1932

Abstract

The brain, as one of the most lipid-rich organs, heavily relies on lipid transport and distribution to maintain homeostasis and neuronal function. Lipid transport mediated by lipoprotein particles, which are complex structures composed of apolipoproteins and lipids, has been thoroughly characterized in the periphery. Although lipoproteins in the central nervous system (CNS) were reported over half a century ago, the identification of as the strongest genetic risk factor for Alzheimer's disease has accelerated investigation of the biology and pathobiology of lipoproteins in the CNS. This review provides an overview of the different components of lipoprotein particles, in particular apolipoproteins, and their involvements in both physiological functions and pathological mechanisms in the CNS.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-032620-104801
2022-06-21
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-032620-104801.html?itemId=/content/journals/10.1146/annurev-biochem-032620-104801&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sastry PS. 1985. Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24:69–176
    [Google Scholar]
  2. 2.
    Mahley RW. 2016. Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arterioscler. Thromb. Vasc. Biol. 36:1305–15
    [Google Scholar]
  3. 3.
    Wang H, Eckel RH. 2014. What are lipoproteins doing in the brain?. Trends Endocrinol. Metab. 25:8–14
    [Google Scholar]
  4. 4.
    Koch S, Donarski N, Goetze K, Kreckel M, Stuerenburg HJ et al. 2001. Characterization of four lipoprotein classes in human cerebrospinal fluid. J. Lipid Res. 42:1143–51
    [Google Scholar]
  5. 5.
    Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J et al. 1993. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. PNAS 90:1977–81
    [Google Scholar]
  6. 6.
    Beisiegel U, Spector AA. 2001. Lipids and lipoproteins in the brain. Curr. Opin. Lipidol. 12:243–44
    [Google Scholar]
  7. 7.
    Elliott DA, Weickert CS, Garner B. 2010. Apolipoproteins in the brain: implications for neurological and psychiatric disorders. Clin. Lipidol. 51:555–73
    [Google Scholar]
  8. 8.
    Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH. 1987. Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain. J. Biol. Chem. 262:14352–60
    [Google Scholar]
  9. 9.
    Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC et al. 2001. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–57
    [Google Scholar]
  10. 10.
    Hayashi H, Campenot RB, Vance DE, Vance JE. 2007. Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1. J. Neurosci. 27:1933–41
    [Google Scholar]
  11. 11.
    Feingold KR 2000. Introduction to Lipids and Lipoproteins. Endotext KR Feingold, B Anawalt, A Boyce, G Chrousos, WW de Herder, et al South Dartmouth, MA: MDText.com, Inc.
    [Google Scholar]
  12. 12.
    Jurevics H, Morell P. 1995. Cholesterol for synthesis of myelin is made locally, not imported into brain. J. Neurochem. 64:895–901
    [Google Scholar]
  13. 13.
    Dietschy JM, Turley SD. 2001. Cholesterol metabolism in the brain. Curr. Opin. Lipidol. 12:105–12
    [Google Scholar]
  14. 14.
    Steck TL, Lange Y. 2010. Cell cholesterol homeostasis: mediation by active cholesterol. Trends Cell Biol 20:680–87
    [Google Scholar]
  15. 15.
    Roca-Agujetas V, Barbero-Camps E, de Dios C, Podlesniy P, Abadin X et al. 2021. Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in Alzheimer's disease. Mol. Neurodegener. 16:15
    [Google Scholar]
  16. 16.
    Shao Y, Li T, Liu Z, Wang X, Xu X et al. 2021. Comprehensive metabolic profiling of Parkinson's disease by liquid chromatography-mass spectrometry. Mol. Neurodegener. 16:4
    [Google Scholar]
  17. 17.
    Loving BA, Bruce KD. 2020. Lipid and lipoprotein metabolism in microglia. Front. Physiol. 11:393
    [Google Scholar]
  18. 18.
    Bahrami A, Barreto GE, Lombardi G, Pirro M, Sahebkar A. 2019. Emerging roles for high-density lipoproteins in neurodegenerative disorders. BioFactors 45:725–39
    [Google Scholar]
  19. 19.
    Mahley RW, Innerarity TL, Rall SC Jr., Weisgraber KH. 1984. Plasma lipoproteins: apolipoprotein structure and function. J. Lipid Res. 25:1277–94
    [Google Scholar]
  20. 20.
    Havel RJ, Yamada N, Shames DM. 1987. Role of apolipoprotein E in lipoprotein metabolism. Am. Heart J. 113:470–74
    [Google Scholar]
  21. 21.
    Mahley RW. 1988. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–30
    [Google Scholar]
  22. 22.
    Weisgraber KH, Mahley RW. 1980. Subfractionation of human high density lipoproteins by heparin-sepharose affinity chromatography. J. Lipid Res. 21:316–25
    [Google Scholar]
  23. 23.
    Bu G. 2009. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 10:333–44
    [Google Scholar]
  24. 24.
    Zhao N, Liu C-C, Qiao W, Bu G. 2018. Apolipoprotein E, receptors, and modulation of Alzheimer's disease. Biol. Psychiatry 83:347–57
    [Google Scholar]
  25. 25.
    Zhang J, Liu Q. 2015. Cholesterol metabolism and homeostasis in the brain. Protein Cell 6:254–64
    [Google Scholar]
  26. 26.
    Vance JE. 2012. Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis. Model. Mech. 5:746–55
    [Google Scholar]
  27. 27.
    Quan G, Xie C, Dietschy JM, Turley SD. 2003. Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Brain Res. Dev. Brain Res. 146:87–98
    [Google Scholar]
  28. 28.
    Nieweg K, Schaller H, Pfrieger FW. 2009. Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J. Neurochem. 109:125–34
    [Google Scholar]
  29. 29.
