1932

Abstract

In the decade since the discovery of the innate immune cyclic GMP–AMP synthase (cGAS)–2′3′-cyclic GMP–AMP (cGAMP)–stimulator of interferon genes (STING) pathway, its proper activation and dysregulation have been rapidly implicated in many aspects of human disease. Understanding the biochemical, cellular, and regulatory mechanisms of this pathway is critical to developing therapeutic strategies that either harness it to boost defense or inhibit it to prevent unwanted inflammation. In this review, we first discuss how the second messenger cGAMP is synthesized by cGAS in response to double-stranded DNA and cGAMP's subsequent activation of cell-type-dependent STING signaling cascades with differential physiological consequences. We then review how cGAMP as an immunotransmitter mediates tightly controlled cell–cell communication by being exported from producing cells and imported into responding cells via cell-type-specific transporters. Finally, we review mechanisms by which thecGAS–cGAMP–STING pathway responds to different sources of mislocalized double-stranded DNA in pathogen defense, cancer, and autoimmune diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-040320-101629
2022-06-21
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-040320-101629.html?itemId=/content/journals/10.1146/annurev-biochem-040320-101629&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M et al. 2013. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498:7454332–37
    [Google Scholar]
  2. 2.
    Zhang X, Wu J, Du F, Xu H, Sun L et al. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6:3421–30
    [Google Scholar]
  3. 3.
    Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL et al. 2013. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153:51094–107
    [Google Scholar]
  4. 4.
    Li X, Shu C, Yi G, Chaton CT, Shelton CL et al. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39:61019–31
    [Google Scholar]
  5. 5.
    Du M, Chen ZJ. 2018. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361:6403704–9
    [Google Scholar]
  6. 6.
    Sun L, Wu J, Du F, Chen X, Chen ZJ 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:6121786–91
    [Google Scholar]
  7. 7.
    Gentili M, Lahaye X, Nadalin F, Nader GPF, Puig Lombardi E et al. 2019. The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Rep 26:92377–93.e13
    [Google Scholar]
  8. 8.
    Yang H, Wang H, Ren J, Chen Q, Chen ZJ. 2017. cGAS is essential for cellular senescence. PNAS 114:23E4612–20
    [Google Scholar]
  9. 9.
    Jiang H, Xue X, Panda S, Kawale A, Hooy RM et al. 2019. Chromatin-bound cGAS is an inhibitor of DNA repair and hence accelerates genome destabilization and cell death. EMBO J 38:21e102718
    [Google Scholar]
  10. 10.
    Lahaye X, Gentili M, Silvin A, Conrad C, Picard L et al. 2018. NONO detects the nuclear HIV capsid to promote cGAS-mediated innate immune activation. Cell 175:2488–501.e22
    [Google Scholar]
  11. 11.
    Zierhut C, Yamaguchi N, Paredes M, Luo J-D, Carroll T, Funabiki H 2019. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178:2302–15.e23
    [Google Scholar]
  12. 12.
    Boyer JA, Spangler CJ, Strauss JD, Cesmat AP, Liu P et al. 2020. Structural basis of nucleosome-dependent cGAS inhibition. Science 370:6515450–54
    [Google Scholar]
  13. 13.
    Kujirai T, Zierhut C, Takizawa Y, Kim R, Negishi L et al. 2020. Structural basis for the inhibition of cGAS by nucleosomes. Science 370:6515455–58
    [Google Scholar]
  14. 14.
    Michalski S, de Oliveira Mann CC, Stafford CA, Witte G, Bartho J et al. 2020. Structural basis for sequestration and autoinhibition of cGAS by chromatin. Nature 587:7835678–82
    [Google Scholar]
  15. 15.
    Pathare GR, Decout A, Glück S, Cavadini S, Makasheva K et al. 2020. Structural mechanism of cGAS inhibition by the nucleosome. Nature 587:7835668–72
    [Google Scholar]
  16. 16.
    Volkman HE, Cambier S, Gray EE, Stetson DB 2019. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. eLife 8:e47491
    [Google Scholar]
  17. 17.
    Zhao B, Xu P, Rowlett CM, Jing T, Shinde O et al. 2020. The molecular basis of tight nuclear tethering and inactivation of cGAS. Nature 587:7835673–77
    [Google Scholar]
  18. 18.
