1932

Abstract

In contrast to most autotrophic plants, which produce carbohydrates from carbon dioxide using photosynthesis, parasitic plants obtain water and nutrients by parasitizing host plants. Many important crop plants are infested by these heterotrophic plants, leading to severe agricultural loss and reduced food security. Understanding how host plants perceive and resist parasitic plants provides insight into underlying defense mechanisms and the potential for agricultural applications. In this review, we offer a comprehensive overview of the current understanding of host perception of parasitic plants and the pre-attachment and post-attachment defense responses mounted by the host. Since most current research overlooks the role of organ specificity in resistance responses, we also summarize the current understanding and cases of cross-organ parasitism, which indicates nonconventional haustorial connections on other host organs, for example, when stem parasitic plants form haustoria on their host roots. Understanding how different tissue types respond to parasitic plants could provide the potential for developing a universal resistance mechanism in crops against both root and stem parasitic plants.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-102820-100635
2022-05-20
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/arplant/73/1/annurev-arplant-102820-100635.html?itemId=/content/journals/10.1146/annurev-arplant-102820-100635&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adie B, Chico JM, Rubio-Somoza I, Solano R. 2007. Modulation of plant defenses by ethylene. J. Plant Growth Regul. 26:160–77
    [Google Scholar]
  2. 2.
    Agrios GN. 2005. Plant diseases caused by parasitic higher plants, invasive climbing plants, and parasitic green algae. Plant Pathology705–22 San Diego, CA: Academic Fifth ed .
    [Google Scholar]
  3. 3.
    Albert M, Axtell MJ, Timko MP. 2020. Mechanisms of resistance and virulence in parasitic plant–host interactions. Plant Physiol 185:1282–91
    [Google Scholar]
  4. 4.
    Albert M, Belastegui-Macadam XM, Bleischwitz M, Kaldenhoff R 2008. Cuscuta spp: Parasitic plants in the spotlight of plant physiology, economy and ecology. Progress in Botany U Lüttge, W Beyschlag, J Murata 267–77 Berlin: Springer
    [Google Scholar]
  5. 5.
    Albrecht H, Yoder JI, Phillips DA. 1999. Flavonoids promote haustoria formation in the root parasite Triphysaria versicolor. Plant Physiol 119:585–92
    [Google Scholar]
  6. 6.
    Ángeles Castillejo M, Amiour N, Dumas-Gaudot E, Rubiales D, Jorrı́n JV 2004. A proteomic approach to studying plant response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum). Phytochemistry 65:1817–28
    [Google Scholar]
  7. 7.
    Balint-Kurti P. 2019. The plant hypersensitive response: concepts, control and consequences. Mol. Plant Pathol. 20:1163–78
    [Google Scholar]
  8. 8.
    Bardgett RD, Smith RS, Shiel RS, Peacock S, Simkin JM et al. 2006. Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439:969–72
    [Google Scholar]
  9. 9.
    Berens ML, Wolinska KW, Spaepen S, Ziegler J, Nobori T et al. 2019. Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. PNAS 116:2364–73
    [Google Scholar]
  10. 10.
    Bhattarai T, Bhandary H, Shrethsa P. 1989. Host range of Cuscuta reflexa Roxb. in the Kathmandu Valley, Nepal. Plant Prot. Q 4:278–80
    [Google Scholar]
  11. 11.
    Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T 2014. Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 20:47–54
    [Google Scholar]
  12. 12.
    Cameron DD, Coats AM, Seel WE. 2006. Differential resistance among host and non-host species underlies the variable success of the hemi-parasitic plant Rhinanthus minor. Ann. Bot. 98:1289–99
    [Google Scholar]
  13. 13.
    Castillejo , Curto M, Fondevilla S, Rubiales D, Jorrín JV. 2010. Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum sativum) in response to Mycosphaerella pinodes. J. Agric. Food Chem. 58:12822–32
    [Google Scholar]
  14. 14.
