1932

Abstract

Microbial communities enmeshed in a matrix of macromolecules, termed as biofilms, are the natural setting of bacteria. Exopolysaccharide is a critical matrix component of biofilms. Here, we focus on biofilm matrix exopolysaccharides in . This opportunistic pathogen can adapt to a wide range of environments and can form biofilms or aggregates in a variety of surfaces or environments, such as the lungs of people with cystic fibrosis, catheters, wounds, and contact lenses. The ability to synthesize multiple exopolysaccharides is one of the advantages that facilitate bacterial survival in different environments. can produce several exopolysaccharides, including alginate, Psl, Pel, and lipopolysaccharide. In this review, we highlight the roles of each exopolysaccharide in biofilm development and how bacteria coordinate the biosynthesis of multiple exopolysaccharides and bacterial motility. In addition, we present advances in antibiofilm strategies targeting matrix exopolysaccharides, with a focus on glycoside hydrolases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-041320-111355
2022-09-08
2024-05-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-041320-111355.html?itemId=/content/journals/10.1146/annurev-micro-041320-111355&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alhede M, Alhede M, Qvortrup K, Kragh KN, Jensen PO et al. 2020. The origin of extracellular DNA in bacterial biofilm infections in vivo. Pathog. Dis. 78:ftaa018
    [Google Scholar]
  2. 2.
    Alkawash MA, Soothill JS, Schiller NL. 2006. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114:131–38
    [Google Scholar]
  3. 3.
    Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS et al. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59:1114–28
    [Google Scholar]
  4. 4.
    Armbruster CR, Lee CK, Parker-Gilham J, de Anda J, Xia AG et al. 2019. Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations. eLife 9:e59154
    [Google Scholar]
  5. 5.
    Asker D, Awad TS, Baker P, Howell PL, Hatton BD. 2018. Non-eluting, surface-bound enzymes disrupt surface attachment of bacteria by continuous biofilm polysaccharide degradation. Biomaterials 167:168–76
    [Google Scholar]
  6. 6.
    Azimi S, Thomas J, Cleland SE, Curtis JE, Goldberg JB, Diggle SP. 2021. O-Specific antigen-dependent surface hydrophobicity mediates aggregate assembly type in Pseudomonas aeruginosa. mBio 12:4e0086021
    [Google Scholar]
  7. 7.
    Baker P, Hill PJ, Snarr BD, Alnabelseya N, Pestrak MJ et al. 2016. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci. Adv. 2:e1501632
    [Google Scholar]
  8. 8.
    Baker P, Whitfield GB, Hill PJ, Little DJ, Pestrak MJ et al. 2015. Characterization of the Pseudomonas aeruginosa glycoside hydrolase PslG reveals that its levels are critical for Psl polysaccharide biosynthesis and biofilm formation. J. Biol. Chem. 290:28374–87
    [Google Scholar]
  9. 9.
    Baraquet C, Harwood CS. 2016. FleQ DNA binding consensus sequence revealed by studies of FleQ-dependent regulation of biofilm gene expression in Pseudomonas aeruginosa. J. Bacteriol. 198:178–86
    [Google Scholar]
  10. 10.
    Baynham PJ, Ramsey DM, Gvozdyev BV, Cordonnier EM, Wozniak DJ. 2006. The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J. Bacteriol. 188:1132–40
    [Google Scholar]
  11. 11.
    Baynham PJ, Wozniak DJ. 1996. Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol. Microbiol. 22:97–108
    [Google Scholar]
  12. 12.
    Berlutti F, Morea C, Battistoni A, Sarli S, Cipriani P et al. 2005. Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int. J. Immunopathol. Pharmacol. 18:661–70
    [Google Scholar]
  13. 13.
    Bhasme P, Wei Q, Xu A, Naqvi STA, Wang D, Ma LZ. 2020. Evaluation and characterization of the predicted diguanylate cyclase-encoding genes in Pseudomonas aeruginosa. MicrobiologyOpen 9:e975
    [Google Scholar]
  14. 14.
    Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. 2010. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol. 75:827–42
    [Google Scholar]
  15. 15.
    Brencic A, Lory S 2009. Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol. Microbiol. 72:612–32
    [Google Scholar]
  16. 16.