    Lanfranco MF, Ng CA, Rebeck GW. 2020. ApoE lipidation as a therapeutic target in Alzheimer's disease. Int. J. Mol. Sci. 21:6336
    [Google Scholar]
  30. 30.
    Swahn B, Brönnestam R, Dencker SJ. 1961. On the origin of the lipoproteins in the cerebrospinal fluid. Neurology 11:437–40
    [Google Scholar]
  31. 31.
    Roheim PS, Carey M, Forte T, Vega GL. 1979. Apolipoproteins in human cerebrospinal fluid. PNAS 76:4646–49
    [Google Scholar]
  32. 32.
    Koch M, Furtado JD, Falk K, Leypoldt F, Mukamal KJ, Jensen MK. 2017. Apolipoproteins and their subspecies in human cerebrospinal fluid and plasma. Alzheimer's Dementia 6:182–87
    [Google Scholar]
  33. 33.
    Elshourbagy NA, Liao WS, Mahley RW, Taylor JM. 1985. Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. PNAS 82:203–7
    [Google Scholar]
  34. 34.
    Linton MF, Gish R, Hubl ST, Butler E, Esquivel C et al. 1991. Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation. J. Clin. Investig. 88:270–81
    [Google Scholar]
  35. 35.
    Boyles JK, Pitas RE, Wilson E, Mahley RW, Taylor JM. 1985. Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J. Clin. Investig. 76:1501–13
    [Google Scholar]
  36. 36.
    Kang SS, Ebbert MTW, Baker KE, Cook C, Wang X et al. 2018. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J. Exp. Med. 215:2235–45
    [Google Scholar]
  37. 37.
    Pasinetti GM, Johnson SA, Oda T, Rozovsky I, Finch CE. 1994. Clusterin (SGP-2): a multifunctional glycoprotein with regional expression in astrocytes and neurons of the adult rat brain. J. Comp. Neurol. 339:387–400
    [Google Scholar]
  38. 38.
    LaDu MJ, Gilligan SM, Lukens JR, Cabana VG, Reardon CA et al. 1998. Nascent astrocyte particles differ from lipoproteins in CSF. J. Neurochem. 70:2070–81
    [Google Scholar]
  39. 39.
    Kim WS, Guillemin GJ, Glaros EN, Lim CK, Garner B. 2006. Quantitation of ATP-binding cassette subfamily-A transporter gene expression in primary human brain cells. Neuroreport 17:891–96
    [Google Scholar]
  40. 40.
    Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X et al. 2004. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J. Biol. Chem. 279:40987–93
    [Google Scholar]
  41. 41.
    Lee J, Bu G. 2005. Genetics and molecular biology: ABCA1 in brain apolipoprotein E metabolism and lipidation. Curr. Opin. Lipidol. 16:115–17
    [Google Scholar]
  42. 42.
    Hayden MR, Clee SM, Brooks-Wilson A, Genest J Jr., Attie A, Kastelein JJ. 2000. Cholesterol efflux regulatory protein, Tangier disease and familial high-density lipoprotein deficiency. Curr. Opin. Lipidol. 11:117–22
    [Google Scholar]
  43. 43.
    Wellington CL, Walker EK, Suarez A, Kwok A, Bissada N et al. 2002. ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab. Investig. 82:273–83
    [Google Scholar]
  44. 44.
    Koldamova RP, Lefterov IM, Ikonomovic MD, Skoko J, Lefterov PI et al. 2003. 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid β secretion. J. Biol. Chem. 278:13244–56
    [Google Scholar]
  45. 45.
    Hirsch-Reinshagen V, Zhou S, Burgess BL, Bernier L, McIsaac SA et al. 2004. Deficiency of ABCA1 impairs apolipoprotein E metabolism in brain. J. Biol. Chem. 279:41197–207
    [Google Scholar]
  46. 46.
    Kim WS, Rahmanto AS, Kamili A, Rye K-A, Guillemin GJ et al. 2007. Role of ABCG1 and ABCA1 in regulation of neuronal cholesterol efflux to apolipoprotein E discs and suppression of amyloid-β peptide generation. J. Biol. Chem. 282:2851–61
    [Google Scholar]
  47. 47.
    Kaminski WE, Orso E, Diederich W, Klucken J, Drobnik W, Schmitz G. 2000. Identification of a novel human sterol-sensitive ATP-binding cassette transporter (ABCA7). Biochem. Biophys. Res. Commun. 273:532–38
    [Google Scholar]
  48. 48.
    Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW et al. 2003. ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J. Biol. Chem. 278:42906–12
    [Google Scholar]
  49. 49.
    Sakae N, Liu CC, Shinohara M, Frisch-Daiello J, Ma L et al. 2016. ABCA7 deficiency accelerates amyloid-β generation and Alzheimer's neuronal pathology. J. Neurosci. 36:3848–59
    [Google Scholar]
  50. 50.
    Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN et al. 2011. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat. Genet. 43:436–41
    [Google Scholar]
  51. 51.
    Tarr PT, Edwards PA. 2008. ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2. J. Lipid Res. 49:169–82
    [Google Scholar]
  52. 52.
    Wang N, Yvan-Charvet L, Lutjohann D, Mulder M, Vanmierlo T et al. 2008. ATP-binding cassette transporters G1 and G4 mediate cholesterol and desmosterol efflux to HDL and regulate sterol accumulation in the brain. FASEB J. 22:1073–82
    [Google Scholar]
  53. 53.
    Hirsch-Reinshagen V, Donkin J, Stukas S, Chan J, Wilkinson A et al. 2009. LCAT synthesized by primary astrocytes esterifies cholesterol on glia-derived lipoproteins. J. Lipid Res. 50:885–93
    [Google Scholar]
  54. 54.