    Chang M, Lynn DG. 1986. The haustorium and the chemistry of host recognition in parasitic angiosperms. J. Chem. Ecol. 12:561–79
    [Google Scholar]
  15. 15.
    Cheng F, Cheng Z. 2015. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6:1020
    [Google Scholar]
  16. 16.
    Cheng X, Floková K, Bouwmeester H, Ruyter-Spira C. 2017. The role of endogenous strigolactones and their interaction with ABA during the infection process of the parasitic weed Phelipanche ramosa in tomato plants. Front. Plant Sci. 8:392
    [Google Scholar]
  17. 17.
    Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. 1966. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–90
    [Google Scholar]
  18. 18.
    Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ et al. 2007. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–25
    [Google Scholar]
  19. 19.
    Cui S, Kubota T, Nishiyama T, Ishida JK, Shigenobu S et al. 2020. Ethylene signaling mediates host invasion by parasitic plants. Sci. Adv. 6:eabc2385
    [Google Scholar]
  20. 20.
    Dean HL. 1938. Fruit hypertrophy caused by Cuscuta. Proc. Iowa Acad. Sci. 45:95–97
    [Google Scholar]
  21. 21.
    Delavault P. 2020. Are root parasitic plants like any other plant pathogens?. New Phytol 226:641–43
    [Google Scholar]
  22. 22.
    Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P et al. 2011. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156:1364–74
    [Google Scholar]
  23. 23.
    Ding P, Ding Y. 2020. Stories of salicylic acid: a plant defense hormone. Trends Plant Sci 25:549–65
    [Google Scholar]
  24. 24.
    Dita MA, Die JV, Román B, Krajinski F, Küster H et al. 2009. Gene expression profiling of Medicago truncatula roots in response to the parasitic plant Orobanche crenata. Weed Res 49:66–80
    [Google Scholar]
  25. 25.
    Dos Santos CV, Letousey P, Delavault P, Thalouarn P 2003. Defense gene expression analysis of Arabidopsis thaliana parasitized by Orobanche ramosa. Phytopathology 93:451–57
    [Google Scholar]
  26. 26.
    Duriez P, Vautrin S, Auriac M-C, Bazerque J, Boniface M-C et al. 2019. A receptor-like kinase enhances sunflower resistance to Orobanche cumana. Nat. Plants 5:1211–15Identified an LRR receptor that allows hosts to recognize an avirulence protein from root parasitic plants.
    [Google Scholar]
  27. 27.
    Echevarría-Zomeño S, Pérez-de-Luque A, Jorrín J, Maldonado AM. 2006. Pre-haustorial resistance to broomrape (Orobanche cumana) in sunflower (Helianthus annuus): cytochemical studies. J. Exp. Bot. 57:4189–200
    [Google Scholar]
  28. 28.
    Estabrook EM, Yoder JI. 1998. Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol 116:1–7
    [Google Scholar]
  29. 29.
    Fisher JP, Phoenix GK, Childs DZ, Press MC, Smith SW et al. 2013. Parasitic plant litter input: a novel indirect mechanism influencing plant community structure. New Phytol 198:222–31
    [Google Scholar]
  30. 30.
    Fishman MR, Shirasu K. 2021. How to resist parasitic plants: pre- and post-attachment strategies. Curr. Opin. Plant Biol. 62:102004
    [Google Scholar]
  31. 31.
    Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression. Plant Cell 12:393–404
    [Google Scholar]
  32. 32.
    Gobena D, Shimels M, Rich PJ, Ruyter-Spira C, Bouwmeester H et al. 2017. Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. PNAS 114:4471–76Identified LGS1 as involved in strigolactone chemistry and regulating host resistance against Striga species.
    [Google Scholar]
  33. 33.
    Goldwasser Y, Hershenhorn J, Plakhine D, Kleifeld Y, Rubin B 1999. Biochemical factors involved in vetch resistance to Orobanche aegyptiaca. Physiol. Mol. Plant Pathol. 54:87–96
    [Google Scholar]
  34. 34.
