    Peaucelle A, Louvet R, Johansen JN, Höfte H, Laufs P et al. 2008. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr. Biol. 18:241943–48
    [Google Scholar]
  163. 163.
    Peaucelle A, Wightman R, Höfte H. 2015. The control of growth symmetry breaking in the Arabidopsis hypocotyl. Curr. Biol. 25:131746–52
    [Google Scholar]
  164. 164.
    Pelletier S, Van Orden J, Wolf S, Vissenberg K, Delacourt J et al. 2010. A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol 188:3726–39
    [Google Scholar]
  165. 165.
    Pfrengle F. 2017. Synthetic plant glycans. Curr. Opin. Chem. Biol. 40:145–51
    [Google Scholar]
  166. 166.
    Qi J, Wu B, Feng S, S, Guan C et al. 2017. Mechanical regulation of organ asymmetry in leaves. Nat. Plants 3:9724–33
    [Google Scholar]
  167. 167.
    Qu S, Zhang X, Song Y, Lin J, Shan X. 2017. THESEUS1 positively modulates plant defense responses against Botrytis cinerea through GUANINE EXCHANGE FACTOR4 signaling. J. Integr. Plant Biol. 59:11797–804
    [Google Scholar]
  168. 168.
    Qu T, Liu R, Wang W, An L, Chen T et al. 2011. Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress. Cryobiology 63:2111–17
    [Google Scholar]
  169. 169.
    Radja A, Horsley EM, Lavrentovich MO, Sweeney AM. 2019. Pollen cell wall patterns form from modulated phases. Cell 176:4856–68.e10
    [Google Scholar]
  170. 170.
    Refrégier G, Pelletier S, Jaillard D, Höfte H 2004. Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells in Arabidopsis. Plant Physiol 135:2959–68
    [Google Scholar]
  171. 171.
    Rensing SA. 2020. How plants conquered land. Cell 181:5964–66
    [Google Scholar]
  172. 172.
    Richter J, Ploderer M, Mongelard G, Gutierrez L, Hauser M-T. 2017. Role of CrRLK1L cell wall sensors HERCULES1 and 2, THESEUS1, and FERONIA in growth adaptation triggered by heavy metals and trace elements. Front. Plant Sci. 8:1554
    [Google Scholar]
  173. 173.
    Richterová-Kučerová D, Kollárová K, Zelko I, Vatehová Z, Lišková D. 2012. How do galactoglucomannan oligosaccharides regulate cell growth in epidermal and cortical tissues of mung bean seedlings?. Plant Physiol. Biochem. 57:154–58
    [Google Scholar]
  174. 174.
    Röckel N, Wolf S, Kost B, Rausch T, Greiner S. 2008. Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. Plant J 53:1133–43
    [Google Scholar]
  175. 175.
    Rose JKC, Lee S-J. 2010. Straying off the highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome. Plant Physiol 153:2433–36
    [Google Scholar]
  176. 176.
    Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure J-E. 2003. Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr. Biol. 13:5432–36
    [Google Scholar]
  177. 177.
    Rui Y, Xiao C, Yi H, Kandemir B, Wang JZ et al. 2017. POLYGALACTURONASE INVOLVED IN EXPANSION3 functions in seedling development, rosette growth, and stomatal dynamics in Arabidopsis thaliana. Plant Cell 29:102413–32
    [Google Scholar]
  178. 178.
    Saha K, Keung AJ, Irwin EF, Li Y, Little L et al. 2008. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:94426–38
    [Google Scholar]
  179. 179.
    Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A et al. 2014. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 3:e01967
    [Google Scholar]
  180. 180.
    San Clemente H, Jamet E 2015. WallProtDB, a database resource for plant cell wall proteomics. Plant Methods 11:12
    [Google Scholar]
  181. 181.
    Sánchez-Rodríguez C, Ketelaar K, Schneider R, Villalobos JA, Somerville CR et al. 2017. BRASSINO-STEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1. PNAS 114:133533–38
    [Google Scholar]
  182. 182.
    Schallus T, Fehér K, Sternberg U, Rybin V, Muhle-Goll C. 2010. Analysis of the specific interactions between the lectin domain of malectin and diglucosides. Glycobiology 20:81010–20
    [Google Scholar]
  183. 183.