    Yamada T, Kawata M, Arai H, Fukasawa M, Inoue K, Sato T. 1995. Astroglial localization of cholesteryl ester transfer protein in normal and Alzheimer's disease brain tissues. Acta Neuropathol 90:633–36
    [Google Scholar]
  55. 55.
    Rapp A, Gmeiner B, Huttinger M. 2006. Implication of apoE isoforms in cholesterol metabolism by primary rat hippocampal neurons and astrocytes. Biochimie 88:473–83
    [Google Scholar]
  56. 56.
    Kanekiyo T, Liu CC, Shinohara M, Li J, Bu G. 2012. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β. J. Neurosci. 32:16458–65
    [Google Scholar]
  57. 57.
    Liu Q, Trotter J, Zhang J, Peters MM, Cheng H et al. 2010. Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J. Neurosci. 30:17068–78
    [Google Scholar]
  58. 58.
    van Kerkhof P, Lee J, McCormick L, Tetrault E, Lu W et al. 2005. Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J 24:2851–61
    [Google Scholar]
  59. 59.
    Fu Y, Zhao J, Atagi Y, Nielsen HM, Liu C-C et al. 2016. Apolipoprotein E lipoprotein particles inhibit amyloid-β uptake through cell surface heparan sulphate proteoglycan. Mol. Neurodegener. 11:37
    [Google Scholar]
  60. 60.
    Bento-Abreu A, Velasco A, Polo-Hernandez E, Perez-Reyes PL, Tabernero A, Medina JM. 2008. Megalin is a receptor for albumin in astrocytes and is required for the synthesis of the neurotrophic factor oleic acid. J. Neurochem. 106:1149–59
    [Google Scholar]
  61. 61.
    Chun JT, Wang L, Pasinetti GM, Finch CE, Zlokovic BV. 1999. Glycoprotein 330/megalin (LRP-2) has low prevalence as mRNA and protein in brain microvessels and choroid plexus. Exp. Neurol. 157:194–201
    [Google Scholar]
  62. 62.
    Kounnas MZ, Loukinova EB, Stefansson S, Harmony JA, Brewer BH et al. 1995. Identification of glycoprotein 330 as an endocytic receptor for apolipoprotein J/clusterin. J. Biol. Chem. 270:13070–75
    [Google Scholar]
  63. 63.
    LaFerla FM, Troncoso JC, Strickland DK, Kawas CH, Jay G 1997. Neuronal cell death in Alzheimer's disease correlates with apoE uptake and intracellular Abeta stabilization. J. Clin. Investig. 100:310–20
    [Google Scholar]
  64. 64.
    Wicher G, Larsson M, Fex Svenningsen A, Gyllencreutz E, Rask L, Aldskogius H 2006. Low density lipoprotein receptor-related protein-2/megalin is expressed in oligodendrocytes in the mouse spinal cord white matter. J. Neurosci. Res. 83:864–73
    [Google Scholar]
  65. 65.
    Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M. 2016. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of amyloid-beta by microglia. Neuron 91:328–40
    [Google Scholar]
  66. 66.
    Nugent AA, Lin K, van Lengerich B, Lianoglou S, Przybyla L et al. 2020. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105:837–54.e9
    [Google Scholar]
  67. 67.
    Sovic A, Balazs Z, Hrzenjak A, Reicher H, Panzenboeck U et al. 2004. Scavenger receptor class B, type I mediates uptake of lipoprotein-associated phosphatidylcholine by primary porcine cerebrovascular endothelial cells. Neurosci. Lett. 368:11–14
    [Google Scholar]
  68. 68.
    Havel RJ, Kane JP. 1973. Primary dysbetalipoproteinemia: predominance of a specific apoprotein species in triglyceride-rich lipoproteins. PNAS 70:2015–19
    [Google Scholar]
  69. 69.
    Shore VG, Shore B. 1973. Heterogeneity of human plasma very low density lipoproteins. Separation of species differing in protein components. Biochemistry 12:502–7
    [Google Scholar]
  70. 70.
    Utermann G, Jaeschke M, Menzel J. 1975. Familial hyperlipoproteinemia type III: deficiency of a specific apolipoprotein (apo E-III) in the very-low-density lipoproteins. FEBS Lett 56:352–55
    [Google Scholar]
  71. 71.
    Zannis VI, Breslow JL, Utermann G, Mahley RW, Weisgraber KH et al. 1982. Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes. J. Lipid Res. 23:911–14
    [Google Scholar]
  72. 72.
    Das HK, McPherson J, Bruns GA, Karathanasis SK, Breslow JL. 1985. Isolation, characterization, and mapping to chromosome 19 of the human apolipoprotein E gene. J. Biol. Chem. 260:6240–47
    [Google Scholar]
  73. 73.
    McLean JW, Elshourbagy NA, Chang DJ, Mahley RW, Taylor JM. 1984. Human apolipoprotein E mRNA. cDNA cloning and nucleotide sequencing of a new variant. J. Biol. Chem. 259:6498–504
    [Google Scholar]
  74. 74.
    Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA et al. 1997. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA 278:1349–56
    [Google Scholar]
  75. 75.
    Weisgraber KH, Rall SC Jr., Mahley RW 1981. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J. Biol. Chem. 256:9077–83
    [Google Scholar]
  76. 76.
    Rall SC Jr., Weisgraber KH, Mahley RW. 1982. Human apolipoprotein E. The complete amino acid sequence. J. Biol. Chem. 257:4171–78
    [Google Scholar]
  77. 77.
    Arboleda-Velasquez JF, Lopera F, O'Hare M, Delgado-Tirado S, Marino C et al. 2019. Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report. Nat. Med. 25:1680–83
    [Google Scholar]
  78. 78.