    Li T, Huang T, Du M, Chen X, Du F et al. 2021. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 371:6535eabc5386
    [Google Scholar]
  19. 19.
    Zhong L, Hu M-M, Bian L-J, Liu Y, Chen Q, Shu H-B. 2020. Phosphorylation of cGAS by CDK1 impairs self-DNA sensing in mitosis. Cell Discov 6:26
    [Google Scholar]
  20. 20.
    Dai J, Huang Y-J, He X, Zhao M, Wang X et al. 2019. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell 176:61447–60.e14
    [Google Scholar]
  21. 21.
    Ergun SL, Li L. 2020. Structural insights into STING signaling. Trends Cell Biol 30:5399–407
    [Google Scholar]
  22. 22.
    Ergun SL, Fernandez D, Weiss TM, Li L. 2019. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell 178:2290–301.e10
    [Google Scholar]
  23. 23.
    Shang G, Zhang C, Chen ZJ, Bai X-C, Zhang X. 2019. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature 567:7748389–93
    [Google Scholar]
  24. 24.
    Ishikawa H, Ma Z, Barber GN. 2009. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:7265788–92
    [Google Scholar]
  25. 25.
    Mukai K, Konno H, Akiba T, Uemura T, Waguri S et al. 2016. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7:11932
    [Google Scholar]
  26. 26.
    Fang R, Jiang Q, Guan Y, Gao P, Zhang R et al. 2021. Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity 54:5962–75.e8
    [Google Scholar]
  27. 27.
    Gonugunta VK, Sakai T, Pokatayev V, Yang K, Wu J et al. 2017. Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response. Cell Rep 21:113234–42
    [Google Scholar]
  28. 28.
    Zhao B, Shu C, Gao X, Sankaran B, Du F et al. 2016. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. PNAS 113:24E3403–12
    [Google Scholar]
  29. 29.
    Jin J, Hu H, Li HS, Yu J, Xiao Y et al. 2014. Noncanonical NF-κB pathway controls the production of type I interferons in antiviral innate immunity. Immunity 40:3342–54
    [Google Scholar]
  30. 30.
    Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND et al. 2007. Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat. Cell Biol. 9:4470–78
    [Google Scholar]
  31. 31.
    de Oliveira Mann CC, Orzalli MH, King DS, Kagan JC, Lee ASY, Kranzusch PJ. 2019. Modular architecture of the STING C-terminal tail allows interferon and NF-κB signaling adaptation. Cell Rep 27:41165–75.e5
    [Google Scholar]
  32. 32.
    Balka KR, Louis C, Saunders TL, Smith AM, Calleja DJ et al. 2020. TBK1 and IKKε act redundantly to mediate STING-induced NF-κB responses in myeloid cells. Cell Rep 31:1107492
    [Google Scholar]
  33. 33.
    Abe T, Barber GN. 2014. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1. J. Virol. 88:105328–41
    [Google Scholar]
  34. 34.
    Hou Y, Liang H, Rao E, Zheng W, Huang X et al. 2018. Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy. Immunity 49:3490–503.e4
    [Google Scholar]
  35. 35.
    Gui X, Yang H, Li T, Tan X, Shi P et al. 2019. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567:7747262–66
    [Google Scholar]
  36. 36.
    Liu D, Wu H, Wang C, Li Y, Tian H et al. 2019. STING directly activates autophagy to tune the innate immune response. Cell Death Differ 26:91735–49
    [Google Scholar]
  37. 37.
    Yamashiro LH, Wilson SC, Morrison HM, Karalis V, Chung J-YJ et al. 2020. Interferon-independent STING signaling promotes resistance to HSV-1 in vivo. Nat. Commun. 11:13382
    [Google Scholar]
  38. 38.
    Watson RO, Manzanillo PS, Cox JS. 2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150:4803–15
    [Google Scholar]
  39. 39.
    Larkin B, Ilyukha V, Sorokin M, Buzdin A, Vannier E, Poltorak A. 2017. Activation of STING in T cells induces type I IFN responses and cell death. J. Immunol. 199:2397–402
    [Google Scholar]
  40. 40.
    Tang C-HA, Zundell JA, Ranatunga S, Lin C, Nefedova Y et al. 2016. Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res 76:82137–52
    [Google Scholar]
  41. 41.
