1932

Abstract

Methods to direct the degradation of protein targets with proximity-inducing molecules that coopt the cellular degradation machinery are advancing in leaps and bounds, and diverse modalities are emerging. The most used and well-studied approach is to hijack E3 ligases of the ubiquitin–proteasome system. E3 ligases use specific molecular recognition to determine which proteins in the cell are ubiquitinated and degraded. This review focuses on the structural determinants of E3 ligase recruitment of natural substrates and neo-substrates obtained through monovalent molecular glues and bivalent proteolysis-targeting chimeras. We use structures to illustrate the different types of substrate recognition and assess the basis for neo-protein–protein interactions in ternary complex structures. The emerging structural and mechanistic complexity is reflective of the diverse physiological roles of protein ubiquitination. This molecular insight is also guiding the application of structure-based design approaches to the development of new and existing degraders as chemical tools and therapeutics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-032620-104421
2022-06-21
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-032620-104421.html?itemId=/content/journals/10.1146/annurev-biochem-032620-104421&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lecker SH, Goldberg AL, Mitch WE. 2006. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17:1807–19
    [Google Scholar]
  2. 2.
    Komander D, Rape M. 2012. The ubiquitin code. Annu. Rev. Biochem. 81:203–29
    [Google Scholar]
  3. 3.
    Zheng N, Shabek N. 2017. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86:129–57
    [Google Scholar]
  4. 4.
    Morreale FE, Walden H. 2016. Types of ubiquitin ligases. Cell 165:248–48.e1
    [Google Scholar]
  5. 5.
    Petroski MD, Deshaies RJ. 2005. Function and regulation of cullin–RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6:9–20
    [Google Scholar]
  6. 6.
    Bulatov E, Ciulli A. 2015. Targeting cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem. J. 467:365–86
    [Google Scholar]
  7. 7.
    Lorenz S. 2018. Structural mechanisms of HECT-type ubiquitin ligases. Biol. Chem. 399:127–45
    [Google Scholar]
  8. 8.
    Weber J, Polo S, Maspero E. 2019. HECT E3 ligases: a tale with multiple facets. Front. Physiol. 10:370
    [Google Scholar]
  9. 9.
    Cotton TR, Lechtenberg BC. 2020. Chain reactions: molecular mechanisms of RBR ubiquitin ligases. Biochem. Soc. Trans. 48:1737–50
    [Google Scholar]
  10. 10.
    Haakonsen DL, Rape M. 2019. Branching out: improved signaling by heterotypic ubiquitin chains. Trends Cell Biol. 29:704–16
    [Google Scholar]
  11. 11.
    French ME, Koehler CF, Hunter T. 2021. Emerging functions of branched ubiquitin chains. Cell Discov 7:6
    [Google Scholar]
  12. 12.
    Swatek KN, Komander D. 2016. Ubiquitin modifications. Cell Res. 26:399–422
    [Google Scholar]
  13. 13.
    Nalepa G, Rolfe M, Harper JW. 2006. Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5:596–613
    [Google Scholar]
  14. 14.
    Wertz IE, Wang X. 2019. From discovery to bedside: targeting the ubiquitin system. Cell Chem. Biol. 26:156–77
    [Google Scholar]
  15. 15.
    Huang X, Dixit VM. 2016. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 26:484–98
    [Google Scholar]
  16. 16.
    Bondeson DP, Crews CM. 2017. Targeted protein degradation by small molecules. Annu. Rev. Pharmacol. Toxicol. 57:107–23
    [Google Scholar]
  17. 17.
    Zhou P, Bogacki R, McReynolds L, Howley PM. 2000. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell 6:751–56
    [Google Scholar]
  18. 18.
    Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. 2001. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. PNAS 98:8554–59
    [Google Scholar]
  19. 19.
    Schneekloth JS Jr., Fonseca FN, Koldobskiy M, Mandal A, Deshaies R et al. 2004. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126:3748–54
    [Google Scholar]
  20. 20.
    Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A et al. 2015. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348:1376–81
    [Google Scholar]
  21. 21.
    Deshaies RJ. 2015. Protein degradation: prime time for PROTACs. Nat. Chem. Biol. 11:634–35
    [Google Scholar]
  22. 22.
    Bondeson DP, Mares A, Smith IE, Ko E, Campos S et al. 2015. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11:611–17
    [Google Scholar]
  23. 23.