    Medway CW, Abdul-Hay S, Mims T, Ma L, Bisceglio G et al. 2014. ApoE variant p.V236E is associated with markedly reduced risk of Alzheimer's disease. Mol. Neurodegener. 9:11
    [Google Scholar]
  79. 79.
    Liu CC, Murray ME, Li X, Zhao N, Wang N et al. 2021. APOE3-Jacksonville (V236E) variant reduces self-aggregation and risk of dementia. Sci. Transl. Med. 13:eabc9375
    [Google Scholar]
  80. 80.
    Abou Ziki MD, Strulovici-Barel Y, Hackett NR, Rodriguez-Flores JL, Mezey JG et al. 2014. Prevalence of the apolipoprotein E Arg145Cys dyslipidemia at-risk polymorphism in African-derived populations. Am. J. Cardiol. 113:302–8
    [Google Scholar]
  81. 81.
    Orth M, Weng W, Funke H, Steinmetz A, Assmann G et al. 1999. Effects of a frequent apolipoprotein E isoform, ApoE4Freiburg (Leu28→Pro), on lipoproteins and the prevalence of coronary artery disease in whites. Arterioscler. Thromb. Vasc. Biol. 19:1306–15
    [Google Scholar]
  82. 82.
    Raulin AC, Kraft L, Al-Hilaly YK, Xue WF, McGeehan JE et al. 2019. The molecular basis for apolipoprotein E4 as the major risk factor for late-onset Alzheimer's disease. J. Mol. Biol. 431:2248–65
    [Google Scholar]
  83. 83.
    Yokoyama S, Kawai Y, Tajima S, Yamamoto A. 1985. Behavior of human apolipoprotein E in aqueous solutions and at interfaces. J. Biol. Chem. 260:16375–82
    [Google Scholar]
  84. 84.
    Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA. 1991. Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252:1817–22
    [Google Scholar]
  85. 85.
    Chen J, Li Q, Wang J 2011. Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. PNAS 108:14813–18
    [Google Scholar]
  86. 86.
    Wetterau JR, Aggerbeck LP, Rall SC Jr., Weisgraber KH. 1988. Human apolipoprotein E3 in aqueous solution. I. Evidence for two structural domains. J. Biol. Chem. 263:6240–48
    [Google Scholar]
  87. 87.
    Aggerbeck LP, Wetterau JR, Weisgraber KH, Wu CS, Lindgren FT. 1988. Human apolipoprotein E3 in aqueous solution. II. Properties of the amino- and carboxyl-terminal domains. J. Biol. Chem. 263:6249–58
    [Google Scholar]
  88. 88.
    Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y. 2006. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci. 26:4985–94
    [Google Scholar]
  89. 89.
    Huynh TV, Wang C, Tran AC, Tabor GT, Mahan TE et al. 2019. Lack of hepatic apoE does not influence early Aβ deposition: observations from a new APOE knock-in model. Mol. Neurodegener. 14:37
    [Google Scholar]
  90. 90.
    Bruinsma IB, Wilhelmus MM, Kox M, Veerhuis R, de Waal RM, Verbeek MM. 2010. Apolipoprotein E protects cultured pericytes and astrocytes from D-Aβ1–40-mediated cell death. Brain Res 1315:169–80
    [Google Scholar]
  91. 91.
    Nelissen K, Mulder M, Smets I, Timmermans S, Smeets K et al. 2012. Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. J. Neurosci. Res. 90:60–71
    [Google Scholar]
  92. 92.
    Rasmussen KL, Tybjaerg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. 2015. Plasma levels of apolipoprotein E and risk of dementia in the general population. Ann. Neurol. 77:301–11
    [Google Scholar]
  93. 93.
    Lin Y-T, Seo J, Gao F, Feldman HM, Wen H-L et al. 2018. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer's disease phenotypes in human iPSC-derived brain cell types. Neuron 98:1141–54.e7
    [Google Scholar]
  94. 94.
    Riddell DR, Zhou H, Atchison K, Warwick HK, Atkinson PJ et al. 2008. Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J. Neurosci. 28:11445–53
    [Google Scholar]
  95. 95.
    Ulrich JD, Burchett JM, Restivo JL, Schuler DR, Verghese PB et al. 2013. In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Mol. Neurodegener. 8:13
    [Google Scholar]
  96. 96.
    Cruchaga C, Kauwe JS, Nowotny P, Bales K, Pickering EH et al. 2012. Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer's disease. Hum. Mol. Genet. 21:4558–71
    [Google Scholar]
  97. 97.
    Martinez-Morillo E, Nielsen HM, Batruch I, Drabovich AP, Begcevic I et al. 2014. Assessment of peptide chemical modifications on the development of an accurate and precise multiplex selected reaction monitoring assay for apolipoprotein E isoforms. J. Proteome Res. 13:1077–87
    [Google Scholar]
  98. 98.
    Conejero-Goldberg C, Gomar JJ, Bobes-Bascaran T, Hyde TM, Kleinman JE et al. 2014. APOE2 enhances neuroprotection against Alzheimer's disease through multiple molecular mechanisms. Mol. Psychiatry 19:1243–50
    [Google Scholar]
  99. 99.
    Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R et al. 2017. A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169:1276–90.e17
    [Google Scholar]
  100. 100.
    Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N et al. 2017. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566–81.e9
    [Google Scholar]
  101. 101.
    Heinsinger NM, Gachechiladze MA, Rebeck GW. 2016. Apolipoprotein E genotype affects size of ApoE complexes in cerebrospinal fluid. J. Neuropathol. Exp. Neurol. 75:918–24
    [Google Scholar]
  102. 102.