    Goldwasser Y, Westwood JH, Yoder JI. 2002. The use of Arabidopsis to study interactions between parasitic angiosperms and their plant hosts. Arabidopsis Book 1:e0035
    [Google Scholar]
  35. 35.
    Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189–94
    [Google Scholar]
  36. 36.
    Goyet V, Wada S, Cui S, Wakatake T, Shirasu K et al. 2019. Haustorium inducing factors for parasitic Orobanchaceae. Front. Plant Sci. 10:1056
    [Google Scholar]
  37. 37.
    Heath MC. 2000. Nonhost resistance and nonspecific plant defenses. Curr. Opin. Plant Biol. 3:315–19
    [Google Scholar]
  38. 38.
    Hegenauer V, Fürst U, Kaiser B, Smoker M, Zipfel C et al. 2016. Detection of the plant parasite Cuscuta reflexa by a tomato cell surface receptor. Science 353:478–81Identified the first cell surface receptor CuRe1 that perceives parasite-associated molecular patterns from Cuscuta species.
    [Google Scholar]
  39. 39.
    Hegenauer V, Slaby P, Körner M, Bruckmüller J-A, Burggraf R et al. 2020. The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen. Nat. Commun. 11:5299Identified a glycine-rich protein that specifically binds CuRe1 and serves as a parasite-associated molecular pattern.
    [Google Scholar]
  40. 40.
    Hembree KJ, Lanini W, Va N. 1999. Tomato varieties show promise of dodder control. Proc. Calif. Weed Sci. Soc 51:205–6
    [Google Scholar]
  41. 41.
    Hierro JL, Callaway RM. 2003. Allelopathy and exotic plant invasion. Plant Soil 256:29–39
    [Google Scholar]
  42. 42.
    Hiraoka Y, Ueda H, Sugimoto Y. 2008. Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica. J. Exp. Bot. 60:641–50
    [Google Scholar]
  43. 43.
    Hu L, Wang J, Yang C, Islam F, Bouwmeester HJ et al. 2020. The effect of virulence and resistance mechanisms on the interactions between parasitic plants and their hosts. Int. J. Mol. Sci. 21:9013
    [Google Scholar]
  44. 44.
    Huang K, Mellor KE, Paul SN, Lawson MJ, Mackey AJ, Timko MP. 2012. Global changes in gene expression during compatible and incompatible interactions of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. BMC Genom 13:402
    [Google Scholar]
  45. 45.
    Ihl B, Jacob F, Meyer A, Sembdner G. 1987. Investigations on the endogenous levels of abscisic acid in a range of parasitic phanerogams. J. Plant Growth Regul. 5:191–205
    [Google Scholar]
  46. 46.
    Ishida JK, Wakatake T, Yoshida S, Takebayashi Y, Kasahara H et al. 2016. Local auxin biosynthesis mediated by a YUCCA flavin monooxygenase regulates haustorium development in the parasitic plant Phtheirospermum japonicum. Plant Cell 28:1795–814
    [Google Scholar]
  47. 47.
    Jhu M-Y, Farhi M, Wang L, Philbrook RN, Belcher MS et al. 2021. Lignin-based resistance to Cuscuta campestris parasitism in Heinz resistant tomato cultivars. bioRxiv 706861. https://doi.org/10.1101/706861
    [Crossref]
  48. 48.
    Jhu M-Y, Ichihashi Y, Farhi M, Wong C, Sinha NR. 2021. LATERAL ORGAN BOUNDARIES DOMAIN 25 functions as a key regulator of haustorium development in dodders. Plant Physiol 186:2093–110
    [Google Scholar]
  49. 49.
    Jiang F, Jeschke WD, Hartung W. 2005. Contents and flows of assimilates (mannitol and sucrose) in the hemiparasitic Rhinanthus minor/Hordeum vulgare association. Folia Geobot 40:195–203
    [Google Scholar]
  50. 50.