    Brencic A, McFarland KA, McManus HR, Castang S, Mogno I et al. 2009. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol. Microbiol. 73:434–45
    [Google Scholar]
  17. 17.
    Byrd MS, Pang B, Mishra M, Swords WE, Wozniak DJ. 2010. The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-κB activation in A549 cells. mBio 1:e00140–10
    [Google Scholar]
  18. 18.
    Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB et al. 2009. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol. Microbiol. 73:622–38
    [Google Scholar]
  19. 19.
    Cao L, Xie L, Xue X, Tan H, Liu Y, Zhou S. 2007. Purification and characterization of alginate lyase from Streptomyces species strain A5 isolated from banana rhizosphere. J. Agric. Food Chem. 55:5113–17
    [Google Scholar]
  20. 20.
    Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y et al. 2014. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLOS Pathog 10:e1004480
    [Google Scholar]
  21. 21.
    Chew SC, Kundukad B, Seviour T, van der Maarel JR, Yang L et al. 2014. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides. mBio 5:e01536–14
    [Google Scholar]
  22. 22.
    Chew SC, Yam JKH, Matysik A, Seng ZJ, Klebensberger J et al. 2018. Matrix polysaccharides and SiaD diguanylate cyclase alter community structure and competitiveness of Pseudomonas aeruginosa during dual-species biofilm development with Staphylococcus aureus. mBio 9:e00585–18
    [Google Scholar]
  23. 23.
    Chitnis CE, Ohman DE. 1993. Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol. Microbiol. 8:583–93
    [Google Scholar]
  24. 24.
    Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI. 2010. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328:1295–97
    [Google Scholar]
  25. 25.
    Colley B, Dederer V, Carnell M, Kjelleberg S, Rice SA, Klebensberger J 2016. SiaA/D interconnects c-di-GMP and RsmA signaling to coordinate cellular aggregation of Pseudomonas aeruginosa in response to environmental conditions. Front. Microbiol. 7:179
    [Google Scholar]
  26. 26.
    Colvin KM, Alnabelseya N, Baker P, Whitney JC, Howell PL, Parsek MR. 2013. PelA deacetylase activity is required for Pel polysaccharide synthesis in Pseudomonas aeruginosa. J. Bacteriol. 195:2329–39
    [Google Scholar]
  27. 27.
    Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ et al. 2011. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLOS Pathog 7:e1001264
    [Google Scholar]
  28. 28.
    Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC et al. 2012. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 14:1913–28
    [Google Scholar]
  29. 29.
    Damron FH, Davis MR, Withers TR, Ernst RK, Goldberg JB et al. 2011. Vanadate and triclosan synergistically induce alginate production by Pseudomonas aeruginosa strain PA01. Mol. Microbiol. 81:554–70
    [Google Scholar]
  30. 30.
    Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–98
    [Google Scholar]
  31. 31.
    DiGiandomenico A, Warrener P, Hamilton M, Guillard S, Ravn P et al. 2012. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. J. Exp. Med. 209:1273–87
    [Google Scholar]
  32. 32.
    Eftekhar F, Speert DP. 1988. Alginase treatment of mucoid Pseudomonas aeruginosa enhances phagocytosis by human monocyte-derived macrophages. Infect. Immun. 56:2788–93
    [Google Scholar]
  33. 33.
    Esoda CN, Kuehn MJ. 2019. Pseudomonas aeruginosa leucine aminopeptidase influences early biofilm composition and structure via vesicle-associated antibiofilm activity. mBio 10:e02548–19
    [Google Scholar]
  34. 34.
    Falcone M, Ferrara S, Rossi E, Johansen HK, Molin S, Bertoni G. 2018. The small RNA ErsA of Pseudomonas aeruginosa contributes to biofilm development and motility through post-transcriptional modulation of AmrZ. Front. Microbiol. 9:238
    [Google Scholar]
  35. 35.
    Feng Q, Ahator SD, Zhou T, Liu Z, Lin Q et al. 2020. Regulation of exopolysaccharide production by ProE, a cyclic-di-GMP phosphodiesterase in Pseudomonas aeruginosa PAO1. Front. Microbiol. 11:1226
    [Google Scholar]
  36. 36.