    Yamauchi K, Tozuka M, Hidaka H, Hidaka E, Kondo Y, Katsuyama T. 1999. Characterization of apolipoprotein E-containing lipoproteins in cerebrospinal fluid: effect of phenotype on the distribution of apolipoprotein E. Clin. Chem. 45:1431–38
    [Google Scholar]
  103. 103.
    Li Z, Shue F, Zhao N, Shinohara M, Bu G. 2020. APOE2: protective mechanism and therapeutic implications for Alzheimer's disease. Mol. Neurodegener. 15:63
    [Google Scholar]
  104. 104.
    Hu J, Liu C-C, Chen X-F, Zhang Y-W, Xu H, Bu G. 2015. Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoE lipidation and Aβ metabolism in apoE4-targeted replacement mice. Mol. Neurodegener. 10:6
    [Google Scholar]
  105. 105.
    Zhao J, Davis MD, Martens YA, Shinohara M, Graff-Radford NR et al. 2017. APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes. Hum. Mol. Genet. 26:2690–700
    [Google Scholar]
  106. 106.
    Garai K, Baban B, Frieden C. 2011. Dissociation of apolipoprotein E oligomers to monomer is required for high-affinity binding to phospholipid vesicles. Biochemistry 50:2550–58
    [Google Scholar]
  107. 107.
    Hubin E, Verghese PB, van Nuland N, Broersen K. 2019. Apolipoprotein E associated with reconstituted high-density lipoprotein-like particles is protected from aggregation. FEBS Lett 593:1144–53
    [Google Scholar]
  108. 108.
    Frieden C, Wang H, Ho CMW. 2017. A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain–domain interactions. PNAS 114:6292–97
    [Google Scholar]
  109. 109.
    Jain RS, Quarfordt SH. 1979. The carbohydrate content of apolipoprotein E from human very low density lipoproteins. Life Sci 25:1315–23
    [Google Scholar]
  110. 110.
    Wernette-Hammond ME, Lauer SJ, Corsini A, Walker D, Taylor JM, Rall SC Jr. 1989. Glycosylation of human apolipoprotein E. The carbohydrate attachment site is threonine 194. J. Biol. Chem. 264:9094–101
    [Google Scholar]
  111. 111.
    Flowers SA, Grant OC, Woods RJ, Rebeck GW. 2020. O-glycosylation on cerebrospinal fluid and plasma apolipoprotein E differs in the lipid-binding domain. Glycobiology 30:74–85
    [Google Scholar]
  112. 112.
    Lee Y, Kockx M, Raftery MJ, Jessup W, Griffith R, Kritharides L 2010. Glycosylation and sialylation of macrophage-derived human apolipoprotein E analyzed by SDS-PAGE and mass spectrometry: evidence for a novel site of glycosylation on Ser290. Mol. Cell Proteom. 9:1968–81
    [Google Scholar]
  113. 113.
    Kawasaki K, Ogiwara N, Sugano M, Okumura N, Yamauchi K. 2009. Sialic acid moiety of apolipoprotein E and its impact on the formation of lipoprotein particles in human cerebrospinal fluid. Clin. Chim. Acta 402:61–66
    [Google Scholar]
  114. 114.
    Lalazar A, Weisgraber KH, Rall SC Jr., Giladi H, Innerarity TL et al. 1988. Site-specific mutagenesis of human apolipoprotein E. Receptor binding activity of variants with single amino acid substitutions. J. Biol. Chem. 263:3542–45
    [Google Scholar]
  115. 115.
    Weisgraber KH, Innerarity TL, Mahley RW. 1982. Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site. J. Biol. Chem. 257:2518–21
    [Google Scholar]
  116. 116.
    Kowal RC, Herz J, Weisgraber KH, Mahley RW, Brown MS, Goldstein JL. 1990. Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J. Biol. Chem. 265:10771–79
    [Google Scholar]
  117. 117.
    Saito H, Dhanasekaran P, Nguyen D, Baldwin F, Weisgraber KH et al. 2003. Characterization of the heparin binding sites in human apolipoprotein E. J. Biol. Chem. 278:14782–87
    [Google Scholar]
  118. 118.
    Mann WA, Meyer N, Weber W, Meyer S, Greten H, Beisiegel U. 1995. Apolipoprotein E isoforms and rare mutations: parallel reduction in binding to cells and to heparin reflects severity of associated type III hyperlipoproteinemia. J. Lipid Res. 36:517–25
    [Google Scholar]
  119. 119.
    Atagi Y, Liu C-C, Painter MM, Chen X-F, Verbeeck C et al. 2015. Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J. Biol. Chem. 290:26043–50
    [Google Scholar]
  120. 120.
    Michikawa M, Fan QW, Isobe I, Yanagisawa K. 2000. Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture. J. Neurochem. 74:1008–16
    [Google Scholar]
  121. 121.
    Minagawa H, Gong JS, Jung CG, Watanabe A, Lund-Katz S et al. 2009. Mechanism underlying apolipoprotein E (ApoE) isoform-dependent lipid efflux from neural cells in culture. J. Neurosci. Res. 87:2498–508
    [Google Scholar]
  122. 122.
    Farmer BC, Kluemper J, Johnson LA. 2019. Apolipoprotein E4 alters astrocyte fatty acid metabolism and lipid droplet formation. Cells 8:182
    [Google Scholar]
  123. 123.
    Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B et al. 2020. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23:194–208
    [Google Scholar]
  124. 124.
    Nathan BP, Jiang Y, Wong GK, Shen F, Brewer GJ, Struble RG. 2002. Apolipoprotein E4 inhibits, and apolipoprotein E3 promotes neurite outgrowth in cultured adult mouse cortical neurons through the low-density lipoprotein receptor-related protein. Brain Res 928:96–105
    [Google Scholar]
  125. 125.