    Jiang F, Jeschke WD, Hartung W, Cameron DD. 2010. Interactions between Rhinanthus minor and its hosts: a review of water, mineral nutrient and hormone flows and exchanges in the hemiparasitic association. Folia Geobot 45:369–85
    [Google Scholar]
  51. 51.
    Johnsen HR, Striberny B, Olsen S, Vidal-Melgosa S, Fangel JU et al. 2015. Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes. New Phytol 207:805–16
    [Google Scholar]
  52. 52.
    Kaga Y, Yokoyama R, Sano R, Ohtani M, Demura T et al. 2020. Interspecific signaling between the parasitic plant and the host plants regulate xylem vessel cell differentiation in haustoria of Cuscuta campestris. Front. Plant Sci. 11:193
    [Google Scholar]
  53. 53.
    Kaiser B, Vogg G, Fürst UB, Albert M. 2015. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 6:45
    [Google Scholar]
  54. 54.
    Kalsoom M, Ur Rehman F, Khan A, Iqbal R, Naz N et al. 2021. Plant diseases and climatic variations: trending challenges for food security. Asian J. Adv. Res. 7:15–22
    [Google Scholar]
  55. 55.
    Keyes WJ, O'Malley RC, Kim D, Lynn DG 2000. Signaling organogenesis in parasitic angiosperms: xenognosin generation, perception, and response. J. Plant Growth Regul. 19:217–31
    [Google Scholar]
  56. 56.
    Kokla A, Melnyk CW. 2018. Developing a thief: haustoria formation in parasitic plants. Dev. Biol. 442:53–59
    [Google Scholar]
  57. 57.
    Ku Y-S, Sintaha M, Cheung M-Y, Lam H-M. 2018. Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int. J. Mol. Sci. 19:3206
    [Google Scholar]
  58. 58.
    Kubo M, Ueda H, Park P, Kawaguchi M, Sugimoto Y. 2008. Reactions of Lotus japonicus ecotypes and mutants to root parasitic plants. J. Plant Physiol. 166:353–62
    [Google Scholar]
  59. 59.
    Laohavisit A, Wakatake T, Ishihama N, Mulvey H, Takizawa K et al. 2020. Quinone perception in plants via leucine-rich-repeat receptor-like kinases. Nature 587:92–97
    [Google Scholar]
  60. 60.
    Lee H-A, Lee H-Y, Seo E, Lee J, Kim S-B et al. 2017. Current understandings of plant nonhost resistance. Mol. Plant Microbe Interact 30:5–15
    [Google Scholar]
  61. 61.
    Letousey P, De Zélicourt A, Vieira Dos Santos C, Thoiron S, Monteau F et al. 2007. Molecular analysis of resistance mechanisms to Orobanche cumana in sunflower. Plant Pathol 56:536–46
    [Google Scholar]
  62. 62.
    Li J, Timko MP 2009. Gene-for-gene resistance in Striga-cowpea associations. Science 325:1094Identified the first R gene that confers host plant resistance against root parasitic plants.
    [Google Scholar]
  63. 63.
    Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J et al. 2004. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–43
    [Google Scholar]
  64. 64.
    Liu Z, Wu Y, Yang F, Zhang Y, Chen S et al. 2013. BIK1 interacts with PEPRs to mediate ethylene-induced immunity. PNAS 110:6205–10
    [Google Scholar]
  65. 65.
    López-Ráez JA, Matusova R, Cardoso C, Jamil M, Charnikhova T et al. 2009. Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Manag. Sci. 65:471–77
    [Google Scholar]
  66. 66.
    Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R. 2003. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–78
    [Google Scholar]
  67. 67.
    Medel R. 2001. Assessment of correlational selection on tolerance and resistance traits in a host plant–parasitic plant interaction. Evol. Ecol. 15:37–52
    [Google Scholar]
  68. 68.