    Ferrara S, Carloni S, Fulco R, Falcone M, Macchi R, Bertoni G. 2015. Post-transcriptional regulation of the virulence-associated enzyme AlgC by the σ22-dependent small RNA ErsA of Pseudomonas aeruginosa. Environ. Microbiol. 17:199–214
    [Google Scholar]
  37. 37.
    Ferrara S, Rossi A, Ranucci S, De Fino I, Bragonzi A et al. 2020. The small RNA ErsA plays a role in the regulatory network of Pseudomonas aeruginosa pathogenicity in airway infections. mSphere 5:e00909–20
    [Google Scholar]
  38. 38.
    Fleming D, Chahin L, Rumbaugh K. 2017. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob. Agents Chemother. 61:e01998–16
    [Google Scholar]
  39. 39.
    Franklin MJ, Nivens DE, Weadge JT, Howell PL. 2011. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front. Microbiol. 2:167
    [Google Scholar]
  40. 40.
    Friedman L, Kolter R. 2004. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 51:675–90
    [Google Scholar]
  41. 41.
    Fuxman Bass JI, Russo DM, Gabelloni ML, Geffner JR, Giordano M et al. 2010. Extracellular DNA: a major proinflammatory component of Pseudomonas aeruginosa biofilms. J. Immunol. 184:6386–95
    [Google Scholar]
  42. 42.
    Ghafoor A, Hay ID, Rehm BHA. 2011. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl. Environ. Microbiol. 77:5238–46
    [Google Scholar]
  43. 43.
    Ghosh AS, Young KD. 2005. Helical disposition of proteins and lipopolysaccharide in the outer membrane of Escherichia coli. J. Bacteriol. 187:1913–22
    [Google Scholar]
  44. 44.
    Gloag ES, Marshall CW, Snyder D, Lewin GR, Harris JS et al. 2019. Pseudomonas aeruginosa interstrain dynamics and selection of hyperbiofilm mutants during a chronic infection. mBio 10:e01698–19
    [Google Scholar]
  45. 45.
    Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H et al. 2013. Self-organization of bacterial biofilms is facilitated by extracellular DNA. PNAS 110:11541–46
    [Google Scholar]
  46. 46.
    Glonti T, Chanishvili N, Taylor PW. 2010. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J. Appl. Microbiol. 108:695–702
    [Google Scholar]
  47. 47.
    Govan JRW, Deretic V. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60:539–74
    [Google Scholar]
  48. 48.
    Ha DG, Richman ME, O'Toole GA. 2014. Deletion mutant library for investigation of functional outputs of cyclic diguanylate metabolism in Pseudomonas aeruginosa PA14. Appl. Environ. Microbiol. 80:3384–93
    [Google Scholar]
  49. 49.
    Hancock REW, Mutharia LM, Chan L, Darveau RP, Speert DP, Pier GB. 1983. Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect. Immun. 42:170–77
    [Google Scholar]
  50. 50.
    Hay ID, Rehman ZU, Ghafoor A, Rehm BHA. 2010. Bacterial biosynthesis of alginates. J. Chem. Technol. Biotechnol. 85:752–59
    [Google Scholar]
  51. 51.
    Hay ID, Remminghorst U, Rehm BH. 2009. MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 75:1110–20
    [Google Scholar]
  52. 52.
    Heurlier K, Williams F, Heeb S, Dormond C, Pessi G et al. 2004. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J. Bacteriol. 186:2936–45
    [Google Scholar]
  53. 53.
    Hickman JW, Harwood CS. 2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol. 69:376–89
    [Google Scholar]
  54. 54.
    Hickman JW, Tifrea DF, Harwood CS. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. PNAS 102:14422–27
    [Google Scholar]
  55. 55.
    Hou LL, Debru A, Chen QQ, Bao QY, Li KW. 2019. AmrZ regulates swarming motility through cyclic di-GMP-dependent motility inhibition and controlling Pel polysaccharide production in Pseudomonas aeruginosa PA14. Front. Microbiol. 10:1847
    [Google Scholar]
  56. 56.
    Huangyutitham V, Guvener ZT, Harwood CS. 2013. Subcellular clustering of the phosphorylated WspR response regulator protein stimulates its diguanylate cyclase activity. mBio 4:e00242–13
    [Google Scholar]
  57. 57.
