1932

Abstract

Like many intracellular pathogens, the protozoan parasite has evolved sophisticated mechanisms to promote its transmission and persistence in a variety of hosts by injecting effector proteins that manipulate many processes in the cells it invades. Specifically, the parasite diverts host epigenetic modulators and modifiers from their native functions to rewire host gene expression to counteract the innate immune response and to limit its strength. The arms race between the parasite and its hosts has led to accelerated adaptive evolution of effector proteins and the unconventional secretion routes they use. This review provides an up-to-date overview of how effectors, through the evolution of intrinsically disordered domains, the formation of supramolecular complexes, and the use of molecular mimicry, target host transcription factors that act as coordinating nodes, as well as chromatin-modifying enzymes, to control the fate of infected cells and ultimately the outcome of infection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041320-011520
2022-09-08
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-041320-011520.html?itemId=/content/journals/10.1146/annurev-micro-041320-011520&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ander SE, Rudzki EN, Arora N, Sadovsky Y, Coyne CB et al. 2018. Human placental syncytiotrophoblasts restrict Toxoplasma gondii attachment and replication and respond to infection by producing immunomodulatory chemokines. mBio 9:1e01678–17
    [Google Scholar]
  2. 2.
    Arranz-Solís D, Mukhopadhyay D, Saeij JJP. 2021. Toxoplasma effectors that affect pregnancy outcome. Trends Parasitol 37:4283–95
    [Google Scholar]
  3. 3.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. 2009. An operational definition of epigenetics. Genes Dev 23:781–83
    [Google Scholar]
  4. 4.
    Besteiro S. 2019. The role of host autophagy machinery in controlling Toxoplasma infection. Virulence 10:1438–47
    [Google Scholar]
  5. 5.
    Bhatt D, Ghosh S. 2014. Regulation of the NF-κB-mediated transcription of inflammatory genes. Front. Immunol. 5:71
    [Google Scholar]
  6. 6.
    Bierne H, Hamon M. 2020. Targeting host epigenetic machinery: the Listeria paradigm. Cell Microbiol 22:4e13169
    [Google Scholar]
  7. 7.
    Bisio H, Soldati-Favre D. 2019. Signaling cascades governing entry into and exit from host cells by Toxoplasma gondii. Annu. Rev. Microbiol. 73:579–99
    [Google Scholar]
  8. 8.
    Blader IJ, Manger ID, Boothroyd JC. 2001. Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells. J. Biol. Chem. 276:2624223–31
    [Google Scholar]
  9. 9.
    Blakely WJ, Holmes MJ, Arrizabalaga G. 2020. The secreted acid phosphatase domain-containing GRA44 from Toxoplasma gondii is required for c-Myc induction in infected cells. mSphere 5:1e00877–19
    [Google Scholar]
  10. 10.
    Boothroyd JC, Hakimi MA. 2020. Effectors produced by rhoptries and dense granules: an intense conversation between parasite and host in many languages. Toxoplasma gondii LM Weiss, K Kim 789–806 London: Elsevier
    [Google Scholar]
  11. 11.
    Bougdour A, Durandau E, Brenier-Pinchart MP, Ortet P, Barakat M et al. 2013. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression. Cell Host Microbe 13:4489–500
    [Google Scholar]
  12. 12.
    Brahma S, Henikoff S. 2020. Epigenome regulation by dynamic nucleosome unwrapping. Trends Biochem. Sci. 45:113–26
    [Google Scholar]
  13. 13.
    Braun L, Brenier-Pinchart MP, Hammoudi PM, Cannella D, Kieffer-Jaquinod S et al. 2019. The Toxoplasma effector TEEGR promotes parasite persistence by modulating NF-κB signalling via EZH2. Nat. Microbiol. 4:71208–20
    [Google Scholar]
  14. 14.
    Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL et al. 2013. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. J. Exp. Med. 210:102071–86
    [Google Scholar]
  15. 15.
    Cervantes PW, Martorelli Di Genova B, Erazo Flores BJ, Knoll LJ 2021. RIPK3 facilitates host resistance to oral Toxoplasma gondii infection. . Infect Immun 89:5e00021–21
    [Google Scholar]
  16. 16.