    Schallus T, Jaeckh C, Fehér K, Palma AS, Liu Y et al. 2008. Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. MBoC 19:83404–14
    [Google Scholar]
  184. 184.
    Scheible W-R, Eshed R, Richmond T, Delmer D, Somerville C 2001. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. PNAS 98:1810079–84
    [Google Scholar]
  185. 185.
    Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annu. Rev. Plant Biol. 61:263–89
    [Google Scholar]
  186. 186.
    Schiller HB, Fässler R. 2013. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep 14:6509–19
    [Google Scholar]
  187. 187.
    Seguela-Arnaud M, Smith C, Uribe MC, May S, Fischl H et al. 2015. The Mediator complex subunits MED25/PFT1 and MED8 are required for transcriptional responses to changes in cell wall arabinose composition and glucose treatment in Arabidopsis thaliana. BMC Plant Biol 15:1215
    [Google Scholar]
  188. 188.
    Sénéchal F, Wattier C, Rustérucci C, Pelloux J 2014. Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J. Exp. Bot. 65:185125–60
    [Google Scholar]
  189. 189.
    Shah K, Penel C, Gagnon J, Dunand C. 2004. Purification and identification of a Ca2+-pectate binding peroxidase from Arabidopsis leaves. Phytochemistry 65:3307–12
    [Google Scholar]
  190. 190.
    Shedletzky E, Shmuel M, Delmer DP, Lamport DTA 1990. Adaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network. Plant Physiol 94:3980–87
    [Google Scholar]
  191. 191.
    Shi M, Zhu J, Wang R, Chen X, Mi L et al. 2011. Latent TGF-β structure and activation. Nature 474:7351343–49
    [Google Scholar]
  192. 192.
    Shih H-W, Miller ND, Dai C, Spalding EP, Monshausen GB. 2014. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr. Biol. 24:161887–92
    [Google Scholar]
  193. 193.
    Showalter AM, Basu D. 2016. Extensin and arabinogalactan-protein biosynthesis: glycosyltransferases, research challenges, and biosensors. Front. Plant Sci. 7:814
    [Google Scholar]
  194. 194.
    Simmons TJ, Mortimer JC, Bernardinelli OD, Pöppler A-C, Brown SP et al. 2016. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat. Commun 7:113902
    [Google Scholar]
  195. 195.
    Simpson SD, Ashford DA, Harvey DJ, Bowles DJ 1998. Short chain oligogalacturonides induce ethylene production and expression of the gene encoding aminocyclopropane 1-carboxylic acid oxidase in tomato plants. Glycobiology 8:6579–83
    [Google Scholar]
  196. 196.
    Sinclair SA, Larue C, Bonk L, Khan A, Castillo-Michel H et al. 2017. Etiolated seedling development requires repression of photomorphogenesis by a small cell-wall-derived dark signal. Curr. Biol. 27:223403–18.e7
    [Google Scholar]
  197. 197.
    Slavov A, Garnier C, Crépeau M-J, Durand S, Thibault J-F, Bonnin E. 2009. Gelation of high methoxy pectin in the presence of pectin methylesterases and calcium. Carbohydr. Polym. 77:4876–84
    [Google Scholar]
  198. 198.
    Song JH, Kwak S-H, Nam KH, Schiefelbein J, Lee MM 2019. QUIRKY regulates root epidermal cell patterning through stabilizing SCRAMBLED to control CAPRICE movement in Arabidopsis. Nat. Commun. 10:11744
    [Google Scholar]
  199. 199.
    Spadoni S, Zabotina O, Di Matteo A, Mikkelsen JD, Cervone F et al. 2006. Polygalacturonase-inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine. Plant Physiol 141:2557–64
    [Google Scholar]
  200. 200.
    Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A et al. 2017. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355:6322287–89
    [Google Scholar]
  201. 201.
    Sun Y, Fan X-Y, Cao D-M, Tang W, He K et al. 2010. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell 19:5765–77
    [Google Scholar]
  202. 202.
    Tan L, Eberhard S, Pattathil S, Warder C, Glushka J et al. 2013. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:1270–87
    [Google Scholar]
  203. 203.