    Irie Y, Borlee BR, O'Connor JR, Hill PJ, Harwood CS et al. 2012. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. PNAS 109:20632–36
    [Google Scholar]
  58. 58.
    Irie Y, La Mensa A, Murina V, Hauryliuk V, Tenson T, Shingler V 2020. Hfq-assisted RsmA regulation is central to Pseudomonas aeruginosa biofilm polysaccharide Pel expression. Front. Microbiol. 11:482585
    [Google Scholar]
  59. 59.
    Irie Y, Roberts AEL, Kragh KN, Gordon VD, Hutchison J et al. 2017. The Pseudomonas aeruginosa Psl polysaccharide is a social but noncheatable trait in biofilms. mBio 8:e00374–17
    [Google Scholar]
  60. 60.
    Irie Y, Starkey M, Edwards AN, Wozniak DJ, Romeo T, Parsek MR. 2010. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol. Microbiol. 78:158–72
    [Google Scholar]
  61. 61.
    Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ. 2004. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J. Bacteriol. 186:4466–75
    [Google Scholar]
  62. 62.
    Jenal U, Malone J. 2006. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40:385–407
    [Google Scholar]
  63. 63.
    Jennings LK, Dreifus JE, Reichhardt C, Storek KM, Secor PR et al. 2021. Pseudomonas aeruginosa aggregates in cystic fibrosis sputum produce exopolysaccharides that likely impede current therapies. Cell Rep 34:108782
    [Google Scholar]
  64. 64.
    Jennings LK, Storek KM, Ledvina HE, Coulon C, Marmont LS et al. 2015. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. PNAS 112:11353–58
    [Google Scholar]
  65. 65.
    Jerga A, Raychaudhuri A, Tipton PA. 2006. Pseudomonas aeruginosa C5-mannuronan epimerase: steady-state kinetics and characterization of the product. Biochemistry 45:552–60
    [Google Scholar]
  66. 66.
    Jones CJ, Newsom D, Kelly B, Irie Y, Jennings LK et al. 2014. ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa. PLOS Pathog 10:e1003984
    [Google Scholar]
  67. 67.
    Jones CJ, Ryder CR, Mann EE, Wozniak DJ. 2013. AmrZ modulates Pseudomonas aeruginosa biofilm architecture by directly repressing transcription of the psl operon. J. Bacteriol. 195:1637–44
    [Google Scholar]
  68. 68.
    Kay E, Humair B, Denervaud V, Riedel K, Spahr S et al. 2006. Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J. Bacteriol. 188:6026–33
    [Google Scholar]
  69. 69.
    Kerrigan BG, Tae Hoon K, Rashmi G, Greenberg EP, Martin S 2009. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol. Microbiol. 73:1072–85
    [Google Scholar]
  70. 70.
    Klebensberger J, Birkenmaier A, Geffers R, Kjelleberg S, Philipp B. 2009. SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa. Environ. Microbiol. 11:3073–86
    [Google Scholar]
  71. 71.
    Klebensberger J, Rui O, Fritz E, Schink B, Philipp B. 2006. Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate. Arch. Microbiol. 185:417–27
    [Google Scholar]
  72. 72.
    Kovach KN, Fleming D, Wells MJ, Rumbaugh KP, Gordon VD. 2020. Specific disruption of established Pseudomonas aeruginosa biofilms using polymer-attacking enzymes. Langmuir 36:1585–95
    [Google Scholar]
  73. 73.
    Kulkarni PR, Jia T, Kuehne SA, Kerkering TM, Morris ER et al. 2014. A sequence-based approach for prediction of CsrA/RsmA targets in bacteria with experimental validation in Pseudomonas aeruginosa. Nucleic Acids Res 42:6811–25
    [Google Scholar]
  74. 74.
    Lam JS, Taylor VL, Islam ST, Hao YA, Kocincova D. 2011. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front. Microbiol. 2:118
    [Google Scholar]
  75. 75.
    Lamppa JW, Griswold KE. 2013. Alginate lyase exhibits catalysis-independent biofilm dispersion and antibiotic synergy. Antimicrob. Agents Chemother. 57:137–45
    [Google Scholar]
  76. 76.