    Holtzman DM, Pitas RE, Kilbridge J, Nathan B, Mahley RW et al. 1995. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. PNAS 92:9480–84
    [Google Scholar]
  126. 126.
    Sun Y, Wu S, Bu G, Onifade MK, Patel SN et al. 1998. Glial fibrillary acidic protein-apolipoprotein E (apoE) transgenic mice: astrocyte-specific expression and differing biological effects of astrocyte-secreted apoE3 and apoE4 lipoproteins. J. Neurosci. 18:3261–72
    [Google Scholar]
  127. 127.
    Wang C, Wilson WA, Moore SD, Mace BE, Maeda N et al. 2005. Human apoE4-targeted replacement mice display synaptic deficits in the absence of neuropathology. Neurobiol. Dis. 18:390–98
    [Google Scholar]
  128. 128.
    Dumanis SB, Tesoriero JA, Babus LW, Nguyen MT, Trotter JH et al. 2009. ApoE4 decreases spine density and dendritic complexity in cortical neurons in vivo. J. Neurosci. 29:15317–22
    [Google Scholar]
  129. 129.
    Vitek MP, Brown CM, Colton CA. 2009. APOE genotype-specific differences in the innate immune response. Neurobiol. Aging 30:1350–60
    [Google Scholar]
  130. 130.
    Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L et al. 2017. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549:523–27
    [Google Scholar]
  131. 131.
    Maezawa I, Nivison M, Montine KS, Maeda N, Montine TJ. 2006. Neurotoxicity from innate immune response is greatest with targeted replacement of ε4 allele of apolipoprotein E gene and is mediated by microglial p38MAPK. FASEB J 20:797–99
    [Google Scholar]
  132. 132.
    Blaschuk O, Burdzy K, Fritz IB. 1983. Purification and characterization of a cell-aggregating factor (clusterin), the major glycoprotein in ram rete testis fluid. J. Biol. Chem. 258:7714–20
    [Google Scholar]
  133. 133.
    Jones SE, Jomary C. 2002. Clusterin. Int. J. Biochem. Cell Biol. 34:427–31
    [Google Scholar]
  134. 134.
    Jenne DE, Tschopp J. 1992. Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem. Sci. 17:154–59
    [Google Scholar]
  135. 135.
    Wong P, Pineault J, Lakins J, Taillefer D, Leger J et al. 1993. Genomic organization and expression of the rat TRPM-2 (clusterin) gene, a gene implicated in apoptosis. J. Biol. Chem. 268:5021–31
    [Google Scholar]
  136. 136.
    Burkey BF, deSilva HV, Harmony JA. 1991. Intracellular processing of apolipoprotein J precursor to the mature heterodimer. J. Lipid Res. 32:1039–48
    [Google Scholar]
  137. 137.
    de Silva HV, Stuart WD, Park YB, Mao SJ, Gil CM et al. 1990. Purification and characterization of apolipoprotein J. J. Biol. Chem. 265:14292–97
    [Google Scholar]
  138. 138.
    de Silva HV, Harmony JA, Stuart WD, Gil CM, Robbins J. 1990. Apolipoprotein J: structure and tissue distribution. Biochemistry 29:5380–89
    [Google Scholar]
  139. 139.
    Calero M, Tokuda T, Rostagno A, Kumar A, Zlokovic B et al. 1999. Functional and structural properties of lipid-associated apolipoprotein J (clusterin). Biochem. J. 344:Part 2375–83
    [Google Scholar]
  140. 140.
    Itakura E, Chiba M, Murata T, Matsuura A. 2020. Heparan sulfate is a clearance receptor for aberrant extracellular proteins. J. Cell Biol. 219:jcb.201911126
    [Google Scholar]
  141. 141.
    de Silva HV, Stuart WD, Duvic CR, Wetterau JR, Ray MJ et al. 1990. A 70-kDa apolipoprotein designated ApoJ is a marker for subclasses of human plasma high density lipoproteins. J. Biol. Chem. 265:13240–47
    [Google Scholar]
  142. 142.
    Borghini I, Barja F, Pometta D, James RW. 1995. Characterization of subpopulations of lipoprotein particles isolated from human cerebrospinal fluid. Biochim. Biophys. Acta Lipids Lipid Metab. 1255:192–200
    [Google Scholar]
  143. 143.
    Herring SK, Moon H-J, Rawal P, Chhibber A, Zhao L. 2019. Brain clusterin protein isoforms and mitochondrial localization. eLife 8:e48255
    [Google Scholar]
  144. 144.
    Jenne DE, Lowin B, Peitsch MC, Bottcher A, Schmitz G, Tschopp J. 1991. Clusterin (complement lysis inhibitor) forms a high density lipoprotein complex with apolipoprotein A-I in human plasma. J. Biol. Chem. 266:11030–36
    [Google Scholar]
  145. 145.
    Rull A, Martinez-Bujidos M, Perez-Cuellar M, Perez A, Ordonez-Llanos J, Sanchez-Quesada JL. 2015. Increased concentration of clusterin/apolipoprotein J (apoJ) in hyperlipemic serum is paradoxically associated with decreased apoJ content in lipoproteins. Atherosclerosis 241:463–70
    [Google Scholar]
  146. 146.
    Bonaterra-Pastra A, Fernandez-de-Retana S, Rivas-Urbina A, Puig N, Benitez S et al. 2021. Comparison of plasma lipoprotein composition and function in cerebral amyloid angiopathy and Alzheimer's disease. Biomedicines 9:72
    [Google Scholar]
  147. 147.