    Wu J, Chen Y-J, Dobbs N, Sakai T, Liou J et al. 2019. STING-mediated disruption of calcium homeostasis chronically activates ER stress and primes T cell death. J. Exp. Med. 216:4867–83
    [Google Scholar]
  42. 42.
    Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L et al. 2017. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 8:1427
    [Google Scholar]
  43. 43.
    Lahey LJ, Mardjuki RE, Wen X, Hess GT, Ritchie C et al. 2020. LRRC8A:C/E heteromeric channels are ubiquitous transporters of cGAMP. Mol. Cell. 80:4578–91.e5
    [Google Scholar]
  44. 44.
    Ritchie C, Cordova AF, Hess GT, Bassik MC, Li L 2019. SLC19A1 is an importer of the immunotransmitter cGAMP. Mol. Cell. 75:2372–81.e5
    [Google Scholar]
  45. 45.
    Chattopadhyay S, Kuzmanovic T, Zhang Y, Wetzel JL, Sen GC. 2016. Ubiquitination of the transcription factor IRF-3 activates RIPA, the apoptotic pathway that protects mice from viral pathogenesis. Immunity 44:51151–61
    [Google Scholar]
  46. 46.
    Wu J, Dobbs N, Yang K, Yan N 2020. Interferon-independent activities of mammalian STING mediate antiviral response and tumor immune evasion. Immunity 53:1115–26.e5
    [Google Scholar]
  47. 47.
    Bakhoum SF, Ngo B, Laughney AM, Cavallo J-A, Murphy CJ et al. 2018. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553:7689467–72
    [Google Scholar]
  48. 48.
    Jin J, Xiao Y, Chang J-H, Yu J, Hu H et al. 2012. The kinase TBK1 controls IgA class switching by negatively regulating noncanonical NF-κB signaling. Nat. Immunol. 13:111101–9
    [Google Scholar]
  49. 49.
    Li L, Yin Q, Kuss P, Maliga Z, Millan JL et al. 2014. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 10:121043–48
    [Google Scholar]
  50. 50.
    Jansen S, Perrakis A, Ulens C, Winkler C, Andries M et al. 2012. Structure of NPP1, an ectonucleotide pyrophosphatase/phosphodiesterase involved in tissue calcification. Structure 20:111948–59
    [Google Scholar]
  51. 51.
    Belli S, van Driel I, Goding J. 1993. Identification and characterization of a soluble form of the plasma cell membrane glycoprotein PC-1. Eur. J. Biochem. 217:421–28
    [Google Scholar]
  52. 52.
    Carozza JA, Böhnert V, Nguyen KC, Skariah G, Shaw KE et al. 2020. Extracellular cGAMP is a cancer-cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity. Nat. Cancer 1:2184–96
    [Google Scholar]
  53. 53.
    Gijsbers R, Ceulemans H, Stalmans W, Bollen M. 2001. Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases. J. Biol. Chem. 276:21361–68
    [Google Scholar]
  54. 54.
    Kato K, Nishimasu H, Okudaira S, Mihara E, Ishitani R et al. 2012. Crystal structure of Enpp1, an extracellular glycoprotein involved in bone mineralization and insulin signaling. PNAS 109:4216876–81
    [Google Scholar]
  55. 55.
    Carozza JA, Cordova AF, Alsaif Y, Böhnert V, Skariah G, Li L. 2021. Probing pathophysiology of extracellular cGAMP with substrate-selective ENPP1. bioRxiv 2021.05.04.442665. https://doi.org/10.1101/2021.05.04.442665
    [Crossref]
  56. 56.
    Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G et al. 2013. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498:7454380–84
    [Google Scholar]
  57. 57.
    Eaglesham JB, Pan Y, Kupper TS, Kranzusch PJ. 2019. Viral and metazoan poxins are cGAMP-specific nucleases that restrict cGAS–STING signalling. Nature 566:7743259–63
    [Google Scholar]
  58. 58.
    Luteijn RD, Zaver SA, Gowen BG, Wyman SK, Garelis NE et al. 2019. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573:7774434–38
    [Google Scholar]
  59. 59.
    Zhou C, Chen X, Planells-Cases R, Chu J, Wang L et al. 2020. Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity. Immunity 52:5767–81.e6
    [Google Scholar]
  60. 60.