    Cheung P, Allis CD, Sassone-Corsi P. 2000. Signaling to chromatin through histone modifications. Cell 103:263–71
    [Google Scholar]
  17. 17.
    Clapier CR, Iwasa J, Cairns BR, Peterson CL. 2017. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat. Rev. Mol. Cell Biol. 18:407–22
    [Google Scholar]
  18. 18.
    Clough B, Frickel EM. 2017. The Toxoplasma parasitophorous vacuole: an evolving host-parasite frontier. Trends Parasitol 33:6473–88
    [Google Scholar]
  19. 19.
    Cygan AM, Theisen TC, Mendoza AG, Marino ND, Panas MW et al. 2020. Coimmunoprecipitation with MYR1 identifies three additional proteins within the Toxoplasma gondii parasitophorous vacuole required for translocation of dense granule effectors into host cells. mSphere 5:1e00858–19
    [Google Scholar]
  20. 20.
    Dai Z, Ramesh V, Locasale JW 2020. The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21:12737–53
    [Google Scholar]
  21. 21.
    Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B et al. 2012. Attributes of short linear motifs. Mol. Biosyst. 8:268–81
    [Google Scholar]
  22. 22.
    Deaton AM, Bird A. 2011. CpG islands and the regulation of transcription. Genes Dev 25:1010–22
    [Google Scholar]
  23. 23.
    DeLaney AA, Berry CT, Christian DA, Hart A, Bjanes E et al. 2019. Caspase-8 promotes c-Rel-dependent inflammatory cytokine expression and resistance against Toxoplasma gondii. PNAS 116:2411926–35
    [Google Scholar]
  24. 24.
    Farhat DC, Hakimi MA. 2022. The developmental trajectories of Toxoplasma stem from an elaborate epigenetic rewiring. Trends Parasitol 38:137–53
    [Google Scholar]
  25. 25.
    Franco M, Panas MW, Marino ND, Lee MC, Buchholz KR et al. 2016. A novel secreted protein, MYR1, is central to Toxoplasma’s manipulation of host cells. mBio 7:1e02231–15
    [Google Scholar]
  26. 26.
    Frickel EM, Hunter CA. 2021. Lessons from Toxoplasma: host responses that mediate parasite control and the microbial effectors that subvert them. J. Exp. Med. 218:11e20201314
    [Google Scholar]
  27. 27.
    Gardner KE, Allis CD, Strahl BD 2011. Operating on chromatin, a colorful language where context matters. J. Mol. Biol. 409:136–46
    [Google Scholar]
  28. 28.
    Garfoot AL, Cervantes PW, Knoll LJ. 2019. Transcriptional analysis shows a robust host response to Toxoplasma gondii during early and late chronic infection in both male and female mice. Infect. Immun. 87:e00024–19
    [Google Scholar]
  29. 29.
    Gay G, Braun L, Brenier-Pinchart MP, Vollaire J, Josserand V et al. 2016. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ-mediated host defenses. J. Exp. Med. 213:91779–98
    [Google Scholar]
  30. 30.
    Gazzinelli RT, Heiny S, Wynn TA, Wolf S, Sher A 1993. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient mice. PNAS 90:6115–19
    [Google Scholar]
  31. 31.
    Gazzinelli RT, Mendonça-Neto R, Lilue J, Howard J, Sher A 2014. Innate resistance against Toxoplasma gondii: an evolutionary tale of mice, cats, and men. Cell Host Microbe 15:2132–38
    [Google Scholar]
  32. 32.
    Gazzinelli RT, Wysocka M, Hayashi S, Denkers EY, Hieny S et al. 1994. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. J. Immunol. 153:2533–43
    [Google Scholar]
  33. 33.
    Ghisletti S, Huang W, Jepsen K, Benner C, Hardiman G et al. 2009. Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. Genes Dev 23:6681–93
    [Google Scholar]
  34. 34.