    Lu J, Qian Y, Altieri M, Dong H, Wang J et al. 2015. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol 22:755–63
    [Google Scholar]
  24. 24.
    Zengerle M, Chan KH, Ciulli A. 2015. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10:1770–77
    [Google Scholar]
  25. 25.
    Mullard A. 2021. Targeted protein degraders crowd into the clinic. Nat. Rev. Drug Discov. 20:247–50
    [Google Scholar]
  26. 26.
    Alabi SB, Crews CM. 2021. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. J. Biol. Chem. 296:100647
    [Google Scholar]
  27. 27.
    Roth S, Fulcher LJ, Sapkota GP. 2019. Advances in targeted degradation of endogenous proteins. Cell. Mol. Life Sci. 76:2761–77
    [Google Scholar]
  28. 28.
    Harper JW, Schulman BA. 2021. Cullin-RING ubiquitin ligase regulatory circuits: a quarter century beyond the F-box hypothesis. Annu. Rev. Biochem. 90:403–29
    [Google Scholar]
  29. 29.
    Angers S, Thorpe CJ, Biechele TL, Goldenberg SJ, Zheng N et al. 2006. The KLHL12–Cullin-3 ubiquitin ligase negatively regulates the Wnt–β-catenin pathway by targeting Dishevelled for degradation. Nat. Cell Biol. 8:348–57
    [Google Scholar]
  30. 30.
    Funato Y, Terabayashi T, Sakamoto R, Okuzaki D, Ichise H et al. 2010. Nucleoredoxin sustains Wnt/β-catenin signaling by retaining a pool of inactive Dishevelled protein. Curr. Biol. 20:1945–52
    [Google Scholar]
  31. 31.
    Shami Shah A, Batrouni AG, Kim D, Punyala A, Cao W et al. 2019. PLEKHA4/kramer attenuates Dishevelled ubiquitination to modulate Wnt and planar cell polarity signaling. Cell Rep. 27:2157–70.e8
    [Google Scholar]
  32. 32.
    Zhao B, Payne WG, Sai J, Lu Z, Olejniczak ET, Fesik SW. 2020. Structural elucidation of peptide binding to KLHL-12, a substrate specific adapter protein in a Cul3-Ring E3 ligase complex. Biochemistry 59:964–69
    [Google Scholar]
  33. 33.
    Chen Z, Wasney GA, Picaud S, Filippakopoulos P, Vedadi M et al. 2020. Identification of a PGXPP degron motif in Dishevelled and structural basis for its binding to the E3 ligase KLHL12. Open Biol 10:200041
    [Google Scholar]
  34. 34.
    de Brevern AG. 2016. Extension of the classical classification of β-turns. Sci. Rep. 6:33191
    [Google Scholar]
  35. 35.
    Chen Z, Picaud S, Filippakopoulos P, D'Angiolella V, Bullock AN. 2019. Structural basis for recruitment of DAPK1 to the KLHL20 E3 ligase. Structure 27:1395–404.e4
    [Google Scholar]
  36. 36.
    Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A et al. 2009. Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol. Cell 36:39–50
    [Google Scholar]
  37. 37.
    Ostertag MS, Messias AC, Sattler M, Popowicz GM. 2019. The structure of the SPOP-Pdx1 interface reveals insights into the phosphorylation-dependent binding regulation. Structure 27:327–34.e3
    [Google Scholar]
  38. 38.
    Lumpkin RJ, Baker RW, Leschziner AE, Komives EA. 2020. Structure and dynamics of the ASB9 CUL–RING E3 ligase. Nat. Commun. 11:2866
    [Google Scholar]
  39. 39.
    Varshavsky A. 2019. N-degron and C-degron pathways of protein degradation. PNAS 116:358–66
    [Google Scholar]
  40. 40.
    Timms RT, Koren I. 2020. Tying up loose ends: the N-degron and C-degron pathways of protein degradation. Biochem. Soc. Trans. 48:1557–67
    [Google Scholar]
  41. 41.
    Santt O, Pfirrmann T, Braun B, Juretschke J, Kimmig P et al. 2008. The yeast GID complex, a novel ubiquitin ligase (E3) involved in the regulation of carbohydrate metabolism. Mol. Biol. Cell 19:3323–33
    [Google Scholar]
  42. 42.