    Suzuki T, Tozuka M, Kazuyoshi Y, Sugano M, Nakabayashi T et al. 2002. Predominant apolipoprotein J exists as lipid-poor mixtures in cerebrospinal fluid. Ann. Clin. Lab. Sci. 32:369–76
    [Google Scholar]
  148. 148.
    Fagan AM, Holtzman DM, Munson G, Mathur T, Schneider D et al. 1999. Unique lipoproteins secreted by primary astrocytes from wild type, apoE (−/−), and human apoE transgenic mice. J. Biol. Chem. 274:30001–7
    [Google Scholar]
  149. 149.
    DeMattos RB, Brendza RP, Heuser JE, Kierson M, Cirrito JR et al. 2001. Purification and characterization of astrocyte-secreted apolipoprotein E and J-containing lipoproteins from wild-type and human apoE transgenic mice. Neurochem. Int. 39:415–25
    [Google Scholar]
  150. 150.
    Murphy BF, Kirszbaum L, Walker ID, d'Apice AJ. 1988. SP-40,40, a newly identified normal human serum protein found in the SC5b-9 complex of complement and in the immune deposits in glomerulonephritis. J. Clin. Investig. 81:1858–64
    [Google Scholar]
  151. 151.
    Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR 1999. Clusterin has chaperone-like activity similar to that of small heat shock proteins. J. Biol. Chem. 274:6875–81
    [Google Scholar]
  152. 152.
    Lamoureux F, Thomas C, Yin MJ, Kuruma H, Beraldi E et al. 2011. Clusterin inhibition using OGX-011 synergistically enhances Hsp90 inhibitor activity by suppressing the heat shock response in castrate-resistant prostate cancer. Cancer Res 71:5838–49
    [Google Scholar]
  153. 153.
    Pohlkamp T, Wasser CR, Herz J. 2017. Functional roles of the interaction of APP and lipoprotein receptors. Front. Mol. Neurosci. 10:54
    [Google Scholar]
  154. 154.
    Tsujita M, Vaisman B, Chengyu L, Vickers KC, Okuhira KI et al. 2021. Apolipoprotein A-I in mouse cerebrospinal fluid derives from the liver and intestine via plasma high-density lipoproteins assembled by ABCA1 and LCAT. FEBS Lett 595:773–88
    [Google Scholar]
  155. 155.
    Stukas S, Robert J, Lee M, Kulic I, Carr M et al. 2014. Intravenously injected human apolipoprotein A-I rapidly enters the central nervous system via the choroid plexus. J. Am. Heart Assoc. 3:e001156
    [Google Scholar]
  156. 156.
    Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. 2020. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol. Neurodegener. 15:40
    [Google Scholar]
  157. 157.
    DeTure MA, Dickson DW. 2019. The neuropathological diagnosis of Alzheimer's disease. Mol. Neurodegener. 14:32
    [Google Scholar]
  158. 158.
    Alzheimer's Assoc 2020. 2020 Alzheimer's disease facts and figures. Alzheimer's Dement 16:391–460
    [Google Scholar]
  159. 159.
    Novikova G, Andrews SJ, Renton AE, Marcora E. 2021. Beyond association: successes and challenges in linking non-coding genetic variation to functional consequences that modulate Alzheimer's disease risk. Mol. Neurodegener. 16:27
    [Google Scholar]
  160. 160.
    Seto M, Weiner RL, Dumitrescu L, Hohman TJ. 2021. Protective genes and pathways in Alzheimer's disease: moving towards precision interventions. Mol. Neurodegener. 16:29
    [Google Scholar]
  161. 161.
    Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE et al. 1994. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet. 7:180–84
    [Google Scholar]
  162. 162.
    Liu C-C, Kanekiyo T, Xu H, Bu G. 2013. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol. 9:106–18
    [Google Scholar]
  163. 163.
    Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. 2019. Clusterin in Alzheimer's disease: mechanisms, genetics, and lessons from other pathologies. Front. Neurosci. 13:164
    [Google Scholar]
  164. 164.
    Aikawa T, Holm ML, Kanekiyo T. 2018. ABCA7 and pathogenic pathways of Alzheimer's disease. Brain Sci 8:27
    [Google Scholar]
  165. 165.
    Beecham GW, Vardarajan B, Blue E, Bush W, Jaworski J et al. 2018. Rare genetic variation implicated in non-Hispanic white families with Alzheimer disease. Neurol Genet 4:e286
    [Google Scholar]
  166. 166.
    Nagy Z, Esiri MM, Jobst KA, Johnston C, Litchfield S et al. 1995. Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer's disease. Neuroscience 69:757–61
    [Google Scholar]
  167. 167.
    Koudinov AR, Koudinova NV, Kumar A, Beavis RC, Ghiso J. 1996. Biochemical characterization of Alzheimer's soluble amyloid beta protein in human cerebrospinal fluid: association with high density lipoproteins. Biochem. Biophys. Res. Commun. 223:592–97
    [Google Scholar]
  168. 168.
    Permanne B, Perez C, Soto C, Frangione B, Wisniewski T. 1997. Detection of apolipoprotein E/dimeric soluble amyloid β complexes in Alzheimer's disease brain supernatants. Biochem. Biophys. Res. Commun. 240:715–20
    [Google Scholar]
  169. 169.
    Aleshkov S, Abraham CR, Zannis VI. 1997. Interaction of nascent ApoE2, ApoE3, and ApoE4 isoforms expressed in mammalian cells with amyloid peptide β (1–40). Relevance to Alzheimer's disease. Biochemistry 36:10571–80
    [Google Scholar]
  170. 170.
