1932

Abstract

Mitochondria are central to energy production, metabolism and signaling, and apoptosis. To make new mitochondria from preexisting mitochondria, the cell needs to import mitochondrial proteins from the cytosol into the mitochondria with the aid of translocators in the mitochondrial membranes. The translocase of the outer membrane (TOM) complex, an outer membrane translocator, functions as an entry gate for most mitochondrial proteins. Although high-resolution structures of the receptor subunits of the TOM complex were deposited in the early 2000s, those of entire TOM complexes became available only in 2019. The structural details of these TOM complexes, consisting of the dimer of the β-barrel import channel Tom40 and four α-helical membrane proteins, revealed the presence of several distinct paths and exits for the translocation of over 1,000 different mitochondrial precursor proteins. High-resolution structures of TOM complexes now open up a new era of studies on the structures, functions, and dynamics of the mitochondrial import system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-032620-104527
2022-06-21
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-032620-104527.html?itemId=/content/journals/10.1146/annurev-biochem-032620-104527&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Vafai SB, Mootha VK. 2012. Mitochondrial disorders as windows into an ancient organelle. Nature 491:374–83
    [Google Scholar]
  2. 2.
    Moehle EA, Shen K, Dillin A. 2019. Mitochondrial proteostasis in the context of cellular and organismal health and aging. J. Biol. Chem. 294:5396–407
    [Google Scholar]
  3. 3.
    Endo T, Yamano K. 2009. Multiple pathways for mitochondrial protein traffic. Biol. Chem. 390:723–30
    [Google Scholar]
  4. 4.
    Neupert W. 2015. A perspective on transport of proteins into mitochondria: a myriad of open questions. J. Mol. Biol. 427:1135–58
    [Google Scholar]
  5. 5.
    Wiedemann N, Pfanner K. 2017. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86:685–714
    [Google Scholar]
  6. 6.
    Fukasawa Y, Oda T, Tomii K, Imai K. 2017. Origin and evolutionary alteration of the mitochondrial import system in eukaryotic lineages. Mol. Biol. Evol. 35:1574–86
    [Google Scholar]
  7. 7.
    Söllner T, Griffiths G, Pfaller R, Pfanner N, Neupert W. 1989. MOM19, an import receptor for mitochondrial precursor proteins. Cell 59:1061–70
    [Google Scholar]
  8. 8.
    Söllner T, Pfaller R, Griffiths G, Pfanner N, Neupert W. 1990. A mitochondrial import receptor for the ADP/ATP carrier. Cell 62:107–15
    [Google Scholar]
  9. 9.
    Moczko M, Ehmann B, Gärtner F, Hönlinger A, Schäfer E et al. 1994. Deletion of the receptor MOM19 strongly impairs import of cleavable preproteins into Saccharomyces cerevisiae mitochondria. J. Biol. Chem. 269:9045–51
    [Google Scholar]
  10. 10.
    Moczko M, Gärtner F, Pfanner N. 1993. The protein import receptor MOM19 of yeast mitochondria. FEBS Lett 326:251–54
    [Google Scholar]
  11. 11.
    Ramage L, Junne T, Hahne K, Lithgow T, Schatz G. 1993. Functional cooperation of mitochondrial protein import receptors in yeast. EMBO J 12:4115–23
    [Google Scholar]
  12. 12.
    Seki N, Moczko M, Nagase T, Zufall N, Ehmann B et al. 1995. A human homolog of the mitochondrial protein import receptor Mom19 can assemble with the yeast mitochondrial receptor complex. FEBS Lett 375:307–10
    [Google Scholar]
  13. 13.
    Steger HF, Söllner T, Kiebler M, Dietmeier KA, Pfaller R et al. 1990. Import of ADP/ATP carrier into mitochondria: Two receptors act in parallel. J. Cell Biol. 111:2353–63
    [Google Scholar]
  14. 14.
    Hase T, Müller H, Riezman H, Schatz G. 1984. A 70-kd protein of the yeast mitochondrial outer membrane is targeted and anchored via its extreme amino terminus. EMBO J 3:3157–64
    [Google Scholar]
  15. 15.
    Hines V, Brandt A, Griffiths G, Horstmann H, Brütsch H et al. 1990. Protein import into yeast mitochondria is accelerated by the outer membrane protein MAS70. EMBO J 8:3191–200
    [Google Scholar]
  16. 16.
    Schlossmann J, Dietmeier K, Pfanner N, Neupert W. 1994. Specific recognition of mitochondrial preproteins by the cytosolic domain of the import receptor MOM72. J. Biol. Chem. 269:11893–901
    [Google Scholar]
  17. 17.