    Musselman LJ, Yoder JI, Westwood JH. 2001. Parasitic plants major problem to food crops. Science 293:1434
    [Google Scholar]
  69. 69.
    Mutuku JM, Cui S, Hori C, Takeda Y, Tobimatsu Y et al. 2019. The structural integrity of lignin is crucial for resistance against Striga hermonthica parasitism in rice. Plant Physiol 179:1796–809
    [Google Scholar]
  70. 70.
    Mutuku JM, Cui S, Yoshida S, Shirasu K. 2021. Orobanchaceae parasite–host interactions. New Phytol 230:46–59
    [Google Scholar]
  71. 71.
    Mutuku JM, Yoshida S, Shimizu T, Ichihashi Y, Wakatake T et al. 2015. The WRKY45-dependent signaling pathway is required for resistance against Striga hermonthica parasitism. Plant Physiol 168:1152–63
    [Google Scholar]
  72. 72.
    Natl. Cent. Biotechnol. Inf 2021. PubChem Compound Summary for CID 137676, Ethylene-d1 PubChem Bethesda, MD: accessed 06/27/2021. https://pubchem.ncbi.nlm.nih.gov/compound/Ethylene-d1
  73. 73.
    Natl. Cent. Biotechnol. Inf 2021. PubChem Compound Summary for CID 3083597, Ayapin PubChem Bethesda, MD: accessed 06/27/2021. https://pubchem.ncbi.nlm.nih.gov/compound/Ayapin
  74. 74.
    Natl. Cent. Biotechnol. Inf 2021. PubChem Compound Summary for CID 5280460, Scopoletin PubChem Bethesda, MD: accessed 06/27/2021. https://pubchem.ncbi.nlm.nih.gov/compound/Scopoletin
  75. 75.
    Natl. Cent. Biotechnol. Inf 2021. PubChem Compound Summary for CID 10665247, Orobanchol PubChem Bethesda, MD: accessed 06/27/2021. https://pubchem.ncbi.nlm.nih.gov/compound/Orobanchol
  76. 76.
    Natl. Cent. Biotechnol. Inf 2021. PubChem Compound Summary for CID 15102684, 5-Deoxystrigol PubChem Bethesda, MD: accessed 06/27/2021. https://pubchem.ncbi.nlm.nih.gov/compound/5-Deoxystrigol
  77. 77.
    Nickrent D, Musselman L. 2004. Introduction to parasitic flowering plants. Plant Health Instr https://doi.org/10.1094/PHI-I-2004-0330-01
    [Crossref] [Google Scholar]
  78. 78.
    Ogawa S, Wakatake T, Spallek T, Ishida JK, Sano R et al. 2020. Subtilase activity in intrusive cells mediates haustorium maturation in parasitic plants. Plant Physiol 185:1381–94
    [Google Scholar]
  79. 79.
    Ohlson EW, Timko MP. 2020. Race structure of cowpea witchweed (Striga gesnerioides) in West Africa and its implications for Striga resistance breeding of cowpea. Weed Sci 68:125–33
    [Google Scholar]
  80. 80.
    Olson MM, Roseland CR. 1991. Induction of the coumarins scopoletin and ayapin in sunflower by insect–feeding stress and effects of coumarins on the feeding of sunflower beetle (Coleoptera: Chrysomelidae). Environ. Entomol. 20:1166–72
    [Google Scholar]
  81. 81.
    Pagán I, García-Arenal F. 2018. Tolerance to plant pathogens: theory and experimental evidence. Int. J. Mol. Sci. 19:810
    [Google Scholar]
  82. 82.
    Panstruga R, Moscou MJ. 2020. What is the molecular basis of nonhost resistance?. Mol. Plant Microbe Interact. 33:1253–64
    [Google Scholar]
  83. 83.
    Parker C. 2009. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manag. Sci. 65:453–59
    [Google Scholar]
  84. 84.