    Tang W, Lin W, Zhou X, Guo J, Dang X et al. 2021. Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr. Biol. In press. https://doi.org/10.1016/j.cub.2021.11.031
    [Crossref] [Google Scholar]
  204. 204.
    Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW et al. 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:7536571–75
    [Google Scholar]
  205. 205.
    Trappmann B, Gautrot JE, Connelly JT, Strange DGT, Li Y et al. 2012. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11:7642–49
    [Google Scholar]
  206. 206.
    Tsang DL, Edmond C, Harrington JL, Nühse TS. 2011. Cell wall integrity controls root elongation via a general 1-aminocyclopropane-1-carboxylic acid-dependent, ethylene-independent pathway. Plant Physiol 156:2596–604
    [Google Scholar]
  207. 207.
    Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykręt D et al. 2012. Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:2439–51
    [Google Scholar]
  208. 208.
    van de Meene AML, Doblin MS, Bacic A. 2017. The plant secretory pathway seen through the lens of the cell wall. Protoplasma 254:175–94
    [Google Scholar]
  209. 209.
    Van der Does D, Boutrot F, Engelsdorf T, Rhodes J, McKenna JF et al. 2017. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLOS Genet 13:6e1006832
    [Google Scholar]
  210. 210.
    van Helvert S, Storm C, Friedl P 2018. Mechanoreciprocity in cell migration. Nat. Cell Biol. 20:18–20
    [Google Scholar]
  211. 211.
    Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD et al. 2011. O-glycosylated cell wall proteins are essential in root hair growth. Science 332:60361401–3
    [Google Scholar]
  212. 212.
    Verhertbruggen Y, Marcus SE, Chen J, Knox JP 2013. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress. Plant Cell Physiol 54:81278–88
    [Google Scholar]
  213. 213.
    Vincent RR, Williams MAK. 2009. Microrheological investigations give insights into the microstructure and functionality of pectin gels. Carbohydr. Res. 344:141863–71
    [Google Scholar]
  214. 214.
    Voxeur A, Habrylo O, Guénin S, Miart F, Soulié M-C et al. 2019. Oligogalacturonide production upon Arabidopsis thalianaBotrytis cinerea interaction. PNAS 116:3919743–52Improvement of cell wall analytics fosters biological insight into pathogen manipulation of DAMPs.
    [Google Scholar]
  215. 215.
    Wagner TA, Kohorn BD. 2001. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13:2303–18
    [Google Scholar]
  216. 216.
    Wakabayashi K, Hoson T, Huber DJ. 2003. Methyl de-esterification as a major factor regulating the extent of pectin depolymerization during fruit ripening: a comparison of the action of avocado (Persea americana) and tomato (Lycopersicon esculentum) polygalacturonases. J. Plant Physiol. 160:6667–73
    [Google Scholar]
  217. 217.
    Wang T, Park YB, Cosgrove DJ, Hong M. 2015. Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol 168:3871–84
    [Google Scholar]
  218. 218.
    Wang T, Zabotina O, Hong M 2012. Pectin–cellulose interactions in the Arabidopsis primary cell wall from two-dimensional magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51:499846–56
    [Google Scholar]
  219. 219.
    Wang X, Wilson L, Cosgrove DJ 2020. Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. J. Exp. Bot. 71:92629–40
    [Google Scholar]
  220. 220.
    Wanke A, Rovenich H, Schwanke F, Velte S, Becker S et al. 2020. Plant species-specific recognition of long and short β-1,3-linked glucans is mediated by different receptor systems. Plant J 102:61142–56
    [Google Scholar]
  221. 221.
    Watanabe Y, Meents MJ, McDonnell LM, Barkwill S, Sampathkumar A et al. 2015. Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science 350:6257198–203
    [Google Scholar]
  222. 222.
    Watt FM, Huck WTS. 2013. Role of the extracellular matrix in regulating stem cell fate. Nat. Rev. Mol. Cell Biol. 14:8467–73
    [Google Scholar]
  223. 223.
    Wolf S, Hématy K, Höfte H. 2012. Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 63:381–407
    [Google Scholar]
  224. 224.
    Wolf S, Mravec J, Greiner S, Mouille G, Höfte H. 2012. Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr. Biol. 22:181732–37
    [Google Scholar]
  225. 225.