    Gilbert LA, Ravindran S, Turetzky JM, Boothroyd JC, Bradley PJ. 2007. Toxoplasma gondii targets a protein phosphatase 2C to the nuclei of infected host cells. Eukaryot. Cell 6:173–83
    [Google Scholar]
  35. 35.
    Goldszmid RS, Caspar P, Rivollier A, White S, Dzutsev A et al. 2012. NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 36:61047–59
    [Google Scholar]
  36. 36.
    Goodman RH, Smolik S. 2000. CBP/p300 in cell growth, transformation, and development. Genes Dev 14:1553–77
    [Google Scholar]
  37. 37.
    Guiton R, Vasseur V, Charron S, Arias MT, Van Langendonck N et al. 2010. Interleukin 17 receptor signaling is deleterious during Toxoplasma gondii infection in susceptible BL6 mice. J. Infect. Dis. 202:427–35
    [Google Scholar]
  38. 38.
    Hakimi MA, Olias P, Sibley LD. 2017. Toxoplasma effectors targeting host signaling and transcription. Clin. Microbiol. Rev. 30:3615–45
    [Google Scholar]
  39. 39.
    Haque S, Haque A, Kasper LH. 1995. A Toxoplasma gondii-derived factor(s) stimulates immune downregulation: an in vitro model. Infect. Immun. 63:93442–47
    [Google Scholar]
  40. 40.
    Hargrave KE, Woods S, Millington O, Chalmers S, Westrop GD et al. 2019. Multi-Omics studies demonstrate Toxoplasma gondii-induced metabolic reprogramming of murine dendritic cells. Front. Cell Infect. Microbiol. 9:309
    [Google Scholar]
  41. 41.
    He H, Brenier-Pinchart MP, Braun L, Kraut A, Touquet B et al. 2018. Characterization of a Toxoplasma effector uncovers an alternative GSK3/β-catenin-regulatory pathway of inflammation. eLife 7:e39887
    [Google Scholar]
  42. 42.
    Hehl AB, Basso WU, Lippuner C, Ramakrishnan C, Okoniewski M et al. 2015. Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes. BMC Genom 16:166
    [Google Scholar]
  43. 43.
    Ho CM, Beck JR, Lai M, Cui Y, Goldberg DE et al. 2018. Malaria parasite translocon structure and mechanism of effector export. Nature 561:772170–75
    [Google Scholar]
  44. 44.
    Howard JC, Hunn JP, Steinfeldt T. 2011. The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii. Curr. Opin. Microbiol. 14:4414–21
    [Google Scholar]
  45. 45.
    Hu X, Ivashkiv LB. 2009. Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases. Immunity 31:4539–50
    [Google Scholar]
  46. 46.
    Huang Z, Liu H, Nix J, Knoverek CR, Bowman GR et al. 2021. Intrinsically disordered pathogen effector alters the STAT1 dimer to prevent recruitment of co-transcriptional activators CBP/p300. bioRxiv 2021.08.09.455663, Aug. 9
  47. 47.
    Hunter CA, Sibley LD. 2012. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat. Rev. Microbiol. 10:11766–78
    [Google Scholar]
  48. 48.
    Hunter CA, Subauste CS, Van Cleave VH, Remington JS. 1994. Production of gamma interferon by natural killer cells from Toxoplasma gondii-infected SCID mice: regulation by interleukin-10, interleukin-12, and tumor necrosis factor alpha. Infect. Immun. 62:72818–24
    [Google Scholar]
  49. 49.
    Jensen KD, Hu K, Whitmarsh RJ, Hassan MA, Julien L et al. 2013. Toxoplasma gondii rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein GRA15. Infect. Immun. 81:62156–67
    [Google Scholar]
  50. 50.
    Jensen KDC, Wang Y, Wojno EDT, Shastri AJ, Hu K et al. 2011. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host Microbe 9:472–83
    [Google Scholar]
  51. 51.
    Karantanos T, Chistofides A, Barhdan K, Li L, Boussiotis VA. 2016. Regulation of T cell differentiation and function by EZH2. Front. Immunol. 7:172
    [Google Scholar]
  52. 52.