    Parker C, Riches CR. 1993. Parasitic Weeds of the World: Biology and Control Tucson, AZ: Univ. Ariz. Press
  85. 85.
    Pérez-de-Luque A, González-Verdejo CI, Lozano MD, Dita MA, Cubero JI et al. 2006. Protein cross-linking, peroxidase and β-1,3-endoglucanase involved in resistance of pea against Orobanche crenata. J. Exp. Bot. 57:1461–69
    [Google Scholar]
  86. 86.
    Pérez-de-Luque A, Jorrín J, Cubero JI, Rubiales D. 2005. Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res 45:379–87
    [Google Scholar]
  87. 87.
    Pérez-de-Luque A, Lozano MD, Moreno MT, Testillano PS, Rubiales D. 2007. Resistance to broomrape (Orobanche crenata) in faba bean (Vicia faba): cell wall changes associated with prehaustorial defensive mechanisms. Ann. Appl. Biol. 151:89–98
    [Google Scholar]
  88. 88.
    Pérez-de-Luque A, Moreno MT, Rubiales D. 2008. Host plant resistance against broomrapes (Orobanche spp.): defence reactions and mechanisms of resistance. Ann. Appl. Biol. 152:131–41
    [Google Scholar]
  89. 89.
    Pérez-de-Luque A, Rubiales D, Cubero JI, Press MC, Scholes J et al. 2005. Interaction between Orobanche crenata and its host legumes: unsuccessful haustorial penetration and necrosis of the developing parasite. Ann. Bot. 95:935–42Discovered that lignin accumulation also contributes to defense mechanisms preventing parasitic plant haustorium intrusion.
    [Google Scholar]
  90. 90.
    Phuong LT, Fitrianti AN, Luan MT, Matsui H, Noutoshi Y et al. 2020. Antagonism between SA- and JA-signaling conditioned by saccharin in Arabidopsis thaliana renders resistance to a specific pathogen. J. Gen. Plant Pathol. 86:86–99
    [Google Scholar]
  91. 91.
    Prats E, Bazzalo ME, León A, Jorrín JV. 2003. Accumulation of soluble phenolic compounds in sunflower capitula correlates with resistance to Sclerotinia sclerotiorum. Euphytica 132:321–29
    [Google Scholar]
  92. 92.
    Rich PJ, Grenier C, Ejeta G. 2004. Striga resistance in the wild relatives of Sorghum. Crop Sci. 44:2221–29
    [Google Scholar]
  93. 93.
    Riopel J, Timko M. 1995. Haustorial initiation and differentiation. Parasitic Plants MC Press, JD Graves 39–79 London: Chapman & Hall
    [Google Scholar]
  94. 94.
    Runyon JB, Mescher MC, De Moraes CM. 2010. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens. Plant Signal. Behav. 5:929–31
    [Google Scholar]
  95. 95.
    Runyon JB, Mescher MC, Felton GW, De Moraes CM. 2010. Parasitism by Cuscuta pentagona sequentially induces JA and SA defence pathways in tomato. Plant Cell Environ 33:290–303
    [Google Scholar]
  96. 96.
    Saucet SB, Shirasu K. 2016. Molecular parasitic plant–host interactions. PLOS Pathogens 12:e1005978
    [Google Scholar]
  97. 97.
    Senthil-Kumar M, Mysore KS. 2013. Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annu. Rev. Phytopathol. 51:407–27
    [Google Scholar]
  98. 98.
    Serghini K, de Luque AP, Castejón-Muñoz M, García-Torres L, Jorrín JV. 2001. Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins. J. Exp. Bot. 52:2227–34
    [Google Scholar]
  99. 99.
    Shen H, Ye W, Hong L, Huang H, Wang Z et al. 2006. Progress in parasitic plant biology: host selection and nutrient transfer. Plant Biol 8:175–85
    [Google Scholar]
  100. 100.
