1932

Abstract

This review is motivated by the fast progress in our understanding of the physics of particle-laden turbulence in the last decade, partly due to the tremendous advances of measurement and simulation capabilities. The focus is on spherical particles in homogeneous and canonical wall-bounded flows. The analysis of recent data indicates that conclusions drawn in zero gravity should not be extrapolated outside of this condition, and that the particle response time alone cannot completely define the dynamics of finite-size particles. Several breakthroughs have been reported, mostly separately, on the dynamics and turbulence modifications of small inertial particles in dilute conditions and of large weakly buoyant spheres. Measurements at higher concentrations, simulations fully resolving smaller particles, and theoretical tools accounting for both phases are needed to bridge this gap and allow for the exploration of the fluid dynamics of suspensions, from laminar rheology and granular media to particulate turbulence.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-030121-021103
2022-01-05
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/fluid/54/1/annurev-fluid-030121-021103.html?itemId=/content/journals/10.1146/annurev-fluid-030121-021103&mimeType=html&fmt=ahah

Literature Cited

  1. Adrian L, Adrian RJ, Westerweel J 2011. Particle Image Velocimetry Cambridge, UK: Cambridge Univ. Press
  2. Akiki G, Moore W, Balachandar S 2017. Pairwise-interaction extended point-particle model for particle-laden flows. J. Comput. Phys. 351:329–57
    [Google Scholar]
  3. Aliseda A, Cartellier A, Hainaux F, Lasheras JC. 2002. Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 468:77–105
    [Google Scholar]
  4. Aliseda A, Lasheras J 2011. Preferential concentration and rise velocity reduction of bubbles immersed in a homogeneous and isotropic turbulent flow. Phys. Fluids 23:9093301
    [Google Scholar]
  5. Ardekani MN, Al Asmar L, Picano F, Brandt L 2018. Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size spherical particles. Int. J. Heat Fluid Flow 71:189–99
    [Google Scholar]
  6. Ardekani MN, Brandt L. 2019. Turbulence modulation in channel flow of finite-size spheroidal particles. J. Fluid Mech. 859:887–901
    [Google Scholar]
  7. Ardekani MN, Rosti ME, Brandt L. 2019. Turbulent flow of finite-size spherical particles in channels with viscous hyper-elastic walls. J. Fluid Mech. 873:410–40
    [Google Scholar]
  8. Baker LJ, Coletti F. 2019. Experimental study of negatively buoyant finite-size particles in a turbulent boundary layer up to dense regimes. J. Fluid Mech. 866:598–629
    [Google Scholar]
  9. Baker LJ, Coletti F. 2021. Particle–fluid–wall interaction of inertial spherical particles in a turbulent boundary layer. J. Fluid Mech. 908:A39
    [Google Scholar]
  10. Baker LJ, Frankel A, Mani A, Coletti F. 2017. Coherent clusters of inertial particles in homogeneous turbulence. J. Fluid Mech. 833:364–98
    [Google Scholar]
  11. Balachandar S, Eaton JK. 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–33
    [Google Scholar]
  12. Balachandar S, Liu K, Lakhote M. 2019. Self-induced velocity correction for improved drag estimation in Euler–Lagrange point-particle simulations. J. Comput. Phys. 376:160–85
    [Google Scholar]
  13. Balachandar S, Moore W, Akiki G, Liu K 2020. Toward particle-resolved accuracy in Euler–Lagrange simulations of multiphase flow using machine learning and pairwise interaction extended point-particle (PIEP) approximation. Theor. Comput. Fluid Dyn. 34:4401–28
    [Google Scholar]
  14. Banko AJ, Villafañe L, Kim JH, Eaton JK. 2020. Temperature statistics in a radiatively heated particle-laden turbulent square duct flow. Int. J. Heat Fluid Flow 84:108618
    [Google Scholar]
  15. Battista F, Mollicone JP, Gualtieri P, Messina R, Casciola CM. 2019. Exact regularized point particle (ERPP) method for particle-laden wall-bounded flows in the two-way coupling regime. J. Fluid Mech. 878:420–44
    [Google Scholar]
  16. Beals MJ, Fugal JP, Shaw RA, Lu J, Spuler SM, Stith JL. 2015. Holographic measurements of inhomogeneous cloud mixing at the centimeter scale. Science 350:625687–90
    [Google Scholar]