    Schlossmann J, Lill R, Neupert W, Court DA. 1996. Tom71, a novel homologue of the mitochondrial preprotein receptor Tom70. J. Biol. Chem. 271:17890–95
    [Google Scholar]
  18. 18.
    Bömer U, Pfanner N, Dietmeier K. 1996. Identification of a third yeast mitochondrial Tom protein with tetratricopeptide repeats. FEBS Lett 382:153–58
    [Google Scholar]
  19. 19.
    Brix J, Rüdiger S, Bukau B, Schneider-Mergener J, Pfanner N. 1999. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J. Biol. Chem. 274:16522–30
    [Google Scholar]
  20. 20.
    Backes S, Hess S, Boos F, Woelhaf MW, Tödel S et al. 2018. Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 217:1369–82
    [Google Scholar]
  21. 21.
    Yamamoto H, Fukui K, Takahashi H, Kitamura S, Shiota T et al. 2009. Roles of TOM70 in import of presequence-containing mitochondrial proteins. J. Biol. Chem. 284:31635–46
    [Google Scholar]
  22. 22.
    Young JC, Hoogenraad NJ, Hartl FU. 2003. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112:41–50
    [Google Scholar]
  23. 23.
    Vestweber D, Brunner J, Baker A, Schatz G. 1989. A 42K outer-membrane protein is a component of the yeast mitochondrial protein import site. Nature 341:205–9
    [Google Scholar]
  24. 24.
    Baker KP, Schaniel A, Vestweber D, Schatz G. 1990. A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 348:605–9
    [Google Scholar]
  25. 25.
    Kiebler M, Pfaller R, Söllner T, Griffiths G, Horstmann H et al. 1990. Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins. Nature 348:610–16
    [Google Scholar]
  26. 26.
    Kiebler M, Keil P, Schneider H, van der Klei IJ, Pfanner N et al. 1993. The mitochondrial receptor complex: a central role of MOM22 in mediating preprotein transfer from receptors to the general insertion pore. Cell 74:483–92
    [Google Scholar]
  27. 27.
    Lithgow T, Junne T, Suda K, Gratzer S, Schatz G. 1994. The mitochondrial outer membrane protein Mas22p is essential for protein import and viability of yeast. PNAS 91:11973–77
    [Google Scholar]
  28. 28.
    Nakai M, Endo T. 1995. Identification of yeast MAS17 encoding the functional counterpart of the mitochondrial receptor complex protein MOM22 of Neurospora crassa. . FEBS Lett 357:202–6
    [Google Scholar]
  29. 29.
    van Wilpe S, Ryan MT, Hill K, Maarse AC, Meisinger C et al. 1999. Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401:485–89
    [Google Scholar]
  30. 30.
    Yamano K, Yatsukawa Y, Esaki M, Hobbs AEA, Jensen RE et al. 2008. Tom20 and Tom22 share the common signal recognition pathway in mitochondrial protein import. J. Biol. Chem. 283:3799–807
    [Google Scholar]
  31. 31.
    Söllner T, Rassow J, Wiedmann M, Schloßmann J, Keil P et al. 1992. Mapping of the protein import machinery in the mitochondrial outer membrane by crosslinking of translocation intermediates. . Nature 355:84–87
    [Google Scholar]
  32. 32.
    Hönlinger A, Kübrich M, Moczko M, Gärtner F, Mallet L et al. 1995. The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins. Mol. Cell. Biol. 15:3382–89
    [Google Scholar]
  33. 33.
    Dietmeier K., Hönlinger A, Bömer U, Dekker PJT, Eckerskorn C et al. 1997. Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388:195–200
    [Google Scholar]
  34. 34.
    Kassenbrock CK, Cao W, Douglas MG. 1993. Genetic and biochemical characterization of ISP6, a small mitochondrial outer membrane protein associated with the protein translocation complex. EMBO J 12:3023–34
    [Google Scholar]
  35. 35.
    Alconada A, Kübrich M, Moczko M, Hönlinger A, Pfanner N. 1995. The mitochondrial receptor complex: The small subunit Mom8b/Isp6 supports association of receptors with the general insertion pore and transfer of preproteins. Mol. Cell. Biol. 15:6196–205
    [Google Scholar]
  36. 36.
    Cao W, Douglas MG. 1995. Biogenesis of ISP6, a small carboxy-terminal anchored protein of the receptor complex of the mitochondrial outer membrane. J. Biol. Chem. 270:5674–79
    [Google Scholar]
  37. 37.