    Kelly B, O'Neill LA 2015. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25:771–84
    [Google Scholar]
  53. 53.
    Kelly MN, Kolls JK, Happel K, Schwartzman JD, Schwarzenberger P et al. 2005. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect. Immun. 73:617–21
    [Google Scholar]
  54. 54.
    Khan I, Yousif A, Chesnokov M, Hong L, Chefetz I. 2021. A decade of cell death studies: breathing new life into necroptosis. Pharmacol. Ther. 220:107717
    [Google Scholar]
  55. 55.
    Khan IA, Matsuura T, Kasper LH. 1994. Interleukin-12 enhances murine survival against acute toxoplasmosis. Infect. Immun. 62:51639–42
    [Google Scholar]
  56. 56.
    Kim SK, Fouts AE, Boothroyd JC. 2007. Toxoplasma gondii dysregulates IFN-gamma-inducible gene expression in human fibroblasts: insights from a genome-wide transcriptional profiling. J. Immunol. 178:85154–65
    [Google Scholar]
  57. 57.
    Kloehn J, Hammoudi PM, Soldati-Favre D. 2021. Metabolite salvage and restriction during infection—a tug of war between Toxoplasma gondii and its host. Curr. Opin. Biotechnol. 68:104–14
    [Google Scholar]
  58. 58.
    Krämer OH, Baus D, Knauer SK, Stein S, Jäger E et al. 2006. Acetylation of Stat1 modulates NF-κB activity. Genes Dev 20:4473–85
    [Google Scholar]
  59. 59.
    Krämer OH, Knauer SK, Greiner G, Jandt E, Reichardt S et al. 2009. A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev 23:2223–35
    [Google Scholar]
  60. 60.
    Kruidenier L, Chung C, Cheng Z, Liddle J, Che K et al. 2012. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488:404–8
    [Google Scholar]
  61. 61.
    Kurokawa R, Kalafus D, Ogliastro MH, Kioussi C, Xu L et al. 1998. Differential use of CREB binding protein-coactivator complexes. Science 279:5351700–3
    [Google Scholar]
  62. 62.
    Lang C, Hildebrandt A, Brand F, Opitz L, Dihazi H et al. 2012. Impaired chromatin remodelling at STAT1-regulated promoters leads to global unresponsiveness of Toxoplasma gondii-infected macrophages to IFN-γ. PLOS Pathog 8:1e1002483
    [Google Scholar]
  63. 63.
    Lee ST, Li Z, Wu Z, Aau M, Guan P et al. 2011. Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers. Mol. Cell 43:798–810
    [Google Scholar]
  64. 64.
    Li Q, Zou J, Wang M, Ding X, Chepelev I et al. 2014. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nat. Commun. 5:5780
    [Google Scholar]
  65. 65.
    Lima TS, Gov L, Lodoen MB. 2018. Evasion of human neutrophil-mediated host defense during Toxoplasma gondii infection. mBio 9:e02027–17
    [Google Scholar]
  66. 66.
    Liu Y, Peng J, Sun T, Li N, Zhang L et al. 2017. Epithelial EZH2 serves as an epigenetic determinant in experimental colitis by inhibiting TNFα-mediated inflammation and apoptosis. PNAS 114:E3796–805
    [Google Scholar]
  67. 67.
    Liu Z, Cao W, Xu L, Chen X, Zhan Y et al. 2015. The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation. J. Mol. Cell. Biol. 7:6505–16
    [Google Scholar]
  68. 68.
    Ma JS, Sasai M, Ohshima J, Lee Y, Bando H et al. 2014. Selective and strain-specific NFAT4 activation by the Toxoplasma gondii polymorphic dense granule protein GRA6. J. Exp. Med. 211:102013–32
    [Google Scholar]
  69. 69.
    Margueron R, Reinberg D. 2011. The Polycomb complex PRC2 and its mark in life. Nature 469:343–49
    [Google Scholar]
  70. 70.
    Marín M, Uversky VN, Ott T. 2013. Intrinsic disorder in pathogen effectors: protein flexibility as an evolutionary hallmark in a molecular arms race. Plant Cell 25:3153–57
    [Google Scholar]
  71. 71.