    Hammerle M, Bauer J, Rose M, Szallies A, Thumm M et al. 1998. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J. Biol. Chem. 273:25000–5
    [Google Scholar]
  43. 43.
    Chen SJ, Wu X, Wadas B, Oh JH, Varshavsky A. 2017. An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355:eaal3655
    [Google Scholar]
  44. 44.
    Xiao Q, Zhang FR, Nacev BA, Liu JO, Pei DH. 2010. Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochemistry 49:5588–99
    [Google Scholar]
  45. 45.
    Dong C, Zhang H, Li L, Tempel W, Loppnau P, Min J 2018. Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway. Nat. Chem. Biol. 14:466–73
    [Google Scholar]
  46. 46.
    Koren I, Timms RT, Kula T, Xu Q, Li MZ, Elledge SJ. 2018. The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell 173:1622–35.e14
    [Google Scholar]
  47. 47.
    Rusnac DV, Lin HC, Canzani D, Tien KX, Hinds TR et al. 2018. Recognition of the diglycine C-end degron by CRL2(KLHDC2) ubiquitin ligase. Mol. Cell 72:813–22.e4
    [Google Scholar]
  48. 48.
    Kershaw NJ, Murphy JM, Liau NP, Varghese LN, Laktyushin A et al. 2013. SOCS3 binds specific receptor–JAK complexes to control cytokine signaling by direct kinase inhibition. Nat. Struct. Mol. Biol. 20:469–76
    [Google Scholar]
  49. 49.
    Liau NPD, Laktyushin A, Lucet IS, Murphy JM, Yao S et al. 2018. The molecular basis of JAK/STAT inhibition by SOCS1. Nat. Commun. 9:1558
    [Google Scholar]
  50. 50.
    Zadjali F, Pike AC, Vesterlund M, Sun J, Wu C et al. 2011. Structural basis for c-KIT inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase. J. Biol. Chem. 286:480–90
    [Google Scholar]
  51. 51.
    Kung WW, Ramachandran S, Makukhin N, Bruno E, Ciulli A 2019. Structural insights into substrate recognition by the SOCS2 E3 ubiquitin ligase. Nat. Commun. 10:2534
    [Google Scholar]
  52. 52.
    Ivan M, Kondo K, Yang H, Kim W, Valiando J et al. 2001. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–68
    [Google Scholar]
  53. 53.
    Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J et al. 2001. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–72
    [Google Scholar]
  54. 54.
    Min JH, Yang H, Ivan M, Gertler F, Kaelin WG Jr., Pavletich NP. 2002. Structure of an HIF-1α–pVHL complex: hydroxyproline recognition in signaling. Science 296:1886–89
    [Google Scholar]
  55. 55.
    Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ et al. 2002. Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417:975–78
    [Google Scholar]
  56. 56.
    Galdeano C, Gadd MS, Soares P, Scaffidi S, Van Molle I et al. 2014. Structure-guided design and optimization of small molecules targeting the protein–protein interaction between the von Hippel–Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J. Med. Chem. 57:8657–63
    [Google Scholar]
  57. 57.
    Frost J, Galdeano C, Soares P, Gadd MS, Grzes KM et al. 2016. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Nat. Commun. 7:13312
    [Google Scholar]
  58. 58.
    Guo B, Phillips JD, Yu Y, Leibold EA. 1995. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J. Biol. Chem. 270:21645–51
    [Google Scholar]
  59. 59.
    Haile DJ, Rouault TA, Harford JB, Kennedy MC, Blondin GA et al. 1992. Cellular regulation of the iron-responsive element binding protein: disassembly of the cubane iron-sulfur cluster results in high-affinity RNA binding. PNAS 89:11735–39
    [Google Scholar]
  60. 60.
    Hanson ES, Foot LM, Leibold EA. 1999. Hypoxia post-translationally activates iron-regulatory protein 2. J. Biol. Chem. 274:5047–52
    [Google Scholar]
  61. 61.
    Hanson ES, Rawlins ML, Leibold EA. 2003. Oxygen and iron regulation of iron regulatory protein 2. J. Biol. Chem. 278:40337–42
    [Google Scholar]
  62. 62.
    Iwai K, Klausner RD, Rouault TA. 1995. Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J. 14:5350–57
    [Google Scholar]
  63. 63.
    Salahudeen AA, Thompson JW, Ruiz JC, Ma HW, Kinch LN et al. 2009. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326:722–26
    [Google Scholar]
  64. 64.