    Lau PCY, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS. 2009. Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms. J. Bacteriol. 191:6618–31
    [Google Scholar]
  77. 77.
    Laventie BJ, Sangermani M, Estermann F, Manfredi P, Planes R et al. 2019. A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe 25:140–52.e6
    [Google Scholar]
  78. 78.
    Le Mauff F, Bamford NC, Alnabelseya N, Zhang Y, Baker P et al. 2019. Molecular mechanism of Aspergillus fumigatus biofilm disruption by fungal and bacterial glycoside hydrolases. J. Biol. Chem. 294:10760–72
    [Google Scholar]
  79. 78a.
    Le Mauff F, Razvi E, Reichhardt C, Sivarajah P, Parsek MRet al 2022. The Pel polysaccharide is predominantly composed of a dimeric repeat of α-1,4 linked galactosamine and N-acetylgalactosamine. Commun. Biol 5:502Erratum 2022. Commun. Biol 5:1624
    [Google Scholar]
  80. 79.
    Lee J, Zhang L. 2015. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:126–41
    [Google Scholar]
  81. 80.
    Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65:1474–84
    [Google Scholar]
  82. 81.
    Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK. 2005. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J. Immunol. 175:7512–18
    [Google Scholar]
  83. 82.
    Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N. 2013. NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J. Bacteriol. 195:3531–42
    [Google Scholar]
  84. 83.
    Lindhout T, Lau PCY, Brewer D, Lam JS. 2009. Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. Microbiology 155:3449–60
    [Google Scholar]
  85. 84.
    Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. 2009. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLOS Pathog 5:e1000354
    [Google Scholar]
  86. 85.
    Ma L, Jackson K, Landry RM, Parsek MR, Wozniak DJ. 2006. Analysis of Pseudomonas aeruginosa conditional Psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J. Bacteriol. 188:8213–21
    [Google Scholar]
  87. 86.
    Ma L, Lu H, Sprinkle A, Parsek MR, Wozniak DJ. 2007. Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J. Bacteriol. 189:8353–56
    [Google Scholar]
  88. 87.
    Ma L, Wang J, Wang S, Anderson EM, Lam JS et al. 2012. Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environ. Microbiol. 14:1995–2005
    [Google Scholar]
  89. 88.
    Ma L, Wang S, Wang D, Parsek MR, Wozniak DJ. 2012. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms. FEMS Immunol. Med. Microbiol. 65:377–80
    [Google Scholar]
  90. 89.
    Mahajan S, Sunsunwal S, Gautam V, Singh M, Ramya TNC. 2021. Biofilm inhibitory effect of alginate lyases on mucoid P. aeruginosa from a cystic fibrosis patient. Biochem. Biophys. Rep. 26:101028
    [Google Scholar]
  91. 90.
    Mai GT, Seow WK, Pier GB, McCormack JG, Thong YH. 1993. Suppression of lymphocyte and neutrophil functions by Pseudomonas aeruginosa mucoid exopolysaccharide (alginate): reversal by physicochemical, alginase, and specific monoclonal antibody treatments. Infect. Immun. 61:559–64
    [Google Scholar]
  92. 91.
    Mathee K, McPherson CJ, Ohman DE. 1997. Posttranslational control of the algT (algU)-encoded σ22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J. Bacteriol. 179:3711–20
    [Google Scholar]
  93. 92.
    Mercante J, Edwards AN, Dubey AK, Babitzke P, Romeo T. 2009. Molecular geometry of CsrA (RsmA) binding to RNA and its implications for regulated expression. J. Mol. Biol. 392:511–28
    [Google Scholar]
  94. 93.
    Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S 2007. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol. 65:876–95
    [Google Scholar]
  95. 94.
    Merritt JH, Ha DG, Cowles KN, Lu W, Morales DK et al. 2010. Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. mBio 1:e00183–10
    [Google Scholar]
  96. 95.
    Mi L, Liu Y, Wang C, He T, Gao S et al. 2019. Identification of a lytic Pseudomonas aeruginosa phage depolymerase and its anti-biofilm effect and bactericidal contribution to serum. Virus Genes 55:394–405
    [Google Scholar]
  97. 96.