    Marino ND, Panas MW, Franco M, Theisen TC, Naor A et al. 2018. Identification of a novel protein complex essential for effector translocation across the parasitophorous vacuole membrane of Toxoplasma gondii. PLOS Pathog. 14:1e1006828
    [Google Scholar]
  72. 72.
    Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A et al. 2011. CD8α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35:2249–59
    [Google Scholar]
  73. 73.
    Matsumura Y, Nakaki R, Inagaki T, Yoshida A, Kano Y et al. 2015. H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Mol. Cell. 60:4584–96
    [Google Scholar]
  74. 74.
    Matta SK, Olias P, Huang Z, Wang Q, Park E et al. 2019. Toxoplasma gondii effector TgIST blocks type I interferon signaling to promote infection. PNAS 116:3517480–91
    [Google Scholar]
  75. 75.
    Matta SK, Rinkenberger N, Dunay IR, Sibley LD. 2021. Toxoplasma gondii infection and its implications within the central nervous system. Nat. Rev. Microbiol. 19:7467–80
    [Google Scholar]
  76. 76.
    Mayoral J, Shamamian P, Weiss LM. 2020. In vitro characterization of protein effector export in the bradyzoite stage of Toxoplasma gondii. mBio 11:e00046–20
    [Google Scholar]
  77. 77.
    Melo MB, Jensen KDC, Saeij JPJ. 2011. Toxoplasma gondii effectors are master regulators of the inflammatory response. Trends Parasitol 27:487–95
    [Google Scholar]
  78. 78.
    Melo MB, Nguyen QP, Cordeiro C, Hassan MA, Yang N et al. 2013. Transcriptional analysis of murine macrophages infected with different Toxoplasma strains identifies novel regulation of host signaling pathways. PLOS Pathog 9:12e1003779
    [Google Scholar]
  79. 79.
    Miller SA, Mohn SE, Weinmann AS. 2010. Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol. Cell 40:594–605
    [Google Scholar]
  80. 80.
    Mostafavi S, Yoshida H, Moodley D, LeBoité H, Rothamel K et al. 2016. Parsing the interferon transcriptional network and its disease associations. Cell 164:3564–78
    [Google Scholar]
  81. 81.
    Mottis A, Mouchiroud L, Auwerx J. 2013. Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes Dev 27:8819–35
    [Google Scholar]
  82. 82.
    Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. 2020. Toxoplasma GRA15 and GRA24 are important activators of the host innate immune response in the absence of TLR11. PLOS Pathog 6:5e1008586
    [Google Scholar]
  83. 83.
    Muñoz M, Heimesaat MM, Danker K, Struck D, Lohmann U et al. 2009. Interleukin (IL)-23 mediates Toxoplasma gondii-induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17. J. Exp. Med. 206:3047–59
    [Google Scholar]
  84. 84.
    Naor A, Panas MW, Marino N, Coffey MJ, Tonkin CJ et al. 2018. MYR1-dependent effectors are the major drivers of a host cell's early response to Toxoplasma, including counteracting MYR1-independent effects. mBio 9:2e02401–17
    [Google Scholar]
  85. 85.
    Netea MG, Joosten LA, Latz E, Mills KH, Natoli G et al. 2016. Trained immunity: a program of innate immune memory in health and disease. Science 352:6284aaf1098
    [Google Scholar]
  86. 86.
    Olias P, Etheridge RD, Zhang Y, Holtzman MJ, Sibley LD. 2016. Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN-γ-dependent gene expression. Cell Host Microbe 20:172–82
    [Google Scholar]
  87. 87.
    Olson WJ, Martorelli Di Genova B, Gallego-Lopez G, Dawson AR et al. 2020. Dual metabolomic profiling uncovers Toxoplasma manipulation of the host metabolome and the discovery of a novel parasite metabolic capability. PLOS Pathog 16:4e1008432
    [Google Scholar]
  88. 88.
    Panas MW, Boothroyd JC. 2021. Seizing control: how dense granule effector proteins enable Toxoplasma to take charge. Mol. Microbiol. 115:3466–77
    [Google Scholar]
  89. 89.