    Zhou Y, Fei M, Zhang G, Liang W-C, Lin W et al. 2020. Blockade of the phagocytic receptor MerTK on tumor-associated macrophages enhances P2X7R-dependent STING activation by tumor-derived cGAMP. Immunity 52:2357–73.e9
    [Google Scholar]
  61. 61.
    Cordova AF, Ritchie C, Böhnert V, Li L. 2021. Human SLC46A2 is the dominant cGAMP importer in extracellular cGAMP-sensing macrophages and monocytes. ACS Cent. Sci. 7:61073–88
    [Google Scholar]
  62. 62.
    Li J, Duran MA, Dhanota N, Chatila WK, Bettigole SE et al. 2021. Metastasis and immune evasion from extracellular cGAMP hydrolysis. Cancer Discov 11:51212–27
    [Google Scholar]
  63. 63.
    Maltbaek JH, Snyder JM, Stetson DB. 2021. ABCC1/MRP1 exports cGAMP and modulates cGAS-dependent immunity. bioRxiv 2021.12.03.470980. https://doi.org/10.1101/2021.12.03.470980
    [Crossref]
  64. 64.
    Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S 2017. The P2X7 receptor in infection and inflammation. Immunity 47:115–31
    [Google Scholar]
  65. 65.
    Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T et al. 2013. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503:7477530–34
    [Google Scholar]
  66. 66.
    Patel SJ, King KR, Casali M, Yarmush ML. 2009. DNA-triggered innate immune responses are propagated by gap junction communication. PNAS 106:3112867–72
    [Google Scholar]
  67. 67.
    Luther J, Khan S, Gala MK, Kedrin D, Sridharan G et al. 2020. Hepatic gap junctions amplify alcohol liver injury by propagating cGAS-mediated IRF3 activation. PNAS 117:2111667–73
    [Google Scholar]
  68. 68.
    Schadt L, Sparano C, Schweiger NA, Silina K, Cecconi V et al. 2019. Cancer-cell-intrinsic cGAS expression mediates tumor immunogenicity. Cell Rep. 29:51236–48.e7
    [Google Scholar]
  69. 69.
    Chen Q, Boire A, Jin X, Valiente M, Er EE et al. 2016. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature 533:7604493–98
    [Google Scholar]
  70. 70.
    Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. 2017. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:7668466–70
    [Google Scholar]
  71. 71.
    Mackenzie KJ, Carroll P, Martin C-A, Murina O, Fluteau A et al. 2017. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548:7668461–65
    [Google Scholar]
  72. 72.
    Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW. 2013. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154:147–60
    [Google Scholar]
  73. 73.
    Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P et al. 2017. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550:7676402–6
    [Google Scholar]
  74. 74.
    Glück S, Guey B, Gulen MF, Wolter K, Kang TW et al. 2017. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19:91061–70
    [Google Scholar]
  75. 75.
    Flynn PJ, Koch PD, Mitchison TJ. 2021. Chromatin bridges, not micronuclei, activate cGAS after drug-induced mitotic errors in human cells. PNAS 118:48e2103585118
    [Google Scholar]
  76. 76.
    Liu H, Zhang H, Wu X, Ma D, Wu J et al. 2018. Nuclear cGAS suppresses DNA repair and promotes tumorigenesis. Nature 563:7729131–36
    [Google Scholar]
  77. 77.
    Sliter DA, Martinez J, Hao L, Chen X, Sun N et al. 2018. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561:7722258–62
    [Google Scholar]
  78. 78.
    Yu C-H, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ et al. 2020. TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183:3636–49.e18
    [Google Scholar]
  79. 79.
    McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS et al. 2018. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359:6378eaao6047
    [Google Scholar]
  80. 80.
    Riley JS, Quarato G, Cloix C, Lopez J, O'Prey J et al. 2018. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. EMBO J 37:17e99238
    [Google Scholar]
  81. 81.
    Ning X, Wang Y, Jing M, Sha M, Lv M et al. 2019. Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Mol. Cell. 74:119–31.e7
    [Google Scholar]
  82. 82.
    Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ et al. 2017. DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-dependent pathway and reinforce antitumor immunity. J. Immunol. 198:41649–59
    [Google Scholar]
  83. 83.
    Klarquist J, Hennies CM, Lehn MA, Reboulet RA, Feau S, Janssen EM. 2014. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J. Immunol. 193:126124–34
    [Google Scholar]
  84. 84.
    de Mingo Pulido Á, Hänggi K, Celias DP, Gardner A, Li J et al. 2021. The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity 54:61154–67.e7
    [Google Scholar]
  85. 85.