    Mishra M, Byrd MS, Sergeant S, Azad AK, Parsek MR et al. 2012. Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization. Cell Microbiol 14:95–106
    [Google Scholar]
  98. 97.
    Naumoff DG. 2011. Hierarchical classification of glycoside hydrolases. Biochemistry 76:622–35
    [Google Scholar]
  99. 98.
    Ni L, Yang S, Zhang RR, Jin ZY, Chen H et al. 2016. Bacteria differently deploy type-IV pili on surfaces to adapt to nutrient availability. npj Biofilms Microbiomes 2:15029
    [Google Scholar]
  100. 99.
    Osawa T, Matsubara Y, Muramatsu T, Kimura M, Kakuta Y. 2005. Crystal structure of the alginate (poly alpha-l-guluronate) lyase from Corynebacterium sp. at 1.2 Å resolution. J. Mol. Biol. 345:1111–18
    [Google Scholar]
  101. 100.
    O'Toole GA, Kolter R 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30:295–304
    [Google Scholar]
  102. 101.
    Passos da Silva D, Matwichuk ML, Townsend DO, Reichhardt C, Lamba D et al. 2019. The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix. Nat. Commun. 10:2183
    [Google Scholar]
  103. 102.
    Pessi G, Williams F, Hindle Z, Heurlier K, Holden MT et al. 2001. The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J. Bacteriol. 183:6676–83
    [Google Scholar]
  104. 103.
    Pestrak MJ, Baker P, Dellos-Nolan S, Hill PJ, Passos da Silva D et al. 2019. Treatment with the Pseudomonas aeruginosa glycoside hydrolase PslG combats wound infection by improving antibiotic efficacy and host innate immune activity. Antimicrob. Agents Chemother. 63:e00234–19
    [Google Scholar]
  105. 104.
    Pita T, Feliciano JR, Leitao JH. 2018. Small noncoding regulatory RNAs from Pseudomonas aeruginosa and Burkholderia cepacia complex. Int. J. Mol. Sci. 19:3759
    [Google Scholar]
  106. 105.
    Potvin E, Sanschagrin F, Levesque RC. 2008. Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol. Rev. 32:38–55
    [Google Scholar]
  107. 106.
    Ramsey DM, Wozniak DJ. 2005. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol. Microbiol. 56:309–22
    [Google Scholar]
  108. 107.
    Reichhardt C, Jacobs HM, Matwichuk M, Wong C, Wozniak DJ, Parsek MR. 2020. The versatile Pseudomonas aeruginosa biofilm matrix protein CdrA promotes aggregation through different extracellular exopolysaccharide interactions. J. Bacteriol. 202:e00216–20
    [Google Scholar]
  109. 108.
    Reichhardt C, Wong C, Passos da Silva D, Wozniak DJ, Parsek MR. 2018. CdrA interactions within the Pseudomonas aeruginosa biofilm matrix safeguard it from proteolysis and promote cellular packing. mBio 9:e01376–18
    [Google Scholar]
  110. 109.
    Rybtke M, Jensen PO, Nielsen CH, Tolker-Nielsen T. 2021. The extracellular polysaccharide matrix of Pseudomonas aeruginosa biofilms is a determinant of polymorphonuclear leukocyte responses. Infect. Immun. 89:e00631–20
    [Google Scholar]
  111. 110.
    Schiller NL, Monday SR, Boyd CM, Keen NT, Ohman DE. 1993. Characterization of the Pseudomonas aeruginosa alginate lyase gene (algL): cloning, sequencing, and expression in Escherichia coli. J. Bacteriol. 175:4780–89
    [Google Scholar]
  112. 111.
    Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R et al. 2015. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLOS Pathog 11:e1004744
    [Google Scholar]
  113. 112.
    Shrout JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR. 2006. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62:51264–77
    [Google Scholar]
  114. 113.
    Singh P, Parsek MR, Greenberg EP, Welsh MJ. 2002. A component of innate immunity prevents bacterial biofilm development. Nature 417:552–55
    [Google Scholar]
  115. 114.
    Snarr BD, Baker P, Bamford NC, Sato Y, Liu H et al. 2017. Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity. PNAS 114:7124–29
    [Google Scholar]
  116. 115.