    Vashisht AA, Zumbrennen KB, Huang X, Powers DN, Durazo A et al. 2009. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326:718–21
    [Google Scholar]
  65. 65.
    Wang H, Shi H, Rajan M, Canarie ER, Hong S et al. 2020. FBXL5 regulates IRP2 stability in iron homeostasis via an oxygen-responsive [2Fe2S] cluster. Mol. Cell 78:31–41.e5
    [Google Scholar]
  66. 66.
    Thompson JW, Salahudeen AA, Chollangi S, Ruiz JC, Brautigam CA et al. 2012. Structural and molecular characterization of iron-sensing hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5). J. Biol. Chem. 287:7357–65
    [Google Scholar]
  67. 67.
    Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV et al. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–45
    [Google Scholar]
  68. 68.
    Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–5
    [Google Scholar]
  69. 69.
    Che Y, Gilbert AM, Shanmugasundaram V, Noe MC. 2018. Inducing protein–protein interactions with molecular glues. Bioorg. Med. Chem. Lett. 28:2585–92
    [Google Scholar]
  70. 70.
    Schreiber SL. 2021. The rise of molecular glues. Cell 184:3–9
    [Google Scholar]
  71. 71.
    Vargesson N. 2015. Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res. C Embryo Today 105:140–56
    [Google Scholar]
  72. 72.
    Ito T, Ando H, Suzuki T, Ogura T, Hotta K et al. 2010. Identification of a primary target of thalidomide teratogenicity. Science 327:1345–50
    [Google Scholar]
  73. 73.
    Chamberlain PP, Lopez-Girona A, Miller K, Carmel G, Pagarigan B et al. 2014. Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21:803–9
    [Google Scholar]
  74. 74.
    Fischer ES, Bohm K, Lydeard JR, Yang H, Stadler MB et al. 2014. Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512:49–53
    [Google Scholar]
  75. 75.
    Lu G, Middleton RE, Sun H, Naniong M, Ott CJ et al. 2014. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343:305–9
    [Google Scholar]
  76. 76.
    Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN et al. 2014. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343:301–5
    [Google Scholar]
  77. 77.
    Matyskiela ME, Clayton T, Zheng X, Mayne C, Tran E et al. 2020. Crystal structure of the SALL4–pomalidomide–cereblon–DDB1 complex. Nat. Struct. Mol. Biol. 27:319–22
    [Google Scholar]
  78. 78.
    Sievers QL, Petzold G, Bunker RD, Renneville A, Slabicki M et al. 2018. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362:eaat0572
    [Google Scholar]
  79. 79.
    Uehara T, Minoshima Y, Sagane K, Sugi NH, Mitsuhashi KO et al. 2017. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13:675–80
    [Google Scholar]
  80. 80.
    Han T, Goralski M, Gaskill N, Capota E, Kim J et al. 2017. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356:eaal3755
    [Google Scholar]
  81. 81.
    Du X, Volkov OA, Czerwinski RM, Tan H, Huerta C et al. 2019. Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 27:1625–33.e3
    [Google Scholar]
  82. 82.
    Faust TB, Yoon H, Nowak RP, Donovan KA, Li Z et al. 2020. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16:7–14
    [Google Scholar]
  83. 83.
    Bussiere DE, Xie L, Srinivas H, Shu W, Burke A et al. 2020. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat. Chem. Biol. 16:15–23
    [Google Scholar]
  84. 84.
    Protein Data Bank in Europe, European Bioinformatics Institute 2022. PDBePISA (protein interfaces, surfaces and assemblies). Interactive tool. http://www.ebi.ac.uk/pdbe/prot_int/pistart.html
    [Google Scholar]
  85. 85.
    Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372:774–97
    [Google Scholar]
  86. 86.
    Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. 1997. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16:3797–804
    [Google Scholar]
  87. 87.
    Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N et al. 1999. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 18:2401–10
    [Google Scholar]
  88. 88.
    Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P 1997. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275:1790–92
    [Google Scholar]
  89. 89.
    Polakis P. 2012. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 4:a008052
    [Google Scholar]
  90. 90.
    Simonetta KR, Taygerly J, Boyle K, Basham SE, Padovani C et al. 2019. Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction. Nat. Commun. 10:1402
    [Google Scholar]
  91. 91.