    Hönlinger A, Bömer U, Alconada A, Eckerskorn C, Lottspeich F et al. 1996. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J 15:2125–37
    [Google Scholar]
  38. 38.
    Pfanner N, Douglas MG, Endo T, Hoogenraad NJ, Jensen RE et al. 1996. Uniform nomenclature for the protein transport machinery of the mitochondrial membranes. Trends Biochem. Sci. 21:51–52
    [Google Scholar]
  39. 39.
    Endo T, Yamano K. 2010. Transport of proteins across or into the mitochondrial outer membrane. Biochim. Biophys. Acta Mol. Cell Res. 1803:706–14
    [Google Scholar]
  40. 40.
    Abe Y, Shodai T, Muto T, Mihara K, Torii H et al. 2000. Structural basis of presequence recognition by the mitochondrial protein receptor Tom20. Cell 100:551–60The first NMR structure of the receptor (Tom20)–presequence complex.
    [Google Scholar]
  41. 41.
    Araiso Y, Tsutsumi A, Qiu J, Imai K, Shiota T et al. 2019. Structure of mitochondrial import gate reveals distinct preprotein paths. Nature 575:395–401The first high-resolution cryo-EM structure of the TOM complex.
    [Google Scholar]
  42. 42.
    Tucker K, Park E. 2019. Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat. Struct. Mol. Biol. 26:1158–66The first high-resolution cryo-EM structure of the TOM complex.
    [Google Scholar]
  43. 43.
    Endo T, Yamano K, Kawano S. 2011. Structural insight into the mitochondrial protein import system. Biochim. Biophys. Acta Biomembr. 1808:955–70
    [Google Scholar]
  44. 44.
    Perry AJ, Hulett JM, Likić VA, Lithgow T, Gooley PR. 2006. Convergent evolution of receptors for protein import into mitochondria. Curr. Biol. 16:221–29
    [Google Scholar]
  45. 45.
    Muto T, Obita T, Abe Y, Shodai T, Endo T et al. 2001. NMR identification of the Tom20 binding segment in mitochondrial presequences. J. Mol. Biol. 306:137–43
    [Google Scholar]
  46. 46.
    Saitoh T, Igura M, Obita T, Ose T, Kojima R et al. 2007. Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states. EMBO J 26:4777–87
    [Google Scholar]
  47. 47.
    Wu Y, Sha B. 2006. Crystal structure of yeast mitochondrial outer membrane translocon member Tom70p. Nat. Struct. Mol. Biol. 13:589–93
    [Google Scholar]
  48. 48.
    Li J, Qian X, Hu J, Sha B 2009. Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading. J. Biol. Chem. 284:23852–59
    [Google Scholar]
  49. 49.
    Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S et al. 2020. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science 370:eabe9403
    [Google Scholar]
  50. 50.
    Gao X, Zhu K, Qin B, Olieric V, Wang M et al. 2021. Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions. Nat. Commun. 12:2843
    [Google Scholar]
  51. 51.
    Künkele K-P, Heins S, Dembowski M, Nargang FE, Benz R et al. 1998. The preprotein translocation channel of the outer membrane of mitochondria. Cell 93:1009–19The first EM structure of the TOM complex.
    [Google Scholar]
  52. 52.
    Ahting U, Thun C, Hegerl R, Typke D, Nargang FE et al. 1999. The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147:959–68
    [Google Scholar]
  53. 53.
    Model K, Prinz T, Ruiz T, Radermacher M, Krimmer T et al. 2002. Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. J. Mol. Biol. 316:657–66
    [Google Scholar]
  54. 54.
    Model K, Meisinger C, Kühlbrandt W. 2008. Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J. Mol. Biol. 383:1049–57
    [Google Scholar]
  55. 55.
    Shiota T, Mabuchi H, Tanaka-Yamano S, Yamano K, Endo T. 2011. In vivo protein-interaction mapping of a mitochondrial translocator protein Tom22 at work. PNAS 108:15179–83
    [Google Scholar]
  56. 56.
    Shiota T, Imai K, Qiu J, Hewitt VL, Tan K et al. 2015. Molecular architecture of the active mitochondrial protein gate. Science 349:1544–48The subunit mapping of the TOM complex based on site-specific photocrosslinking.
    [Google Scholar]
  57. 57.
    Bausewein T, Mills DJ, Langer JD, Nitschke B, Nussberger S et al. 2017. Cryo-EM structure of the TOM core complex from Neurospora crassa. Cell 170:693–700The first mid-resolution cryo-EM structure of the TOM complex.