    Panas MW, Naor A, Cygan AM, Boothroyd JC. 2019. Toxoplasma controls host cyclin E expression through the use of a novel MYR1-dependent effector protein, HCE1. mBio 10:2e00674–19
    [Google Scholar]
  90. 90.
    Pappalardo XG, Barra V. 2021. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin 14:125
    [Google Scholar]
  91. 91.
    Peignier A, Parker D. 2020. Trained immunity and host-pathogen interactions. Cell Microbiol 22:12e13261
    [Google Scholar]
  92. 92.
    Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A et al. 2017. Structural basis for the subversion of MAP kinase signaling by an intrinsically disordered parasite secreted agonist. Structure 25:116–26
    [Google Scholar]
  93. 93.
    Pereira JM, Hamon MA, Cossart P. 2016. A lasting impression: epigenetic memory of bacterial infections?. Cell Host Microbe 19:5579–82
    [Google Scholar]
  94. 94.
    Platanias LC. 2005. Mechanisms of type-I- and type-II-interferon-mediated signaling. Nat. Rev. Immunol. 5:5375–86
    [Google Scholar]
  95. 95.
    Rastogi S, Xue Y, Quake SR, Boothroyd JC. 2020. Differential impacts on host transcription by ROP and GRA effectors from the intracellular parasite Toxoplasma gondii. mBio 11:3e00182–20
    [Google Scholar]
  96. 96.
    Ray-Jones H, Spivakov M. 2021. Transcriptional enhancers and their communication with gene promoters. Cell Mol. Life Sci. 78:19–206453–85
    [Google Scholar]
  97. 97.
    Ricketts MD, Han J, Szurgot MR, Marmorstein R. 2019. Molecular basis for chromatin assembly and modification by multiprotein complexes. Protein Sci 28:329–43
    [Google Scholar]
  98. 98.
    Rosenberg A, Sibley LD. 2021. Toxoplasma gondii secreted effectors co-opt host repressor complexes to inhibit necroptosis. Cell Host Microbe 29:71186–98.e8
    [Google Scholar]
  99. 99.
    Rosowski EE, Lu D, Julien L, Rodda L, Gaiser RA et al. 2011. Strain-specific activation of the NF-κB pathway by GRA15, a novel Toxoplasma gondii dense granule protein. J. Exp. Med. 208:1195–212
    [Google Scholar]
  100. 100.
    Rosowski EE, Nguyen QP, Camejo A, Spooner E, Saeij JP. 2014. Toxoplasma gondii inhibits gamma interferon (IFN-γ)- and IFN-β-induced host cell STAT1 transcriptional activity by increasing the association of STAT1 with DNA. Infect. Immun. 82:2706–19
    [Google Scholar]
  101. 101.
    Rothbart SB, Strahl BD. 2014. Interpreting the language of histone and DNA modifications. Biochim. Biophys. Acta Gene Regul. Mech. 1839:8627–43
    [Google Scholar]
  102. 102.
    Rudzki EN, Ander SE, Coombs RS, Alrubaye HS, Cabo LF et al. 2021. Toxoplasma gondii GRA28 is required for placenta-specific induction of the regulatory chemokine CCL22 in human and mouse. mBio 12:6e0159121
    [Google Scholar]
  103. 103.
    Sadzak I, Schiff M, Gattermeier I, Glinitzer R, Sauer I et al. 2008. Recruitment of Stat1 to chromatin is required for interferon-induced serine phosphorylation of Stat1 transactivation domain. PNAS 105:8944–49
    [Google Scholar]
  104. 104.
    Saeij JP, Coller S, Boyle JP, Jerome ME, White MW et al. 2007. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 445:7125324–27
    [Google Scholar]
  105. 105.
    Saha RN, Jana M, Pahan K 2007. MAPK p38 regulates transcriptional activity of NF-κB in primary human astrocytes via acetylation of p65. J. Immunol. 179:7101–9
    [Google Scholar]
  106. 106.