    Stacey SD, Pritchett CL. 2016. Pseudomonas aeruginosa AlgU contributes to posttranscriptional activity by increasing rsmA expression in a mucA22 strain. J. Bacteriol. 198:1812–26
    [Google Scholar]
  117. 116.
    Starkey M, Hickman JH, Ma L, Zhang N, De Long S et al. 2009. Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J. Bacteriol. 191:3492–503
    [Google Scholar]
  118. 117.
    Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56:187–209
    [Google Scholar]
  119. 118.
    Su T, He J, Li N, Liu S, Xu S, Gu L. 2020. A rational designed PslG with normal biofilm hydrolysis and enhanced resistance to trypsin-like protease digestion. Front. Microbiol. 11:760
    [Google Scholar]
  120. 119.
    Sutherland IW. 2001. The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol 9:222–27
    [Google Scholar]
  121. 120.
    Szymanska M, Karakulska J, Sobolewski P, Kowalska U, Grygorcewicz B et al. 2020. Glycoside hydrolase (PelAh) immobilization prevents Pseudomonas aeruginosa biofilm formation on cellulose-based wound dressing. Carbohydr. Polym. 246:116625
    [Google Scholar]
  122. 121.
    Tahrioui A, Duchesne R, Bouffartigues E, Rodrigues S, Maillot O et al. 2019. Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation. npj Biofilms Microbiomes 5:15
    [Google Scholar]
  123. 122.
    Tart AH, Blanks MJ, Wozniak DJ. 2006. The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J. Bacteriol. 188:6483–89
    [Google Scholar]
  124. 123.
    Thorn CR, Raju D, Lacdao I, Gilbert S, Sivarajah P et al. 2021. Protective liquid crystal nanoparticles for targeted delivery of PslG: a biofilm dispersing enzyme. ACS Infect. Dis. 7:2102–15
    [Google Scholar]
  125. 124.
    Tseng BS, Reichhardt C, Merrihew GE, Araujo-Hernandez SA, Harrison JJ et al. 2018. A biofilm matrix-associated protease inhibitor protects Pseudomonas aeruginosa from proteolytic attack. mBio 9:e00543–18
    [Google Scholar]
  126. 125.
    Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL et al. 2013. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ. Microbiol. 15:2865–78
    [Google Scholar]
  127. 126.
    Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G et al. 2016. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. 7:11220
    [Google Scholar]
  128. 127.
    Vasseur P, Soscia C, Voulhoux R, Filloux A. 2007. PelC is a Pseudomonas aeruginosa outer membrane lipoprotein of the OMA family of proteins involved in exopolysaccharide transport. Biochimie 89:903–15
    [Google Scholar]
  129. 128.
    Wang S, Liu X, Liu H, Zhang L, Guo Y et al. 2015. The exopolysaccharide Psl-eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. Environ. Microbiol. Rep. 7:330–40
    [Google Scholar]
  130. 129.
    Wang S, Parsek MR, Wozniak DJ, Ma LZ. 2013. A spider web strategy of type IV pili-mediated migration to build a fibre-like Psl polysaccharide matrix in Pseudomonas aeruginosa biofilms. Environ. Microbiol. 15:2238–53
    [Google Scholar]
  131. 130.
    Wang S, Yu S, Zhang Z, Wei Q, Yan L et al. 2014. Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 80:6724–32
    [Google Scholar]
  132. 131.
    Wang Y, Hay ID, Rehman ZU, Rehm BH. 2015. Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 99:7253–65
    [Google Scholar]
  133. 132.
    Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487
    [Google Scholar]
  134. 133.
    Wilton M, Charron-Mazenod L, Moore R, Lewenza S 2016. Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 60:544–53
    [Google Scholar]
  135. 134.
    Wong TY, Preston LA, Schiller NL. 2000. Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev. Microbiol. 54:289–340
    [Google Scholar]
  136. 135.
    Wozniak DJ, Ohman DE. 1994. Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J. Bacteriol. 176:6007–14
    [Google Scholar]
  137. 136.
    Wozniak DJ, Parsek MR. 2014. Surface-associated microbes continue to surprise us in their sophisticated strategies for assembling biofilm communities. F1000Prime Rep 6:26
    [Google Scholar]
  138. 137.