    Wolf S, van der Does D, Ladwig F, Sticht C, Kolbeck A et al. 2014. A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling. PNAS 111:4215261–66
    [Google Scholar]
  226. 226.
    Woriedh M, Wolf S, Márton ML, Hinze A, Gahrtz M et al. 2013. External application of gametophyte-specific ZmPMEI1 induces pollen tube burst in maize. Plant Reprod 26:3255–66
    [Google Scholar]
  227. 227.
    Wormit A, Butt SM, Chairam I, McKenna JF, Nunes-Nesi A et al. 2012. Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition. Plant Physiol 159:1105–17
    [Google Scholar]
  228. 228.
    Xiao C, Barnes WJ, Zamil MS, Yi H, Puri VM, Anderson CT 2017. Activation tagging of Arabidopsis POLYGALACTURONASE INVOLVED IN EXPANSION2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. Plant J 89:61159–73
    [Google Scholar]
  229. 229.
    Xiao C, Zhang T, Zheng Y, Cosgrove DJ, Anderson CT. 2016. Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis, altering cell growth and morphogenesis. Plant Physiol 170:1234–49
    [Google Scholar]
  230. 230.
    Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K et al. 2019. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature 572:7768270–74
    [Google Scholar]
  231. 231.
    Xie L, Yang C, Wang X 2011. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. J. Exp. Bot. 62:134495–506
    [Google Scholar]
  232. 232.
    Xu S-L, Rahman A, Baskin TI, Kieber JJ. 2008. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20:113065–79
    [Google Scholar]
  233. 233.
    Yang C, Liu R, Pang J, Ren B, Zhou H et al. 2021. Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice. Nat. Commun. 12:12178
    [Google Scholar]
  234. 234.
    Yeats TH, Sorek H, Wemmer DE, Somerville CR. 2016. Cellulose deficiency is enhanced on hyper accumulation of sucrose by a H+-coupled sucrose symporter. Plant Physiol 171:1110–24
    [Google Scholar]
  235. 235.
    Yoneda A, Ito T, Higaki T, Kutsuna N, Saito T et al. 2010. Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules. Plant J 64:4657–67
    [Google Scholar]
  236. 236.
    Yoo S-H, Fishman ML, Savary BJ, Hotchkiss AT. 2003. Monovalent salt-induced gelation of enzymatically deesterified pectin. J. Agric. Food Chem. 51:257410–17
    [Google Scholar]
  237. 237.
    Yu X, Li L, Zola J, Aluru M, Ye H et al. 2011. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:4634–46
    [Google Scholar]
  238. 238.
    Zhao C, Zayed O, Yu Z, Jiang W, Zhu P et al. 2018. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. PNAS 115:5113123–28
    [Google Scholar]
  239. 239.
    Zhao C, Zayed O, Zeng F, Liu C, Zhang L et al. 2019. Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis. New Phytol 224:1274–90
    [Google Scholar]
  240. 240.
    Zhao Y, Song D, Sun J, Li L 2013. Populus endo-beta-mannanase PtrMAN6 plays a role in coordinating cell wall remodeling with suppression of secondary wall thickening through generation of oligosaccharide signals. Plant J 74:3473–85
    [Google Scholar]
  241. 241.
    Zhong R, Cui D, Ye Z-H. 2019. Secondary cell wall biosynthesis. New Phytol 221:41703–23
    [Google Scholar]
  242. 242.
    Zhong R, Ye Z-H. 2015. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol 56:2195–214
    [Google Scholar]
  243. 243.
    Zhou X, Lu J, Zhang Y, Guo J, Lin W et al. 2021. Membrane receptor-mediated mechano-transduction maintains cell integrity during pollen tube growth within the pistil. Dev. Cell 56:71030–1042.e6
    [Google Scholar]
  244. 244.
    Zykwinska AW, Ralet M-CJ, Garnier CD, Thibault J-FJ. 2005. Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:1397–407
    [Google Scholar]
  245. 245.
    Zykwinska AW, Thibault J-F, Ralet M-C. 2007. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged. J. Exp. Bot. 58:71795–802
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102820-095312
Loading
/content/journals/10.1146/annurev-arplant-102820-095312
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error