  17. Bec J. 2003. Fractal clustering of inertial particles in random flows. Phys. Fluids 15:11L81–84
    [Google Scholar]
  18. Bec J, Biferale L, Boffetta G, Cencini M, Musacchio S, Toschi F 2006. Lyapunov exponents of heavy particles in turbulence. Phys. Fluids 18:9091702
    [Google Scholar]
  19. Bec J, Biferale L, Cencini M, Lanotte A, Musacchio S, Toschi F 2007. Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98:8084502
    [Google Scholar]
  20. Bec J, Biferale L, Lanotte A, Scagliarini A, Toschi F. 2010. Turbulent pair dispersion of inertial particles. J. Fluid Mech. 645:497–528
    [Google Scholar]
  21. Bec J, Homann H, Ray SS. 2014. Gravity-driven enhancement of heavy particle clustering in turbulent flow. Phys. Rev. Lett. 112:18184501
    [Google Scholar]
  22. Bellani G, Byron ML, Collignon AG, Meyer CR, Variano EA. 2012. Shape effects on turbulent modulation by large nearly neutrally buoyant particles. J. Fluid Mech. 712:41–60
    [Google Scholar]
  23. Benson M, Tanaka T, Eaton JK. 2005. Effects of wall roughness on particle velocities in a turbulent channel flow. J. Fluids Eng. 127:2250–56
    [Google Scholar]
  24. Bergougnoux L, Bouchet G, Lopez D, Guazzelli E. 2014. The motion of solid spherical particles falling in a cellular flow field at low Stokes number. Phys. Fluids 26:9093302
    [Google Scholar]
  25. Berk T, Coletti F 2020. Transport of inertial particles in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 903:A18
    [Google Scholar]
  26. Berk T, Coletti F 2021. Dynamics of small heavy particles in homogeneous turbulence: a Lagrangian experimental study. J. Fluid Mech. 917:A47
    [Google Scholar]
  27. Bernardini M. 2014. Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758:R1
    [Google Scholar]
  28. Bosse T, Kleiser L, Meiburg E. 2006. Small particles in homogeneous turbulence: settling velocity enhancement by two-way coupling. Phys. Fluids 18:2027102
    [Google Scholar]
  29. Bragg AD, Collins LR. 2014. New insights from comparing statistical theories for inertial particles in turbulence: I. Spatial distribution of particles. New J. Phys. 16:5055013
    [Google Scholar]
  30. Bragg AD, Ireland PJ, Collins LR. 2016. Forward and backward in time dispersion of fluid and inertial particles in isotropic turbulence. Phys. Fluids 28:1013305
    [Google Scholar]
  31. Byron M. 2015. The rotation and translation of non-spherical particles in homogeneous isotropic turbulence PhD Thesis, Univ. Calif. Berkeley:
  32. Capecelatro J, Desjardins O. 2013. An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238:1–31
    [Google Scholar]
  33. Capecelatro J, Desjardins O. 2015. Mass loading effects on turbulence modulation by particle clustering in dilute and moderately dilute channel flows. J. Fluids Eng. 137:11111102
    [Google Scholar]
  34. Capecelatro J, Desjardins O, Fox RO. 2015. On fluid–particle dynamics in fully developed cluster-induced turbulence. J. Fluid Mech. 780:578–635
    [Google Scholar]
  35. Carter D, Hassaini R, Eshraghi J, Vlachos P, Coletti F. 2020. Multi-scale imaging of upward liquid spray in the far-field region. Int. J. Multiph. Flow 132:103430
    [Google Scholar]
  36. Chen L, Goto S, Vassilicos J 2006. Turbulent clustering of stagnation points and inertial particles. J. Fluid Mech. 553:143–54
    [Google Scholar]
  37. Chouippe A, Uhlmann M. 2019. On the influence of forced homogeneous-isotropic turbulence on the settling and clustering of finite-size particles. Acta Mech. 230:2387–412
    [Google Scholar]
  38. Coleman S, Vassilicos J 2009. A unified sweep-stick mechanism to explain particle clustering in two-and three-dimensional homogeneous, isotropic turbulence. Phys. Fluids 21:11113301
    [Google Scholar]
  39. Costa P, Brandt L, Picano F. 2020. Interface-resolved simulations of small inertial particles in turbulent channel flow. J. Fluid Mech. 883:A54
    [Google Scholar]
  40. Costa P, Brandt L, Picano F. 2021. Near wall turbulence modulation by small inertial particles. J. Fluid Mech. 922:A9
    [Google Scholar]
  41. Costa P, Picano F, Brandt L, Breugem WP. 2016. Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Phys. Rev. Lett. 117:13134501
    [Google Scholar]