    Zhao Q, Wei Y, Pandol SJ, Li L, Habtezion A. 2018. STING signaling promotes inflammation in experimental acute pancreatitis. Gastroenterology 154:61822–35.e2
    [Google Scholar]
  86. 86.
    Xu MM, Pu Y, Han D, Shi Y, Cao X et al. 2017. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity 47:2363–73.e5
    [Google Scholar]
  87. 87.
    Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J et al. 2015. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. PNAS 112:5015408–13
    [Google Scholar]
  88. 88.
    Woo S-R, Fuertes MB, Corrales L, Spranger S, Furdyna MJ et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:5830–42
    [Google Scholar]
  89. 89.
    Song S, Peng P, Tang Z, Zhao J, Wu W et al. 2017. Decreased expression of STING predicts poor prognosis in patients with gastric cancer. Sci. Rep. 7:39858
    [Google Scholar]
  90. 90.
    Xia T, Konno H, Ahn J, Barber GN. 2016. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep 14:2282–97
    [Google Scholar]
  91. 91.
    Kim S, Li L, Maliga Z, Yin Q, Wu H, Mitchison TJ. 2013. Anticancer flavonoids are mouse-selective STING agonists. ACS Chem. Biol. 8:71396–401
    [Google Scholar]
  92. 92.
    Gao P, Ascano M, Zillinger T, Wang W, Dai P et al. 2013. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154:4748–62
    [Google Scholar]
  93. 93.
    Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M et al. 2013. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immunol. 190:105216–25
    [Google Scholar]
  94. 94.
    Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE et al. 2015. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11:71018–30
    [Google Scholar]
  95. 95.
    Deng L, Liang H, Xu M, Yang X, Burnette B et al. 2014. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41:5543–852
    [Google Scholar]
  96. 96.
    Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE, Raulet DH. 2018. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 49:4754–63.e4
    [Google Scholar]
  97. 97.
    Carozza JA, Brown JA, Böhnert V, Fernandez D, AlSaif Y et al. 2020. Structure-aided development of small-molecule inhibitors of ENPP1, the extracellular phosphodiesterase of the immunotransmitter cGAMP. Cell Chem. Biol. 27:111347–58.e5
    [Google Scholar]
  98. 98.
    Sivick KE, Desbien AL, Glickman LH, Reiner GL, Corrales L et al. 2018. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity. Cell Rep 25:113074–85.e5
    [Google Scholar]
  99. 99.
    Francica BJ, Ghasemzadeh A, Desbien AL, Theodros D, Sivick KE et al. 2018. TNFα and radioresistant stromal cells are essential for therapeutic efficacy of cyclic dinucleotide STING agonists in nonimmunogenic tumors. Cancer Immunol. Res. 6:4422–33
    [Google Scholar]
  100. 100.
    Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R et al. 2018. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564:7736439–43
    [Google Scholar]
  101. 101.
    Trinchieri G. 2010. Type I interferon: friend or foe?. J. Exp. Med. 207:102053–63
    [Google Scholar]
  102. 102.
    Pan B-S, Perera SA, Piesvaux JA, Presland JP, Schroeder GK et al. 2020. An orally available non-nucleotide STING agonist with antitumor activity. Science 369:6506eaba6098
    [Google Scholar]
  103. 103.
    Dai P, Wang W, Cao H, Avogadri F, Dai L et al. 2014. Modified vaccinia virus Ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway. PLOS Pathog 10:4e1003989
    [Google Scholar]
  104. 104.
    Lau L, Gray EE, Brunette RL, Stetson DB. 2015. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350:6260568–71
    [Google Scholar]
  105. 105.
    Horan KA, Hansen K, Jakobsen MR, Holm CK, Søby S et al. 2013. Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. J. Immunol. 190:52311–19
    [Google Scholar]
  106. 106.
    Orzalli MH, Knipe DM. 2014. Cellular sensing of viral DNA and viral evasion mechanisms. Annu. Rev. Microbiol. 68:477–92
    [Google Scholar]
  107. 107.
    Sun C, Luecke S, Bodda C, Jønsson KL, Cai Y et al. 2019. Cellular requirements for sensing and elimination of incoming HSV-1 DNA and Capsids. J. Interf. Cytokine Res. 39:4191–204
    [Google Scholar]
  108. 108.