    [Google Scholar]
  58. 58.
    Wang W, Chen X, Zhang L, Yi J, Ma Q et al. 2020. Atomic structure of human TOM core complex. Cell Discov 6:67
    [Google Scholar]
  59. 59.
    Guan Z, Yan L, Wang Q, Qi L, Hong S et al. 2021. Structural insights into assembly of human mitochondrial translocase TOM complex. Cell Discov 7:22
    [Google Scholar]
  60. 60.
    Sato TK, Kawano S, Endo T 2019. Role of the membrane potential in mitochondrial protein unfolding and import. Sci. Rep. 9:7637
    [Google Scholar]
  61. 61.
    Wiedemann N, Pfanner N, Ryan MT. 2001. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J 20:951–60
    [Google Scholar]
  62. 62.
    Esaki M, Kanamori T, Nishikawa S, Shin I, Schultz PG et al. 2003. Tom40 protein import channel binds to non-native proteins and prevents their aggregation. Nat. Struct. Biol. 10:988–94
    [Google Scholar]
  63. 63.
    Court DA, Nargang FE, Steiner H, Hodges RS, Neupert W et al. 1996. Role of the intermembrane-space domain of the preprotein receptor Tom22 in protein import into mitochondria. Mol. Cell. Biol. 16:4035–42
    [Google Scholar]
  64. 64.
    Moczko M, Bömer U, Kübrich M, Zufall N, Hönlinger A et al. 1997. The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences. Mol. Cell. Biol. 17:6574–84
    [Google Scholar]
  65. 65.
    Rapaport D, Neupert W, Lill R. 1997. Mitochondrial protein import. Tom40 plays a major role in targeting and translocation of preproteins by forming a specific binding site for the presequence. J. Biol. Chem. 272:18725–31
    [Google Scholar]
  66. 66.
    Kanamori T, Nishikawa S, Nakai N, Shin I, Schultz G et al. 1999. Uncoupling of transfer of the presequence and unfolding of the mature domain in precursor translocation across the mitochondrial outer membrane. PNAS 96:3634–39
    [Google Scholar]
  67. 67.
    Esaki M, Shimizu H, Ono T, Yamamoto H, Kanamori T et al. 2004. Mitochondrial protein import. Requirement of presequence elements and TOM components for precursor binding to the TOM complex. J. Biol. Chem. 279:45701–7
    [Google Scholar]
  68. 68.
    Schatz G. 1997. Just follow the acid chain. Nature 388:121–22
    [Google Scholar]
  69. 69.
    Model K, Meisinger C, Prinz T, Wiedemann N, Truscott KN et al. 2001. Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nat. Struct. Biol. 8:361–70
    [Google Scholar]
  70. 70.
    Becker T, Wenz LS, Thornton N, Stroud D, Meisinger C et al. 2011. Biogenesis of mitochondria: dual role of Tom7 in modulating assembly of the preprotein translocase of the outer membrane. J. Mol. Biol. 405:113–24
    [Google Scholar]
  71. 71.
    Gornicka A, Bragoszewski P, Chroscicki P, Wenz LS, Schulz C et al. 2014. A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria. Mol. Biol. Cell 25:3999–4009
    [Google Scholar]
  72. 72.
    Sakaue H, Shiota T, Ishizaka N, Kawano S, Tamura Y et al. 2019. Porin associates with Tom22 to regulate the mitochondrial protein gate assembly. Mol Cell 73:1044–55
    [Google Scholar]
  73. 73.
    Gold VA, Chroscicki P, Bragoszewski P, Chacinska A. 2017. Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography. EMBO Rep 10:1786–800
    [Google Scholar]
  74. 74.
    Wurm CA, Neumann D, Lauterbach MA, Harke B, Egner A et al. 2011. Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient. PNAS 108:13546–51
    [Google Scholar]
  75. 75.
    Harner M, Neupert W, Deponte M. 2011. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria. EMBO J 30:3232–41
    [Google Scholar]
  76. 76.
    Santos HJ, Makiuchi T, Nozaki T. 2018. Reinventing an organelle: the reduced mitochondrion in parasitic protists. Trends Parasitol 34:1038–55
    [Google Scholar]
  77. 77.
    Dolezal P, Likic V, Tachezy J, Lithgow T. 2006. Evolution of the molecular machines for protein import into mitochondria. Science 313:314–18
    [Google Scholar]
  78. 78.