  42. Costa P, Picano F, Brandt L, Breugem WP. 2018. Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions. J. Fluid Mech. 843:450–78
    [Google Scholar]
  43. Csanady G. 1963. Turbulent diffusion of heavy particles in the atmosphere. J. Atmos. Sci. 20:3201–8
    [Google Scholar]
  44. Daitche A, Tél T. 2011. Memory effects are relevant for chaotic advection of inertial particles. Phys. Rev. Lett. 107:24244501
    [Google Scholar]
  45. Discetti S, Coletti F. 2018. Volumetric velocimetry for fluid flows. Meas. Sci. Technol. 29:4042001
    [Google Scholar]
  46. Eaton JK. 2009. Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Int. J. Multiph. Flow 35:9792–800
    [Google Scholar]
  47. Ebrahimian M, Sanders RS, Ghaemi S. 2019. Dynamics and wall collision of inertial particles in a solid–liquid turbulent channel flow. J. Fluid Mech. 881:872–905
    [Google Scholar]
  48. Elghobashi S. 1994. On predicting particle-laden turbulent flows. Appl. Sci. Res. 52:4309–29
    [Google Scholar]
  49. Esmaily M, Horwitz J. 2018. A correction scheme for two-way coupled point-particle simulations on anisotropic grids. J. Comput. Phys. 375:960–82
    [Google Scholar]
  50. Ferenc JS, Néda Z. 2007. On the size distribution of Poisson Vorono cells. Physica A 385:2518–26
    [Google Scholar]
  51. Fessler JR, Kulick JD, Eaton JK. 1994. Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6:113742–49
    [Google Scholar]
  52. Février P, Simonin O, Squires KD. 2005. Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533:1–46
    [Google Scholar]
  53. Fiabane L, Zimmermann R, Volk R, Pinton JF, Bourgoin M. 2012. Clustering of finite-size particles in turbulence. Phys. Rev. E 86:3035301
    [Google Scholar]
  54. Fong KO, Amili O, Coletti F 2019. Velocity and spatial distribution of inertial particles in a turbulent channel flow. J. Fluid Mech. 872:367–406
    [Google Scholar]
  55. Fornari W, Formenti A, Picano F, Brandt L. 2016a. The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions. Phys. Fluids 28:3033301
    [Google Scholar]
  56. Fornari W, Picano F, Brandt L 2016b. Sedimentation of finite-size spheres in quiescent and turbulent environments. J. Fluid Mech. 788:640–69
    [Google Scholar]
  57. Fornari W, Picano F, Sardina G, Brandt L. 2016c. Reduced particle settling speed in turbulence. J. Fluid Mech. 808:153–67
    [Google Scholar]
  58. Fornari W, Zade S, Brandt L, Picano F. 2019. Settling of finite-size particles in turbulence at different volume fractions. Acta Mech. 230:2413–30
    [Google Scholar]
  59. Forterre Y, Pouliquen O. 2008. Flows of dense granular media. Annu. Rev. Fluid Mech. 40:1–24
    [Google Scholar]
  60. Fortes AF, Joseph DD, Lundgren TS 1987. Nonlinear mechanics of fluidization of beds of spherical particles. J. Fluid Mech. 177:467–83
    [Google Scholar]
  61. Frankel A, Pouransari H, Coletti F, Mani A 2016. Settling of heated particles in homogeneous turbulence. J. Fluid Mech. 792:869–93
    [Google Scholar]
  62. Fullmer WD, Hrenya CM. 2017. The clustering instability in rapid granular and gas-solid flows. Annu. Rev. Fluid Mech. 49:485–510
    [Google Scholar]
  63. Gao H, Li H, Wang LP 2013. Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comput. Math. Appl. 65:2194–210
    [Google Scholar]
  64. Gatignol R. 1983. The Faxen formulae for a rigid particle in an unsteady non-uniform Stokes flow. J. Mec. Theor. Appl. 2:2143–60
    [Google Scholar]
  65. Gerashchenko S, Sharp N, Neuscamman S, Warhaft Z 2008. Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J. Fluid Mech. 617:255–81
    [Google Scholar]
  66. Gibert M, Xu H, Bodenschatz E. 2010. Inertial effects on two-particle relative dispersion in turbulent flows. EPL 90:664005
    [Google Scholar]
  67. Gibert M, Xu H, Bodenschatz E. 2012. Where do small, weakly inertial particles go in a turbulent flow?. J. Fluid Mech. 698:160–67
    [Google Scholar]
  68. Gondret P, Lance M, Petit L 2002. Bouncing motion of spherical particles in fluids. Phys. Fluids 14:2643–52
    [Google Scholar]
  69. Good G, Gerashchenko S, Warhaft Z 2012. Intermittency and inertial particle entrainment at a turbulent interface: the effect of the large-scale eddies. J. Fluid Mech. 694:371–98
    [Google Scholar]