    Gao D, Wu J, Wu Y-T, Du F, Aroh C et al. 2013. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:6148903–6
    [Google Scholar]
  109. 109.
    Mankan AK, Schmidt T, Chauhan D, Goldeck M, Höning K et al. 2014. Cytosolic RNA:DNA hybrids activate the cGAS–STING axis. EMBO J 33:242937–46
    [Google Scholar]
  110. 110.
    Burdick RC, Li C, Munshi M, Rawson JMO, Nagashima K et al. 2020. HIV-1 uncoats in the nucleus near sites of integration. PNAS 117:105486–93
    [Google Scholar]
  111. 111.
    Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B et al. 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505:7485691–95
    [Google Scholar]
  112. 112.
    Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J et al. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2:17037
    [Google Scholar]
  113. 113.
    Sun B, Sundström KB, Chew JJ, Bist P, Gan ES et al. 2017. Dengue virus activates cGAS through the release of mitochondrial DNA. Sci. Rep. 7:13594
    [Google Scholar]
  114. 114.
    Chatel-Chaix L, Cortese M, Romero-Brey I, Bender S, Neufeldt CJ et al. 2016. Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses. Cell Host Microbe 20:3342–56
    [Google Scholar]
  115. 115.
    West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM et al. 2015. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:7548553–57
    [Google Scholar]
  116. 116.
    Yum S, Li M, Fang Y, Chen ZJ. 2021. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. PNAS 118:14e2100225118
    [Google Scholar]
  117. 117.
    Humphries F, Shmuel-Galia L, Jiang Z, Wilson R, Landis P et al. 2021. A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection. Sci. Immunol. 6:59eabi9002
    [Google Scholar]
  118. 118.
    Zhu Q, Zhang Y, Wang L, Yao X, Wu D et al. 2021. Inhibition of coronavirus infection by a synthetic STING agonist in primary human airway system. Antiviral Res 187:105015
    [Google Scholar]
  119. 119.
    Li M, Ferretti M, Ying B, Descamps H, Lee E et al. 2021. Pharmacological activation of STING blocks SARS-CoV-2 infection. Sci. Immunol. 6:59eabi9007
    [Google Scholar]
  120. 120.
    Liu W, Reyes HM, Yang JF, Li Y, Stewart KM et al. 2021. Activation of STING signaling pathway effectively blocks human coronavirus infection. J. Virol. 95:12e00490–21
    [Google Scholar]
  121. 121.
    Zhu Q, Hu H, Liu H, Shen H, Yan Z, Gao L 2020. A synthetic STING agonist inhibits the replication of human parainfluenza virus 3 and rhinovirus 16 through distinct mechanisms. Antiviral Res 183:104933
    [Google Scholar]
  122. 122.
    Eaglesham JB, Kranzusch PJ. 2020. Conserved strategies for pathogen evasion of cGAS–STING immunity. Curr. Opin. Immunol. 66:27–34
    [Google Scholar]
  123. 123.
    Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y et al. 2015. Viruses transfer the antiviral second messenger cGAMP between cells. Science 349:62531228–32
    [Google Scholar]
  124. 124.
    Gentili M, Kowal J, Tkach M, Satoh T, Lahaye X et al. 2015. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349:62531232–36
    [Google Scholar]
  125. 125.
    Gogoi H, Mansouri S, Jin L 2020. The age of cyclic dinucleotide vaccine adjuvants. Vaccines 8:3453
    [Google Scholar]
  126. 126.
    Hansen K, Prabakaran T, Laustsen A, Jørgensen SE, Rahbæk SH et al. 2014. Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. EMBO J 33:151654–66
    [Google Scholar]
  127. 127.
    Collins AC, Cai H, Li T, Franco LH, Li X-D et al. 2015. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17:6820–28
    [Google Scholar]
  128. 128.
    Hu X, Peng X, Lu C, Zhang X, Gan L et al. 2019. Type I IFN expression is stimulated by cytosolic MtDNA released from pneumolysin-damaged mitochondria via the STING signaling pathway in macrophages. FEBS J 286:234754–68
    [Google Scholar]
  129. 129.
    Woodward JJ, Iavarone AT, Portnoy DA. 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:59861703–5
    [Google Scholar]
  130. 130.