    Slabicki M, Kozicka Z, Petzold G, Li YD, Manojkumar M et al. 2020. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585:293–97
    [Google Scholar]
  92. 92.
    Mayor-Ruiz C, Bauer S, Brand M, Kozicka Z, Siklos M et al. 2020. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16:1199–207
    [Google Scholar]
  93. 93.
    Lv L, Chen P, Cao L, Li Y, Zeng Z et al. 2020. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. eLife 9:e59994
    [Google Scholar]
  94. 94.
    Slabicki M, Yoon H, Koeppel J, Nitsch L, Roy Burman SS et al. 2020. Small-molecule-induced polymerization triggers degradation of BCL6. Nature 588:164–68
    [Google Scholar]
  95. 95.
    Pettersson M, Crews CM. 2019. Proteolysis targeting chimeras (PROTACs)—past, present and future. Drug Discov. Today Technol. 31:15–27
    [Google Scholar]
  96. 96.
    Sun X, Gao H, Yang Y, He M, Wu Y et al. 2019. PROTACs: great opportunities for academia and industry. Signal Transduct. Target. Ther. 4:64
    [Google Scholar]
  97. 97.
    Verma R, Mohl D, Deshaies RJ. 2020. Harnessing the power of proteolysis for targeted protein inactivation. Mol. Cell 77:446–60
    [Google Scholar]
  98. 98.
    Ishida T, Ciulli A. 2021. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov 26:484–502
    [Google Scholar]
  99. 99.
    Gadd MS, Testa A, Lucas X, Chan KH, Chen W et al. 2017. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13:514–21
    [Google Scholar]
  100. 100.
    Roy MJ, Winkler S, Hughes SJ, Whitworth C, Galant M et al. 2019. SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chem. Biol. 14:361–68
    [Google Scholar]
  101. 101.
    Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J et al. 2018. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25:78–87.e5
    [Google Scholar]
  102. 102.
    Baratta MG, Schinzel AC, Zwang Y, Bandopadhayay P, Bowman-Colin C et al. 2015. An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. PNAS 112:232–37
    [Google Scholar]
  103. 103.
    Fujisawa T, Filippakopoulos P. 2017. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat. Rev. Mol. Cell Biol. 18:246–62
    [Google Scholar]
  104. 104.
    Testa A, Hughes SJ, Lucas X, Wright JE, Ciulli A. 2020. Structure-based design of a macrocyclic PROTAC. Angew. Chem. Int. Ed Engl. 59:1727–34
    [Google Scholar]
  105. 105.
    Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E et al. 2019. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15:672–80
    [Google Scholar]
  106. 106.
    Sutherell CL, Tallant C, Monteiro OP, Yapp C, Fuchs JE et al. 2016. Identification and development of 2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-one inhibitors targeting bromodomains within the switch/sucrose nonfermenting complex. J. Med. Chem. 59:5095–101
    [Google Scholar]
  107. 107.
    Myrianthopoulos V, Gaboriaud-Kolar N, Tallant C, Hall ML, Grigoriou S et al. 2016. Discovery and optimization of a selective ligand for the switch/sucrose nonfermenting-related bromodomains of polybromo protein-1 by the use of virtual screening and hydration analysis. J. Med. Chem. 59:8787–803
    [Google Scholar]
  108. 108.
    Soares P, Gadd MS, Frost J, Galdeano C, Ellis L et al. 2018. Group-based optimization of potent and cell-active inhibitors of the von Hippel-Lindau (VHL) E3 ubiquitin ligase: structure-activity relationships leading to the chemical probe (2S,4R)-1-((S)-2-(1-cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). J. Med. Chem. 61:599–618
    [Google Scholar]
  109. 109.
    Chan KH, Zengerle M, Testa A, Ciulli A. 2018. Impact of target warhead and linkage vector on inducing protein degradation: comparison of bromodomain and extra-terminal (BET) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J. Med. Chem. 61:504–13
    [Google Scholar]
  110. 110.
    Nowak RP, DeAngelo SL, Buckley D, He Z, Donovan KA et al. 2018. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14:706–14
    [Google Scholar]
  111. 111.
    Douglass EF Jr., Miller CJ, Sparer G, Shapiro H, Spiegel DA. 2013. A comprehensive mathematical model for three-body binding equilibria. J. Am. Chem. Soc. 135:6092–99
    [Google Scholar]
  112. 112.