  70. Good G, Ireland P, Bewley G, Bodenschatz E, Collins L, Warhaft Z 2014. Settling regimes of inertial particles in isotropic turbulence. J. Fluid Mech. 759:R3
    [Google Scholar]
  71. Gualtieri P, Picano F, Casciola C 2009. Anisotropic clustering of inertial particles in homogeneous shear flow. J. Fluid Mech. 629:25–39
    [Google Scholar]
  72. Gualtieri P, Picano F, Sardina G, Casciola CM. 2015. Exact regularized point particle method for multiphase flows in the two-way coupling regime. J. Fluid Mech. 773:520–61
    [Google Scholar]
  73. Guazzelli E, Morris JF 2012. A Physical Introduction to Suspension Dynamics Cambridge, UK: Cambridge Univ. Press
  74. Gustavsson K, Mehlig B. 2016. Statistical models for spatial patterns of heavy particles in turbulence. Adv. Phys. 65:11–57
    [Google Scholar]
  75. Haller G, Sapsis T. 2008. Where do inertial particles go in fluid flows?. Physica D 237:5573–83
    [Google Scholar]
  76. Homann H, Bec J, Grauer R. 2013. Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer. J. Fluid Mech. 721:155–79
    [Google Scholar]
  77. Horne WJ, Mahesh K. 2019. A massively-parallel, unstructured overset method to simulate moving bodies in turbulent flows. J. Comput. Phys. 397:108790
    [Google Scholar]
  78. Horowitz M, Williamson C. 2010. The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech. 651:251
    [Google Scholar]
  79. Horwitz JAK, Iaccarino G, Eaton JK, Mani A. 2020. The discrete Green's function paradigm for two-way coupled Euler-Lagrange simulation. arXiv:2004.08480 [physics.flu-dyn]
  80. Horwitz JAK, Mani A. 2016. Accurate calculation of Stokes drag for point–particle tracking in two-way coupled flows. J. Comput. Phys. 318:85–109
    [Google Scholar]
  81. Horwitz JAK, Mani A. 2018. Correction scheme for point-particle models applied to a nonlinear drag law in simulations of particle-fluid interaction. Int. J. Multiph. Flow 101:74–84
    [Google Scholar]
  82. Huck PD, Bateson C, Volk R, Cartellier A, Bourgoin M, Aliseda A. 2018. The role of collective effects on settling velocity enhancement for inertial particles in turbulence. J. Fluid Mech. 846:1059–75
    [Google Scholar]
  83. Hunt J, Wray A, Moin P. 1988. Eddies, stream, and convergence zones in turbulent flows. Proceedings of the Summer Program 1988193–208 Stanford, CA: Cent. Turbul. Res.
    [Google Scholar]
  84. Ijzermans RH, Meneguz E, Reeks MW 2010. Segregation of particles in incompressible random flows: singularities, intermittency and random uncorrelated motion. J. Fluid Mech. 653:99–136
    [Google Scholar]
  85. Ireland PJ. 2015. Computational investigation of the effect of turbulence, inertia, and gravity on particle dynamics PhD Thesis, Cornell Univ. Ithaca, NY:
  86. Ireland PJ, Bragg AD, Collins LR. 2016a. The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects. J. Fluid Mech. 796:617–58
    [Google Scholar]
  87. Ireland PJ, Bragg AD, Collins LR. 2016b. The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 2. Simulations with gravitational effects. J. Fluid Mech. 796:659–711
    [Google Scholar]
  88. Ireland PJ, Desjardins O. 2017. Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. J. Comput. Phys. 338:405–30
    [Google Scholar]
  89. Ivey G, Winters K, Koseff J. 2008. Density stratification, turbulence, but how much mixing?. Annu. Rev. Fluid Mech. 40:169–84
    [Google Scholar]
  90. Jenny M, Dusek J, Bouchet G 2004. Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. J. Fluid Mech. 508:201–39
    [Google Scholar]
  91. Khalitov D, Longmire EK. 2002. Simultaneous two-phase PIV by two-parameter phase discrimination. Exp. Fluids 32:2252–68
    [Google Scholar]
  92. Kidanemariam AG, Chan-Braun C, Doychev T, Uhlmann M 2013. Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15:2025031
    [Google Scholar]
  93. Kiger K, Pan C. 2000. PIV technique for the simultaneous measurement of dilute two-phase flows. J. Fluids Eng. 122:4811–18
    [Google Scholar]
  94. Koblitz A, Lovett S, Nikiforakis N, Henshaw WD. 2017. Direct numerical simulation of particulate flows with an overset grid method. J. Comput. Phys. 343:414–31
    [Google Scholar]
  95. Kuerten JG. 2016. Point-particle DNS and LES of particle-laden turbulent flow: a state-of-the-art review. Flow Turbul. Combust. 97:3689–713
    [Google Scholar]