    Wozniak DJ, Sprinkle AB, Baynham PJ. 2003. Control of Pseudomonas aeruginosa algZ expression by the alternative sigma factor AlgT. J. Bacteriol. 185:7297–300
    [Google Scholar]
  139. 138.
    Xu A, Wang D, Ding Y, Zheng Y, Wang B et al. 2020. Integrated comparative genomic analysis and phenotypic profiling of Pseudomonas aeruginosa isolates from crude oil. Front. Microbiol. 11:519
    [Google Scholar]
  140. 139.
    Xu A, Wang D, Wang Y, Zhang L, Xie Z et al. 2022. Mutations in surface-sensing receptor WspA lock the Wsp signal transduction system into a constitutively active state. Environ. Microbiol. 24:115065
    [Google Scholar]
  141. 140.
    Xu A, Zhang M, Du W, Wang D, Ma LZ 2021. A molecular mechanism for how sigma factor AlgT and transcriptional regulator AmrZ inhibit twitching motility in Pseudomonas aeruginosa. Environ. Microbiol. 23:572–87
    [Google Scholar]
  142. 141.
    Xu B, Soukup RJ, Jones CJ, Fishel R, Wozniak DJ. 2016. Pseudomonas aeruginosa AmrZ binds to four sites in the algD promoter, inducing DNA-AmrZ complex formation and transcriptional activation. J. Bacteriol. 198:2673–81
    [Google Scholar]
  143. 142.
    Yang L, Hu Y, Liu Y, Zhang J, Ulstrup J, Molin S. 2011. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ. Microbiol. 3:1705–17
    [Google Scholar]
  144. 143.
    Yang S, Cheng X, Jin Z, Xia A, Ni L et al. 2018. Differential production of Psl in planktonic cells leads to two distinctive attachment phenotypes in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 84:e00700–18
    [Google Scholar]
  145. 144.
    Yu S, Su T, Wu H, Liu S, Wang D et al. 2015. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res 25:1352–67
    [Google Scholar]
  146. 145.
    Yu S, Wei Q, Zhao T, Guo Y, Ma LZ. 2016. A survival strategy for Pseudomonas aeruginosa that uses exopolysaccharides to sequester and store iron to stimulate Psl-dependent biofilm formation. Appl. Environ. Microbiol. 82:6403–13
    [Google Scholar]
  147. 146.
    Zhang J, He J, Zhai C, Ma LZ, Gu L, Zhao K. 2018. Effects of PslG on the surface movement of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 84:e00219–18
    [Google Scholar]
  148. 147.
    Zhang R, Xia A, Ni L, Li F, Jin Z et al. 2017. Strong shear flow persister bacteria resist mechanical washings on the surfaces of various polymer materials. Adv. Biosyst. 1:e1700161
    [Google Scholar]
  149. 148.
    Zhang W, Sun J, Ding W, Lin J, Tian R et al. 2015. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development. Front. Cell Infect. Microbiol. 5:40
    [Google Scholar]
  150. 149.
    Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML et al. 2013. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 497:388–91
    [Google Scholar]
  151. 150.
    Zhao T, Zhang Y, Wu H, Wang D, Chen Y et al. 2018. Extracellular aminopeptidase modulates biofilm development of Pseudomonas aeruginosa by affecting matrix exopolysaccharide and bacterial cell death. Environ. Microbiol. Rep. 10:583–93
    [Google Scholar]
  152. 151.
    Zheng Y, Wang D, Ma LZ 2021. Effect of polyhexamethylene biguanide in combination with undecylenamidopropyl betaine or PslG on biofilm clearance. Int. J. Mol. Sci. 22:768
    [Google Scholar]
  153. 152.
    Zhu B, Liu C, Liu S, Cong H, Chen Y et al. 2016. Membrane association of SadC enhances its diguanylate cyclase activity to control exopolysaccharides synthesis and biofilm formation in Pseudomonas aeruginosa. Environ. Microbiol. 18:3440–52
    [Google Scholar]
/content/journals/10.1146/annurev-micro-041320-111355
Loading
/content/journals/10.1146/annurev-micro-041320-111355
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error