    Chung CW, Dai H, Fernandez E, Tinworth CP, Churcher I et al. 2020. Structural insights into PROTAC-mediated degradation of Bcl-xL. ACS Chem. Biol. 15:2316–23
    [Google Scholar]
  113. 113.
    Adams JM, Cory S 2018. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 25:27–36
    [Google Scholar]
  114. 114.
    Perini GF, Ribeiro GN, Pinto Neto JV, Campos LT, Hamerschlak N 2018. BCL-2 as therapeutic target for hematological malignancies. J. Hematol. Oncol. 11:65
    [Google Scholar]
  115. 115.
    Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA et al. 2007. Programmed anuclear cell death delimits platelet life span. Cell 128:1173–86
    [Google Scholar]
  116. 116.
    He Y, Koch R, Budamagunta V, Zhang P, Zhang X et al. 2020. DT2216—a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. J. Hematol. Oncol. 13:95
    [Google Scholar]
  117. 117.
    Tao ZF, Hasvold L, Wang L, Wang X, Petros AM et al. 2014. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med. Chem. Lett. 5:1088–93
    [Google Scholar]
  118. 118.
    Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E et al. 2021. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: Exploration of antibody linker, payload loading, and payload molecular properties. J. Med. Chem. 64:2534–75
    [Google Scholar]
  119. 119.
    Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E et al. 2021. Antibody-mediated delivery of chimeric BRD4 degraders. Part 2: Improvement of in vitro antiproliferation activity and in vivo antitumor efficacy. J. Med. Chem. 64:2576–607
    [Google Scholar]
  120. 120.
    Law RP, Nunes J, Chung CW, Bantscheff M, Buda K et al. 2021. Discovery and characterisation of highly cooperative FAK-degrading PROTACs. Angew. Chem. Int. Ed Engl. 60:23327–34
    [Google Scholar]
  121. 121.
    Sulzmaier FJ, Jean C, Schlaepfer DD. 2014. FAK in cancer: mechanistic findings and clinical applications. Nat. Rev. Cancer 14:598–610
    [Google Scholar]
  122. 122.
    Golubovskaya VM, Kweh FA, Cance WG. 2009. Focal adhesion kinase and cancer. Histol. Histopathol. 24:503–10
    [Google Scholar]
  123. 123.
    Cromm PM, Samarasinghe KTG, Hines J, Crews CM. 2018. Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. J. Am. Chem. Soc. 140:17019–26
    [Google Scholar]
  124. 124.
    Popow J, Arnhof H, Bader G, Berger H, Ciulli A et al. 2019. Highly selective PTK2 proteolysis targeting chimeras to probe focal adhesion kinase scaffolding functions. J. Med. Chem. 62:2508–20
    [Google Scholar]
  125. 125.
    Gao HY, Wu Y, Sun YH, Yang YQ, Zhou GB, Rao Y. 2020. Design, synthesis, and evaluation of highly potent FAK-targeting PROTACs. ACS Med. Chem. Lett. 11:1855–62
    [Google Scholar]
  126. 126.
    Kargbo RB. 2020. Chemically induced degradation of FAK–ALK for application in cancer therapeutics. ACS Med. Chem. Lett. 11:1367–68
    [Google Scholar]
  127. 127.
    Kargbo RB. 2020. Bifunctional pyrimidines as modulators of focal adhesion kinase. ACS Med. Chem. Lett. 11:409–11
    [Google Scholar]
  128. 128.
    Gao HY, Zheng CW, Du J, Wu Y, Sun YH et al. 2020. FAK-targeting PROTAC as a chemical tool for the investigation of non-enzymatic FAK function in mice. Protein Cell 11:534–39
    [Google Scholar]
  129. 129.
    Tanjoni I, Walsh C, Uryu S, Tomar A, Nam JO et al. 2010. PND-1186 FAK inhibitor selectively promotes tumor cell apoptosis in three-dimensional environments. Cancer Biol. Ther. 9:764–77
    [Google Scholar]
  130. 130.
    Raina K, Lu J, Qian Y, Altieri M, Gordon D et al. 2016. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. PNAS 113:7124–29
    [Google Scholar]
  131. 131.
    Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS et al. 2017. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27:14–25
    [Google Scholar]
  132. 132.
    Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS et al. 2021. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30:70–82
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-032620-104421
Loading
/content/journals/10.1146/annurev-biochem-032620-104421
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error