  96. Kuerten JG, Vreman A. 2015. Effect of droplet interaction on droplet-laden turbulent channel flow. Phys. Fluids 27:5053304
    [Google Scholar]
  97. Lashgari I, Picano F, Breugem WP, Brandt L. 2014. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions. Phys. Rev. Lett. 113:25254502
    [Google Scholar]
  98. Lashgari I, Picano F, Breugem WP, Brandt L. 2016. Channel flow of rigid sphere suspensions: particle dynamics in the inertial regime. Int. J. Multiph. Flow 78:12–24
    [Google Scholar]
  99. Lashgari I, Picano F, Costa P, Breugem WP, Brandt L 2017. Turbulent channel flow of a dense binary mixture of rigid particles. J. Fluid Mech. 818:623–45
    [Google Scholar]
  100. Lavezzo V, Soldati A, Gerashchenko S, Warhaft Z, Collins L 2010. On the role of gravity and shear on inertial particle accelerations in near-wall turbulence. J. Fluid Mech. 658:229–46
    [Google Scholar]
  101. Lee J, Lee C 2019. The effect of wall-normal gravity on particle-laden near-wall turbulence. J. Fluid Mech. 873:475–507
    [Google Scholar]
  102. Li C, Lim K, Berk T, Abraham A, Heisel M et al. 2021. Settling and clustering of snow particles in atmospheric turbulence. J. Fluid Mech. 912:A49
    [Google Scholar]
  103. Li J, Wang H, Liu Z, Chen S, Zheng C 2012. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Exp. Fluids 53:51385–403
    [Google Scholar]
  104. Ling Y, Parmar M, Balachandar S. 2013. A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Int. J. Multiph. Flow 57:102–14
    [Google Scholar]
  105. Liu Y, Shen L, Zamansky R, Coletti F 2020. Life and death of inertial particle clusters in turbulence. J. Fluid Mech. 902:R1
    [Google Scholar]
  106. Lucci F, Ferrante A, Elghobashi S 2010. Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650:5–55
    [Google Scholar]
  107. Lucci F, Ferrante A, Elghobashi S 2011. Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size?. Phys. Fluids 23:2025101
    [Google Scholar]
  108. Marchioli C, Fantoni M, Soldati A. 2007. Influence of added mass on anomalous high rise velocity of light particles in cellular flow field: a note on the paper by Maxey (1987). Phys. Fluids 19:9098101
    [Google Scholar]
  109. Marchioli C, Soldati A. 2002. Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468:283–315
    [Google Scholar]
  110. Matas JP, Morris JF, Guazzelli É 2004. Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515:171–95
    [Google Scholar]
  111. Mathai V, Lohse D, Sun C. 2020. Bubbly and buoyant particle–laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11:529–59
    [Google Scholar]
  112. Maxey MR. 1987. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174:441–65
    [Google Scholar]
  113. Maxey MR. 2017. Simulation methods for particulate flows and concentrated suspensions. Annu. Rev. Fluid Mech. 49:171–93
    [Google Scholar]
  114. Maxey MR, Riley JJ. 1983. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26:4883–89
    [Google Scholar]
  115. Mehrabadi M, Horwitz J, Subramaniam S, Mani A 2018. A direct comparison of particle-resolved and point-particle methods in decaying turbulence. J. Fluid Mech. 850:336–69
    [Google Scholar]
  116. Mehrabadi M, Tenneti S, Garg R, Subramaniam S. 2015. Pseudo-turbulent gas-phase velocity fluctuations in homogeneous gas-solid flow: fixed particle assemblies and freely evolving suspensions. J. Fluid Mech. 770:210–46
    [Google Scholar]
  117. Momenifar M, Bragg AD. 2020. Local analysis of the clustering, velocities, and accelerations of particles settling in turbulence. Phys. Rev. Fluids 5:3034306
    [Google Scholar]
  118. Monchaux R. 2012. Measuring concentration with Vorono diagrams: the study of possible biases. New J. Phys. 14:9095013
    [Google Scholar]
  119. Monchaux R, Bourgoin M, Cartellier A. 2010. Preferential concentration of heavy particles: a Vorono analysis. Phys. Fluids 22:10103304
    [Google Scholar]
  120. Monchaux R, Bourgoin M, Cartellier A. 2012. Analyzing preferential concentration and clustering of inertial particles in turbulence. Int. J. Multiph. Flow 40:1–18
    [Google Scholar]
  121. Municchi F, Nagrani PP, Christov IC. 2019. A two-fluid model for numerical simulation of shear-dominated suspension flows. Int. J. Multiph. Flow 120:103079