    Sasai M, Yamamoto M. 2019. Innate, adaptive, and cell-autonomous immunity against Toxoplasma gondii infection. Exp. Mol. Med. 51:121–10
    [Google Scholar]
  107. 107.
    Scafoglio C, Smolka M, Zhou H, Perissi V, Rosenfeld MG. 2013. The co-repressor SMRT delays DNA damage-induced caspase activation by repressing pro-apoptotic genes and modulating the dynamics of checkpoint kinase 2 activation. PLOS ONE 8:5e59986
    [Google Scholar]
  108. 108.
    Schneider AG, Abi Abdallah DS, Butcher BA, Denkers EY 2013. Toxoplasma gondii triggers phosphorylation and nuclear translocation of dendritic cell STAT1 while simultaneously blocking IFNγ-induced STAT1 transcriptional activity. PLOS ONE 8:3e60215
    [Google Scholar]
  109. 109.
    Seet BT, Dikic I, Zhou MM, Pawson T. 2006. Reading protein modifications with interaction domains. Nat. Rev. Mol. Cell Biol. 7:473–83
    [Google Scholar]
  110. 110.
    Seizova S, Garnham AL, Coffey MJ, Whitehead LW, Rogers KL et al. 2019. Toxoplasma gondii bradyzoites induce transcriptional changes to host cells and prevent IFNγ-mediated cell death. bioRxiv 669689, Jun. 19
  111. 111.
    Shallberg LA, Hunter CA. 2021. Long live the king: Toxoplasma gondii nucleomodulin inhibits necroptotic cell death. Cell Host Microbe 29:71165–66
    [Google Scholar]
  112. 112.
    Sher A, Collazzo C, Scanga C, Jankovic D, Yap G, Aliberti J. 2003. Induction and regulation of IL-12-dependent host resistance to Toxoplasma gondii. Immunol. Res. 27:2–3521–28
    [Google Scholar]
  113. 113.
    Soshnev AA, Josefowicz SZ, Allis CD 2016. Greater than the sum of parts: complexity of the dynamic epigenome. Mol. Cell 62:5681–94
    [Google Scholar]
  114. 114.
    Spillman NJ, Beck JR, Goldberg DE. 2015. Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annu. Rev. Biochem. 84:813–41
    [Google Scholar]
  115. 115.
    Stark GR, Darnell JE Jr. 2012. The JAK-STAT pathway at twenty. Immunity 36:4503–14
    [Google Scholar]
  116. 116.
    Strahl BD, Allis CD. 2000. The language of covalent histone modifications. Nature 403:41–45
    [Google Scholar]
  117. 117.
    Sun F, Chan E, Wu Z, Yang X, Marquez VE et al. 2009. Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells. Mol. Cancer Ther. 8:3191–202
    [Google Scholar]
  118. 118.
    Suzuki Y. 2020. The immune system utilizes two distinct effector mechanisms of T cells depending on two different life cycle stages of a single pathogen, Toxoplasma gondii, to control its cerebral infection. Parasitol. Int. 76:102030
    [Google Scholar]
  119. 119.
    Suzuki Y, Joh K. 1994. Effect of the strain of Toxoplasma gondii on the development of toxoplasmic encephalitis in mice treated with antibody to interferon-gamma. Parasitol. Res. 80:125–30
    [Google Scholar]
  120. 120.
    Swierzy IJ, Händel U, Kaever A, Jarek M, Scharfe M et al. 2017. Divergent co-transcriptomes of different host cells infected with Toxoplasma gondii reveal cell type-specific host-parasite interactions. Sci. Rep. 7:17229
    [Google Scholar]
  121. 121.
    ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M et al. 2002. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol. Cell Biol. 22:165662–68
    [Google Scholar]
  122. 122.
    Thakur J, Packiaraj J, Henikoff S. 2021. Sequence, chromatin and evolution of satellite DNA. Int. J. Mol. Sci. 22:94309
    [Google Scholar]
  123. 123.
    Tomita T, Guevara RB, Shah LM, Afrifa AY, Weiss LM. 2021. Secreted effectors modulating immune responses to Toxoplasma gondii. Life 11:9988
    [Google Scholar]
  124. 124.
    Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y et al. 2013. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4+ T helper type 1 and type 2 cells. Immunity 39:819–32
    [Google Scholar]
  125. 125.
    Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M et al. 2014. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114:6733–78
    [Google Scholar]
  126. 126.
    Vieira PC, Waghabi MC, Beghini DG, Predes D, Abreu JG et al. 2019. Toxoplasma gondii impairs myogenesis in vitro, with changes in myogenic regulatory factors, altered host cell proliferation and secretory profile. Front. Cell Infect. Microbiol. 9:395
    [Google Scholar]
  127. 127.
    Villares M, Berthelet J, Weitzman JB. 2020. The clever strategies used by intracellular parasites to hijack host gene expression. Semin. Immunopathol. 42:2215–26
    [Google Scholar]
  128. 128.
    Voigt P, Tee WW, Reinberg D. 2013. A double take on bivalent promoters. Genes Dev 27:121318–38
    [Google Scholar]
  129. 129.
    Waddington CH. 1956. The genetic assimilation of the bithorax phenotype. Evolution 10:1–13
    [Google Scholar]
  130. 130.
    Wang Y, Sangaré LO, Paredes-Santos TC, Saeij JPJ 2020. Toxoplasma mechanisms for delivery of proteins and uptake of nutrients across the host-pathogen interface. Annu. Rev. Microbiol. 74:567–86
    [Google Scholar]
  131. 131.
    Watson PJ, Fairall L, Schwabe JW. 2012. Nuclear hormone receptor co-repressors: structure and function. Mol. Cell Endocrinol. 348:2440–49
    [Google Scholar]
  132. 132.
    Weiss LM, Dubey JP. 2009. Toxoplasmosis: a history of clinical observations. Int. J. Parasitol. 39:8895–901
    [Google Scholar]
  133. 133.
    Yamamoto M, Standley DM, Takashima S, Saiga H, Okuyama M et al. 2009. A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3. . J. Exp. Med. 206:122747–60
    [Google Scholar]
  134. 134.
    Yang J, Zhang R, Lu G, Shen Y, Peng L et al. 2013. T cell–derived inducible nitric oxide synthase switches off Th17 cell differentiation. J. Exp. Med. 210:71447–62
    [Google Scholar]
  135. 135.
    Yap GS, Sher A. 1999. Effector cells of both nonhemopoietic and hemopoietic origin are required for interferon (IFN)-gamma- and tumor necrosis factor (TNF)-alpha-dependent host resistance to the intracellular pathogen, Toxoplasma gondii. J. Exp. Med. 189:1083–91
    [Google Scholar]
  136. 136.
    Yoshizawa T, Nozawa RS, Jia TZ, Saio T, Mori E. 2020. Biological phase separation: cell biology meets biophysics. Biophys. Rev. 12:2519–39
    [Google Scholar]
  137. 137.
    Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P et al. 2015. RNA controls PolyQ protein phase transitions. Mol. Cell. 60:2220–30
    [Google Scholar]
  138. 138.
    Zhang Y, Cheng MB, Zhang YJ, Zhong X, Dai H et al. 2010. A switch from hBrm to Brg1 at IFNγ-activated sequences mediates the activation of human genes. Cell Res 20:121345–60
    [Google Scholar]
  139. 139.
    Zhao XY, Ewald SE. 2020. The molecular biology and immune control of chronic Toxoplasma gondii infection. . J. Clin. Investig. 130:73370–80
    [Google Scholar]
  140. 140.
    Zimmermann S, Murray PJ, Heeg K, Dalpke AH. 2006. Induction of suppressor of cytokine signaling-1 by Toxoplasma gondii contributes to immune evasion in macrophages by blocking IFN-gamma signaling. J. Immunol. 176:31840–47
    [Google Scholar]
  141. 141.
    Zinani OQH, Keseroğlu K, Özbudak EM. 2022. Regulatory mechanisms ensuring coordinated expression of functionally related genes. Trends Genet 38:173–81
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041320-011520
Loading
/content/journals/10.1146/annurev-micro-041320-011520
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error