    Mani J, Meisinger C, Schneider A. 2016. Peeping at TOMs—diverse entry gates to mitochondria provide insights into the evolution of eukaryotes. Mol. Biol. Evol. 33:337–51
    [Google Scholar]
  79. 79.
    Mani J, Desy S, Niemann M, Chanfon A, Oeljeklaus S et al. 2015. Mitochondrial protein import receptors in kinetoplastids reveal convergent evolution over large phylogenetic distances. Nat. Commun. 6:6646
    [Google Scholar]
  80. 80.
    Eckers E, Cyrklaff M, Simpson L, Deponte M. 2012. Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries. Biol. Chem. 393:513–24
    [Google Scholar]
  81. 81.
    Lister R, Carrie C, Duncan O, Ho LHM, Howell KA et al. 2007. Functional definition of outer membrane proteins involved in preprotein import into mitochondria. Plant Cell 19:3739–59
    [Google Scholar]
  82. 82.
    Wojtkowska M, Buczek D, Stobienia O, Karachitos A, Antoniewicz M et al. 2015. The TOM complex of Amoebozoans: the cases of the amoeba Acanthamoeba castellanii and the slime mold Dictyostelium discoideum. Protist 166:349–62
    [Google Scholar]
  83. 83.
    Hulett JM, Walsh P, Lithgow T. 2007. Domain stealing by receptors in a protein transport complex. Mol. Biol. Evol. 24:1909–11
    [Google Scholar]
  84. 84.
    Melin J, Kilisch M, Neumann P, Lytovchenko O, Gomkale R et al. 2015. A presequence-binding groove in Tom70 supports import of Mdl1 into mitochondria. Biochim. Biophys. Acta Mol. Cell Res. 1853:1850–59
    [Google Scholar]
  85. 85.
    Tsaousis AD, Gaston D, Stechmann A, Walker PB, Lithgow T et al. 2011. A functional Tom70 in the human parasite Blastocytis sp.: implications for the evolution of the mitochondrial import apparatus. Mol. Biol. Evol. 28:781–91
    [Google Scholar]
  86. 86.
    Schweiger R, Soll J, Jung K, Heermann R, Schwenkert S. 2013. Quantification of interaction strengths between chaperones and tetratricopeptide repeat domain-containing membrane proteins. J. Biol. Chem. 288:30614–25
    [Google Scholar]
  87. 87.
    Makki A, Rada P, Žárský V, Kereïche S, Kováčik L et al. 2019. Triplet-pore structure of a highly divergent TOM complex of hydrogenosomes in Trichomonas vaginalis. PLOS Biol 17:e3000098
    [Google Scholar]
  88. 88.
    Rout S, Oeljeklaus S, Makki A, Tachezy J, Warscheid B et al. 2021. Determinism and contingencies shaped the evolution of mitochondrial protein import. PNAS 118:e2017774118
    [Google Scholar]
  89. 89.
    Makiuchi T, Mi-ichi F, Nakada-Tsukui K, Nozaki T. 2013. Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport. Sci. Rep. 3:1129
    [Google Scholar]
  90. 90.
    Perez-Riba A, Itzhaki LS. 2019. The tetratricopeptide-repeat motif is a versatile platform that enables diverse modes of molecular recognition. Curr. Opin. Struct. Biol. 54:43–49
    [Google Scholar]
  91. 91.
    Jernigan KK, Bordenstein SR. 2015. Tandem-repeat protein domains across the tree of life. PeerJ 3:e732
    [Google Scholar]
  92. 92.
    Tewari R, Bailes E, Bunting KA, Coates JC. 2010. Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol 20:470–81
    [Google Scholar]
  93. 93.
    Pfaller R, Pfanner N, Neupert W. 1989. Mitochondrial protein import. Bypass of proteinaceous surface receptors can occur with low specificity and efficiency. J. Biol. Chem. 264:34–39
    [Google Scholar]
  94. 94.
    Takeda H, Tsutsumi A, Nishizawa T, Lindau C, Busto JV et al. 2021. Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature 590:163–69
    [Google Scholar]
  95. 95.
    Chacinska A, Lind M, Frazier AE, Dudek J, Meisinger C et al. 2005. Mitochondrial presequence translocase: Switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120:817–29
    [Google Scholar]
  96. 96.
    Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS et al. 2018. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27:14–25
    [Google Scholar]
  97. 97.
    Araiso Y, Imai K, Endo T. 2021. Structural snapshot of the mitochondrial protein import gate. FEBS J. 288:185300–10
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-032620-104527
Loading
/content/journals/10.1146/annurev-biochem-032620-104527
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error