    [Google Scholar]
  122. Naso A, Prosperetti A. 2010. The interaction between a solid particle and a turbulent flow. New J. Phys. 12:3033040
    [Google Scholar]
  123. Nemes A, Dasari T, Hong J, Guala M, Coletti F 2017. Snowflakes in the atmospheric surface layer: observation of particle-turbulence dynamics. J. Fluid Mech. 814:592–613
    [Google Scholar]
  124. Nilsen C, Andersson HI, Zhao L. 2013. A Vorono analysis of preferential concentration in a vertical channel flow. Phys. Fluids 25:11115108
    [Google Scholar]
  125. Niño Y, Garcia M. 1996. Experiments on particle–turbulence interactions in the near–wall region of an open channel flow: implications for sediment transport. J. Fluid Mech. 326:285–319
    [Google Scholar]
  126. Olivieri S, Brandt L, Rosti ME, Mazzino A. 2020. Dispersed fibers change the classical energy budget of turbulence via nonlocal transfer. Phys. Rev. Lett. 125:11114501
    [Google Scholar]
  127. Olivieri S, Picano F, Sardina G, Iudicone D, Brandt L 2014. The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence. Phys. Fluids 26:4041704
    [Google Scholar]
  128. Ouellette NT, Xu H, Bodenschatz E. 2006. A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exp. Fluids 40:2301–13
    [Google Scholar]
  129. Pakseresht P, Esmaily M, Apte SV. 2020. A correction scheme for wall-bounded two-way coupled point-particle simulations. J. Comput. Phys. 420:109711
    [Google Scholar]
  130. Pandey V, Ramadugu R, Perlekar P. 2020. Liquid velocity fluctuations and energy spectra in three-dimensional buoyancy-driven bubbly flows. J. Fluid Mech. 884:R6
    [Google Scholar]
  131. Peng C, Ayala OM, Wang LP. 2019. A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow. J. Fluid Mech. 875:1096–144
    [Google Scholar]
  132. Petersen AJ, Baker L, Coletti F. 2019. Experimental study of inertial particles clustering and settling in homogeneous turbulence. J. Fluid Mech. 864:925–70
    [Google Scholar]
  133. Picano F, Breugem WP, Brandt L. 2015. Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764:463–87
    [Google Scholar]
  134. Picciotto M, Marchioli C, Soldati A. 2005. Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys. Fluids 17:9098101
    [Google Scholar]
  135. Poelma C, Ooms G. 2006. Particle-turbulence interaction in a homogeneous, isotropic turbulent suspension. Appl. Mech. Rev. 59:278–90
    [Google Scholar]
  136. Poelma C, Westerweel J, Ooms G. 2007. Particle–fluid interactions in grid-generated turbulence. J. Fluid Mech. 589:315–51
    [Google Scholar]
  137. Prasath SG, Vasan V, Govindarajan R. 2019. Accurate solution method for the Maxey–Riley equation, and the effects of Basset history. J. Fluid Mech. 868:428–60
    [Google Scholar]
  138. Pumir A, Wilkinson M. 2016. Collisional aggregation due to turbulence. Annu. Rev. Condens. Matter Phys. 7:141–70
    [Google Scholar]
  139. Qureshi NM, Arrieta U, Baudet C, Cartellier A, Gagne Y, Bourgoin M. 2008. Acceleration statistics of inertial particles in turbulent flow. Eur. Phys. J. B 66:4531–36
    [Google Scholar]
  140. Qureshi NM, Bourgoin M, Baudet C, Cartellier A, Gagne Y 2007. Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99:18184502
    [Google Scholar]
  141. Richter DH, Sullivan PP. 2014. Modification of near-wall coherent structures by inertial particles. Phys. Fluids 26:10103304
    [Google Scholar]
  142. Risso F. 2018. Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50:25–48
    [Google Scholar]
  143. Rosa B, Pozorski J, Wang LP 2020. Effects of turbulence modulation and gravity on particle collision statistics. Int. J. Multiph. Flow 129:103334
    [Google Scholar]
  144. Rossetti SJ, Pfeffer R. 1972. Drag reduction in dilute flowing gas-solid suspensions. AIChE J. 18:131–39
    [Google Scholar]
  145. Ruiz J, Macías D, Peters F 2004. Turbulence increases the average settling velocity of phytoplankton cells. PNAS 101:5117720–24
    [Google Scholar]
  146. Sabban L, van Hout R. 2011. Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosol Sci. 42:12867–82
    [Google Scholar]
  147. Saito I, Watanabe T, Gotoh T. 2019. A new time scale for turbulence modulation by particles. J. Fluid Mech. 880:R6
    [Google Scholar]