    Choi-Miura NH, Ihara Y, Fukuchi K, Takeda M, Nakano Y et al. 1992. SP-40,40 is a constituent of Alzheimer's amyloid. Acta Neuropathol 83:260–64
    [Google Scholar]
  171. 171.
    Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K. 1991. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer's disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541:163–66
    [Google Scholar]
  172. 172.
    Bales KR, Verina T, Dodel RC, Du Y, Altstiel L et al. 1997. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat. Genet. 17:263–64
    [Google Scholar]
  173. 173.
    DeMattos RB, O'Dell MA, Parsadanian M, Taylor JW, Harmony JAK et al. 2002. Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer's disease. PNAS 99:10843–48
    [Google Scholar]
  174. 174.
    Xiong M, Jiang H, Serrano JR, Gonzales ER, Wang C et al. 2021. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Sci. Transl. Med. 13:eabd7522
    [Google Scholar]
  175. 175.
    Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM et al. 2007. Transport pathways for clearance of human Alzheimer's amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cereb. Blood Flow Metab. 27:909–18
    [Google Scholar]
  176. 176.
    Ghiso J, Matsubara E, Koudinov A, Choi-Miura NH, Tomita M et al. 1993. The cerebrospinal-fluid soluble form of Alzheimer's amyloid β is complexed to SP-40,40 (apolipoprotein J), an inhibitor of the complement membrane-attack complex. Biochem. J. 293:Part 127–30
    [Google Scholar]
  177. 177.
    Chen F, Swartzlander DB, Ghosh A, Fryer JD, Wang B, Zheng H 2021. Clusterin secreted from astrocyte promotes excitatory synaptic transmission and ameliorates Alzheimer's disease neuropathology. Mol. Neurodegener. 16:5
    [Google Scholar]
  178. 178.
    Wojtas AM, Sens JP, Kang SS, Baker KE, Berry TJ et al. 2020. Astrocyte-derived clusterin suppresses amyloid formation in vivo. Mol. Neurodegener. 15:71
    [Google Scholar]
  179. 179.
    Deane R, Sagare A, Hamm K, Parisi M, Lane S et al. 2008. apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Investig. 118:4002–13
    [Google Scholar]
  180. 180.
    Jiang Q, Lee CYD, Mandrekar S, Wilkinson B, Cramer P et al. 2008. ApoE promotes the proteolytic degradation of Aβ. Neuron 58:681–93
    [Google Scholar]
  181. 181.
    Najm R, Jones EA, Huang Y. 2019. Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer's disease. Mol. Neurodegener. 14:24
    [Google Scholar]
  182. 182.
    Zhao J, Fu Y, Yamazaki Y, Ren Y, Davis MD et al. 2020. APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer's disease patient iPSC-derived cerebral organoids. Nat. Commun. 11:5540
    [Google Scholar]
  183. 183.
    Wang C, Xiong M, Gratuze M, Bao X, Shi Y et al. 2021. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia. Neuron 109:1657–74.e7
    [Google Scholar]
  184. 184.
    Litvinchuk A, Huynh TV, Shi Y, Jackson RJ, Finn MB et al. 2021. Apolipoprotein E4 reduction with antisense oligonucleotides decreases neurodegeneration in a tauopathy model. Ann. Neurol. 89:952–66
    [Google Scholar]
  185. 185.
    Zhao N, Liu CC, Van Ingelgom AJ, Linares C, Kurti A et al. 2018. APOE ε2 is associated with increased tau pathology in primary tauopathy. Nat. Commun. 9:4388
    [Google Scholar]
  186. 186.
    Wahrle SE, Jiang H, Parsadanian M, Kim J, Li A et al. 2008. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J. Clin. Investig. 118:671–82
    [Google Scholar]
  187. 187.
    Williams T, Borchelt DR, Chakrabarty P. 2020. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer's disease. Mol. Neurodegener. 15:8
    [Google Scholar]
  188. 188.
    Zhao J, Fu Y, Liu C-C, Shinohara M, Nielsen HM et al. 2014. Retinoic acid isomers facilitate apolipoprotein E production and lipidation in astrocytes through the retinoid X receptor/retinoic acid receptor pathway. J. Biol. Chem. 289:11282–92
    [Google Scholar]
  189. 189.
    Tai LM, Koster KP, Luo J, Lee SH, Wang YT et al. 2014. Amyloid-β pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. J. Biol. Chem. 289:30538–55
    [Google Scholar]
  190. 190.
    Riddell DR, Zhou H, Comery TA, Kouranova E, Lo CF et al. 2007. The LXR agonist TO901317 selectively lowers hippocampal Aβ42 and improves memory in the Tg2576 mouse model of Alzheimer's disease. Mol. Cell Neurosci. 34:621–28
    [Google Scholar]
  191. 191.
    Fan J, Zhao RQ, Parro C, Zhao W, Chou HY et al. 2018. Small molecule inducers of ABCA1 and apoE that act through indirect activation of the LXR pathway. J. Lipid Res. 59:830–42
    [Google Scholar]
  192. 192.
    Serrano-Pozo A, Das S, Hyman BT. 2021. APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol 20:68–80
    [Google Scholar]
  193. 193.
    Rajan KB, Barnes LL, Wilson RS, McAninch EA, Weuve J et al. 2017. Racial differences in the association between apolipoprotein E risk alleles and overall and total cardiovascular mortality over 18 years. J. Am. Geriatr. Soc. 65:2425–30
    [Google Scholar]
  194. 194.
    Mathews CK, van Holde KE, Ahern KG 2000. Lipid metabolism I: fatty acids, triacylglycerols, and lipoproteins. In Biochemistrypp. 62766 New York: Pearson, 3rd ed..
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-032620-104801
Loading
/content/journals/10.1146/annurev-biochem-032620-104801
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error