    Boxx GM, Cheng G. 2016. The roles of type I interferon in bacterial infection. Cell Host Microbe 19:6760–69
    [Google Scholar]
  131. 131.
    Sauer JD, Sotelo-Troha K, Von Moltke J, Monroe KM, Rae CS et al. 2011. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun. 79:2688–94
    [Google Scholar]
  132. 132.
    Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H et al. 2015. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat. Med. 21:4401–6
    [Google Scholar]
  133. 133.
    McFarland AP, Luo S, Ahmed-Qadri F, Hybiske K, Tong L, Woodward JJ. 2017. Sensing of bacterial cyclic dinucleotides by the oxidoreductase RECON promotes NF-κB activation and shapes a proinflammatory antibacterial state. Immunity 46:3433–45
    [Google Scholar]
  134. 134.
    Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A et al. 2006. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat. Genet. 38:8917–20
    [Google Scholar]
  135. 135.
    Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K et al. 2007. Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39:91065–67
    [Google Scholar]
  136. 136.
    Gall A, Treuting P, Elkon KB, Loo Y-M, Gale M et al. 2012. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36:1120–31
    [Google Scholar]
  137. 137.
    Gao D, Li T, Li X-D, Chen X, Li Q-Z et al. 2015. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. PNAS 112:42E5699–705
    [Google Scholar]
  138. 138.
    Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S et al. 2014. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Invest. 124:125516–20
    [Google Scholar]
  139. 139.
    Decout A, Katz JD, Venkatraman S, Ablasser A. 2021. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21:548–69
    [Google Scholar]
  140. 140.
    Skopelja-Gardner S, An J, Tai J, Tanaka L, Sun X et al. 2020. The early local and systemic Type I interferon responses to ultraviolet B light exposure are cGAS dependent. Sci. Rep. 10:17908
    [Google Scholar]
  141. 141.
    An J, Durcan L, Karr RM, Briggs TA, Rice GI et al. 2017. Expression of cyclic GMP-AMP synthase in patients with systemic lupus erythematosus. Arthritis Rheumatol 69:4800–7
    [Google Scholar]
  142. 142.
    Vincent J, Adura C, Gao P, Luz A, Lama L et al. 2017. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice. Nat. Commun. 8:1750
    [Google Scholar]
  143. 143.
    Siu T, Altman MD, Baltus GA, Childers M, Ellis JM et al. 2019. Discovery of a novel cGAMP competitive ligand of the inactive form of STING. ACS Med. Chem. Lett. 10:192–97
    [Google Scholar]
  144. 144.
    Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L et al. 2018. Targeting STING with covalent small-molecule inhibitors. Nature 559:7713269–73
    [Google Scholar]
  145. 145.
    Prabakaran T, Troldborg A, Kumpunya S, Alee I, Marinković E et al. 2021. A STING antagonist modulating the interaction with STIM1 blocks ER-to-Golgi trafficking and inhibits lupus pathology. EBioMedicine 66:103314
    [Google Scholar]
  146. 146.
    Yum S, Li M, Chen ZJ. 2020. Old dogs, new trick: classic cancer therapies activate cGAS. Cell Res 30:8639–48
    [Google Scholar]
  147. 147.
    Wang J, Li P, Yu Y, Fu Y, Jiang H et al. 2020. Pulmonary surfactant-biomimetic nanoparticles potentiate heterosubtypic influenza immunity. Science 367:6480eaau0810
    [Google Scholar]
  148. 148.
    Gale EC, Lahey LJ, Böhnert V, Powell AE, Ou BS et al. 2021. A cGAMP-containing hydrogel for prolonged SARS-CoV-2 RBD subunit vaccine exposure induces a broad and potent humoral response. bioRxiv 2021.07.03.451025. https://doi.org/10.1101/2021.07.03.451025
    [Crossref]
  149. 149.
    Stetson DB, Ko JS, Heidmann T, Medzhitov R. 2008. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:4587–98
    [Google Scholar]
  150. 150.
    Rodero MP, Tesser A, Bartok E, Rice GI, Della Mina E et al. 2017. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat. Commun. 8:12176
    [Google Scholar]
  151. 151.
    Ahn J, Gutman D, Saijo S, Barber GN. 2012. STING manifests self DNA-dependent inflammatory disease. PNAS 109:4719386–91
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-040320-101629
Loading
/content/journals/10.1146/annurev-biochem-040320-101629
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error