  148. Sapsis TP, Ouellette NT, Gollub JP, Haller G. 2011. Neutrally buoyant particle dynamics in fluid flows: comparison of experiments with Lagrangian stochastic models. Phys. Fluids 23:9093304
    [Google Scholar]
  149. Sardina G, Schlatter P, Brandt L, Picano F, Casciola CM 2012. Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699:150–78
    [Google Scholar]
  150. Saw EW, Bewley GP, Bodenschatz E, Sankar Ray S, Bec J 2014. Extreme fluctuations of the relative velocities between droplets in turbulent airflow. Phys. Fluids 26:11111702
    [Google Scholar]
  151. Saw EW, Shaw RA, Ayyalasomayajula S, Chuang PY, Gylfason A. 2008. Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett. 100:21214501
    [Google Scholar]
  152. Schanz D, Gesemann S, Schröder A 2016. Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp. Fluids 57:570
    [Google Scholar]
  153. Schiller L, Naumann A. 1933. Fundamental calculations in gravitational processing. Z. Ver. Dtsch. Ing. 77:318–20
    [Google Scholar]
  154. Schneiders L, Günther C, Meinke M, Schröder W 2016. An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311:62–86
    [Google Scholar]
  155. Schneiders L, Hartmann D, Meinke M, Schröder W 2013. An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235:786–809
    [Google Scholar]
  156. Schneiders L, Meinke M, Schröder W 2017. Direct particle-fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence. J. Fluid Mech. 819:188–227
    [Google Scholar]
  157. Shao X, Wu T, Yu Z. 2012. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693:319–44
    [Google Scholar]
  158. Shaw RA. 2003. Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35:1183–227
    [Google Scholar]
  159. Shokri R, Ghaemi S, Nobes D, Sanders R. 2017. Investigation of particle-laden turbulent pipe flow at high-Reynolds-number using particle image/tracking velocimetry (PIV/PTV). Int. J. Multiph. Flow 89:136–49
    [Google Scholar]
  160. Smits AJ, McKeon BJ, Marusic I. 2011. High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43:353–75
    [Google Scholar]
  161. Stickel JJ, Powell RL. 2005. Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37:129–49
    [Google Scholar]
  162. Sumbekova S, Cartellier A, Aliseda A, Bourgoin M. 2017. Preferential concentration of inertial sub-Kolmogorov particles: the roles of mass loading of particles, Stokes numbers, and Reynolds numbers. Phys. Rev. Fluids 2:2024302
    [Google Scholar]
  163. Tanaka M. 2017. Effect of gravity on the development of homogeneous shear turbulence laden with finite-size particles. J. Turbul. 18:121144–79
    [Google Scholar]
  164. Tanaka M, Teramoto D. 2015. Modulation of homogeneous shear turbulence laden with finite-size particles. J. Turbul. 16:10979–1010
    [Google Scholar]
  165. Tanaka T, Eaton JK. 2010. Sub-Kolmogorov resolution partical image velocimetry measurements of particle-laden forced turbulence. J. Fluid Mech. 643:177–206
    [Google Scholar]
  166. Ten Cate A, Derksen JJ, Portela LM, Van Den Akker HE 2004. Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid Mech. 519:233–71
    [Google Scholar]
  167. Tenneti S, Subramaniam S. 2014. Particle-resolved direct numerical simulation for gas-solid flow model development. Annu. Rev. Fluid Mech. 46:199–230
    [Google Scholar]
  168. Tom J, Bragg AD 2019. Multiscale preferential sweeping of particles settling in turbulence. J. Fluid Mech. 871:244–70
    [Google Scholar]
  169. Toschi F, Bodenschatz E. 2009. Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41:375–404
    [Google Scholar]
  170. Uhlmann M, Chouippe A. 2017. Clustering and preferential concentration of finite-size particles in forced homogeneous-isotropic turbulence. J. Fluid Mech. 812:991–1023
    [Google Scholar]
  171. Uhlmann M, Doychev T. 2014. Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech. 752:310–48
    [Google Scholar]
  172. van Hout R. 2013. Spatially and temporally resolved measurements of bead resuspension and saltation in a turbulent water channel flow. J. Fluid Mech. 715:389–423
    [Google Scholar]
  173. Volk R, Calzavarini E, Leveque E, Pinton JF 2011. Dynamics of inertial particles in a turbulent von Kármán flow. J. Fluid Mech. 668:223–35
    [Google Scholar]
  174. Voth GA, La Porta A, Crawford AM, Alexander J, Bodenschatz E 2002. Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469:121–60