    Su C, Liu H, Wafula EK, Honaas L, de Pamphilis CW, Timko MP. 2020. SHR4z, a novel decoy effector from the haustorium of the parasitic weed Striga gesnerioides, suppresses host plant immunity. New Phytol 226:891–908
    [Google Scholar]
  101. 101.
    Swarbrick PJ, Huang K, Liu G, Slate J, Press MC, Scholes JD. 2008. Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica. New Phytol 179:515–29
    [Google Scholar]
  102. 102.
    Tada Y, Sugai M, Furuhashi K. 1996. Haustoria of Cuscuta japonica, a holoparasitic flowering plant, are induced by the cooperative effects of far-red light and tactile stimuli. Plant Cell Physiol 37:1049–53
    [Google Scholar]
  103. 103.
    Taylor A, Martin J, Seel WE. 1996. Physiology of the parasitic association between maize and witchweed (Striga hermonthica): is ABA involved?. J. Exp. Bot. 47:1057–65
    [Google Scholar]
  104. 104.
    Tintor N, Ross A, Kanehara K, Yamada K, Fan L et al. 2013. Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. PNAS 110:6211–16
    [Google Scholar]
  105. 105.
    Torres-Vera R, García JM, Pozo MJ, López-Ráez JA. 2016. Expression of molecular markers associated to defense signaling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiol. Mol. Plant Pathol. 94:100–7
    [Google Scholar]
  106. 106.
    Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200
    [Google Scholar]
  107. 107.
    Veselov D, Langhans M, Hartung W, Aloni R, Feussner I et al. 2003. Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid. Planta 216:512–22
    [Google Scholar]
  108. 108.
    Vieira Dos Santos C, Delavault P, Letousey P, Thalouarn P. 2003. Identification by suppression subtractive hybridization and expression analysis of Arabidopsis thaliana putative defence genes during Orobanche ramosa infection. Physiol. Mol. Plant Pathol. 62:297–303
    [Google Scholar]
  109. 109.
    Vurro E, Ruotolo R, Ottonello S, Elviri L, Maffini M et al. 2011. Phytochelatins govern zinc/copper homeostasis and cadmium detoxification in Cuscuta campestris parasitizing Daucus carota. Environ. Exp. Bot. 72:26–33
    [Google Scholar]
  110. 110.
    Xie X, Yoneyama K, Yoneyama K. 2010. The strigolactone story. Annu. Rev. Phytopathol. 48:93–117
    [Google Scholar]
  111. 111.
    Yaakov G, Lanini WT, Wrobel RL. 2001. Tolerance of tomato varieties to lespedeza dodder. Weed Sci 49:520–23
    [Google Scholar]
  112. 112.
    Yang C, Xu L, Zhang N, Islam F, Song W et al. 2017. iTRAQ-based proteomics of sunflower cultivars differing in resistance to parasitic weed Orobanche cumana. Proteomics 17:1700009
    [Google Scholar]
  113. 113.
    Yoder JI, Scholes JD. 2010. Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr. Opin. Plant Biol. 13:478–84
    [Google Scholar]
  114. 114.
    Yoshida S, Cui S, Ichihashi Y, Shirasu K. 2016. The haustorium, a specialized invasive organ in parasitic plants. Annu. Rev. Plant Biol. 67:643–67
    [Google Scholar]
  115. 115.
    Zehhar N, Labrousse P, Arnaud M-C, Boulet C, Bouya D, Fer A. 2003. Study of resistance to Orobanche ramosa in host (oilseed rape and carrot) and non-host (maize) plants. Eur. J. Plant Pathol. 109:75–82
    [Google Scholar]
  116. 116.
    Zhao J, Zheng SH, Fujita K, Sakai K. 2004. Jasmonate and ethylene signalling and their interaction are integral parts of the elicitor signalling pathway leading to β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J. Exp. Bot. 55:1003–12
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-102820-100635
Loading
/content/journals/10.1146/annurev-arplant-102820-100635
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error