    [Google Scholar]
  175. Voth GA, Soldati A. 2017. Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49:249–76
    [Google Scholar]
  176. Vreman A. 2017. A staggered overset grid method for resolved simulation of incompressible flow around moving spheres. J. Comput. Phys. 333:269–96
    [Google Scholar]
  177. Wan ZY, Sapsis TP. 2018. Machine learning the kinematics of spherical particles in fluid flows. J. Fluid Mech. 857:R2
    [Google Scholar]
  178. Wang G, Abbas M, Climent E 2018. Modulation of the regeneration cycle by neutrally buoyant finite-size particles. J. Fluid Mech. 852:257–82
    [Google Scholar]
  179. Wang G, Fong KO, Coletti F, Capecelatro J, Richter DH 2019. Inertial particle velocity and distribution in vertical turbulent channel flow: a numerical and experimental comparison. Int. J. Multiph. Flow 120:103105
    [Google Scholar]
  180. Wang LP, Maxey MR. 1993. Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256:27–68
    [Google Scholar]
  181. Wang LP, Stock DE. 1993. Dispersion of heavy particles by turbulent motion. J. Atmos. Sci. 50:131897–913
    [Google Scholar]
  182. Wang Y, Sierakowski A, Prosperetti A. 2019. Rotational dynamics of a particle in a turbulent stream. Phys. Rev. Fluids 4:6064304
    [Google Scholar]
  183. Wilkinson M, Mehlig B. 2005. Caustics in turbulent aerosols. EPL 71:2186
    [Google Scholar]
  184. Willen DP, Prosperetti A. 2019. Resolved simulations of sedimenting suspensions of spheres. Phys. Rev. Fluids 4:1014304
    [Google Scholar]
  185. Yang T, Shy S. 2005. Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements. J. Fluid Mech. 526:171–216
    [Google Scholar]
  186. Yavuz M, Kunnen R, Van Heijst G, Clercx H. 2018. Extreme small-scale clustering of droplets in turbulence driven by hydrodynamic interactions. Phys. Rev. Lett. 120:24244504
    [Google Scholar]
  187. Yeo K, Dong S, Climent E, Maxey MR 2010. Modulation of homogeneous turbulence seeded with finite size bubbles or particles. Int. J. Multiph. Flow 36:3221–33
    [Google Scholar]
  188. Yeo K, Maxey MR. 2010. Dynamics of concentrated suspensions of non-colloidal particles in Couette flow. J. Fluid Mech. 649:205–31
    [Google Scholar]
  189. Yousefi A, Ardekani MN, Brandt L. 2020. Modulation of turbulence by finite-size particles in statistically steady-state homogeneous shear turbulence. J. Fluid Mech. 899:A19
    [Google Scholar]
  190. Yousefi A, Ardekani MN, Picano F, Brandt L 2021. Regimes of heat transfer in finite-size particle suspensions. Int. J. Heat Mass Transf. 177:121514
    [Google Scholar]
  191. Yudine M. 1959. Physical considerations on heavy-particle diffusion. Adv. Geophys. 6:185–91
    [Google Scholar]
  192. Zade S. 2019. Experimental studies of large particles in Newtonian and non-Newtonian fluids PhD Thesis, KTH R. Inst. Technol., Stockh. Swed:.
  193. Zade S, Costa P, Fornari W, Lundell F, Brandt L 2018. Experimental investigation of turbulent suspensions of spherical particles in a square duct. J. Fluid Mech. 857:748–83
    [Google Scholar]
  194. Zade S, Fornari W, Lundell F, Brandt L 2019. Buoyant finite-size particles in turbulent duct flow. Phys. Rev. Fluids 4:2024303
    [Google Scholar]
  195. Zaidi AA, Tsuji T, Tanaka T. 2014. Direct numerical simulation of finite sized particles settling for high Reynolds number and dilute suspension. Int. J. Heat Fluid Flow 50:330–41
    [Google Scholar]
  196. Zamansky R, Coletti F, Massot M, Mani A 2014. Radiation induces turbulence in particle-laden fluids. Phys. Fluids 26:7071701
    [Google Scholar]
  197. Zamansky R, Coletti F, Massot M, Mani A. 2016. Turbulent thermal convection driven by heated inertial particles. J. Fluid Mech. 809:390–437
    [Google Scholar]
  198. Zhang Q, Prosperetti A. 2010. Physics-based analysis of the hydrodynamic stress in a fluid-particle system. Phys. Fluids 22:3033306
    [Google Scholar]
  199. Zhao L, Andersson HI, Gillissen J. 2010. Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22:8081702
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-030121-021103
Loading
/content/journals/10.1146/annurev-fluid-030121-021103
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error