1932

Abstract

The bacterial flagellar motor is the most complex structure in the bacterial cell, driving the ion-driven rotation of the helical flagellum. The ordered expression of the regulon and the assembly of the series of interacting protein rings, spanning the inner and outer membranes to form the ∼45–50-nm protein complex, have made investigation of the structure and mechanism a major challenge since its recognition as a rotating nanomachine about 40 years ago. Painstaking molecular genetics, biochemistry, and electron microscopy revealed a tiny electric motor spinning in the bacterial membrane. Over the last decade, new single-molecule and in vivo biophysical methods have allowed investigation of the stability of this and other large protein complexes, working in their natural environment inside live cells. This has revealed that in the bacterial flagellar motor, protein molecules in both the rotor and stator exchange with freely circulating pools of spares on a timescale of minutes, even while motors are continuously rotating. This constant exchange has allowed the evolution of modified components allowing bacteria to keep swimming as the viscosity or the ion composition of the outside environment changes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090816-093411
2020-09-08
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-090816-093411.html?itemId=/content/journals/10.1146/annurev-micro-090816-093411&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adler J. 1965. Chemotaxis in Escherichia coli. Cold Spring Harb. Symp. Quant. Biol 30:289–92
    [Google Scholar]
  2. 2. 
    Altegoer F, Bange G. 2015. Undiscovered regions on the molecular landscape of flagellar assembly. Curr. Opin. Microbiol. 28:98–105
    [Google Scholar]
  3. 3. 
    Armitage JP, Ingham C, Evans MC 1985. Role of proton motive force in phototactic and aerotactic responses of Rhodopseudomonassphaeroides. J. Bacteriol 161:3967–72
    [Google Scholar]
  4. 4. 
    Asai Y, Kawagishi I, Sockett RE, Homma M 1999. Hybrid motor with H+- and Na+-driven components can rotate Vibrio polar flagella by using sodium ions. J. Bacteriol. 181:206332–38
    [Google Scholar]
  5. 5. 
    Attmannspacher U, Scharf BE, Harshey RM 2008. FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonellaenterica. Mol. Microbiol 68:2328–41
    [Google Scholar]
  6. 6. 
    Bai F, Morimoto YV, Yoshimura SDJ, Hara N, Kami-Ike N et al. 2014. Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus. Sci. Rep. 4:6528
    [Google Scholar]
  7. 7. 
    Baker AE, Diepold A, Kuchma SL, Scott JE, Ha DG et al. 2016. A PilZ domain protein FlgZ mediates c-di-GMP-dependent swarming motility control in Pseudomonasaeruginosa. J. Bacteriol 198:April JB.00196-16
    [Google Scholar]
  8. 8. 
    Baker AE, O'Toole GA. 2017. Bacteria, rev your engines: Stator dynamics regulate flagellar motility. J. Bacteriol. 199:12 JB.00088-17
    [Google Scholar]
  9. 9. 
    Beeby M, Ribardo DA, Brennan CA, Ruby EG, Jensen GJ, Hendrixson DR 2016. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. PNAS 113:13201518952
    [Google Scholar]
  10. 10. 
    Berg HC. 1974. Dynamic properties of bacterial flagellar motors. Nature 249:45277–79
    [Google Scholar]
  11. 11. 
    Berg HC, Brown DA. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:5374500–4
    [Google Scholar]
  12. 12. 
    Bi S, Sourjik V. 2018. Stimulus sensing and signal processing in bacterial chemotaxis. Curr. Opin. Microbiol. 45:22–29
    [Google Scholar]
  13. 13. 
    Blair DF, Berg HC. 1990. The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60:3439–49
    [Google Scholar]
  14. 14. 
    Block SM, Berg HC. 1984. Successive incorporation of force-generating units in the bacterial rotary motor. Nature 309:5967470–72
    [Google Scholar]
  15. 15. 
    Braun TF, Blair DF. 2001. Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H+ channels in the stator complex. Biochemistry 40:4313051–59
    [Google Scholar]
  16. 16. 
    Chawla R, Ford KM, Lele PP 2017. Torque, but not FliL, regulates mechanosensitive flagellar motor-function. Sci. Rep. 7:15565
    [Google Scholar]
  17. 17. 
    Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR et al. 2011. Structural diversity of bacterial flagellar motors. EMBO J 30:142972–81
    [Google Scholar]
  18. 18. 
    Chevance FFV, Hughes KT. 2008. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6:6455–65
    [Google Scholar]
  19. 19. 
    Chevance FFV, Takahashi N, Karlinsey JE, Gnerer J, Hirano T et al. 2007. The mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution. Genes Dev 21:182326–35
    [Google Scholar]
  20. 20. 
    Cohen-Bazire G, London J. 1967. Basal organelles of bacterial flagella. J. Bacteriol. 94:2458–65
    [Google Scholar]
  21. 21. 
    Cusick K, Lee Y-Y, Youchak B, Belas R 2012. Perturbation of FliL interferes with Proteus mirabilis swarmer cell gene expression and differentiation. J. Bacteriol. 194:2437–47
    [Google Scholar]
  22. 22. 
    Delalez N, Armitage JP. 2009. Parts exchange: tuning the flagellar motor to fit the conditions. Mol. Microbiol. 71:4807–10
    [Google Scholar]
  23. 23. 
    Delalez NJ, Berry RM, Armitage JP 2014. Stoichiometry and turnover of the bacterial flagellar switch protein FliN. mBio 5:4e01216–14
    [Google Scholar]
  24. 24. 
    Delalez NJ, Wadhams GH, Rosser G, Xue Q, Brown MT et al. 2010. Signal-dependent turnover of the bacterial flagellar switch protein FliM. PNAS 107:2511347–51
    [Google Scholar]
  25. 25. 
    Deme JC, Johnson S, Vichery O, Muelbauer A, Monkhuse H et al. 2020. Structures of the stator complex that drives rotation of the bacterial flagellum. bioRxiv 2020.05.12.089201. https://doi.org/10.1101/2020.05.12.089201
    [Crossref]
  26. 26. 
    DePamphilis ML, Adler J. 1971. Attachment of flagellar basal bodies to the cell envelope: specific attachment to the outer, lipopolysaccharide membrane and the cytoplasmic membrane. J. Bacteriol. 105:1396–407
    [Google Scholar]
  27. 27. 
    Diepold A, Kudryashev M, Delalez NJ, Berry RM, Armitage JP 2015. Composition, formation, and regulation of the cytosolic C-ring, a dynamic component of the type III secretion injectisome. PLOS Biol 13:1e1002039
    [Google Scholar]
  28. 28. 
    Diepold A, Sezgin E, Huseyin M, Mortimer T, Eggeling C, Armitage JP 2017. A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome. Nat. Commun. 8:15940
    [Google Scholar]
  29. 29. 
    Engelmann TW. 1883. Bakterium photometricum: Ein Beitrag zur vergleichenden Physiologie des Lict-und Farbensinnes. Pfleugers Arch. Gesamte Physiol. Menschen Tiere 42:183–86
    [Google Scholar]
  30. 30. 
    Ferreira JL, Gao FZ, Rossmann FM, Nans A, Brenzinger S et al. 2019. γ-Proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures. PLOS Biol 17:3e3000165
    [Google Scholar]
  31. 31. 
    Fujinami S, Terahara N, Krulwich TA, Ito M 2009. Motility and chemotaxis in alkaliphilic Bacillus species. Future Microbiol 4:91137–49
    [Google Scholar]
  32. 32. 
    Fukuoka H, Inoue Y, Terasawa S, Takahashi H, Ishijima A 2010. Exchange of rotor components in functioning bacterial flagellar motor. Biochem. Biophys. Res. Commun. 394:1130–35
    [Google Scholar]
  33. 33. 
    Fukuoka H, Wada T, Kojima S, Ishijima A, Homma M 2009. Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol. Microbiol. 71:4825–35
    [Google Scholar]
  34. 34. 
    Fung DC, Berg HC. 1995. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375:6534809–12
    [Google Scholar]
  35. 35. 
    Hosking ER, Vogt C, Bakker EP, Manson MD 2006. The Escherichia coli MotAB proton channel unplugged. J. Mol. Biol. 364:5921–37
    [Google Scholar]
  36. 36. 
    Hosu BG, Berg HC. 2018. CW and CCW conformations of the E. coli flagellar motor C-ring evaluated by fluorescence anisotropy. Biophys. J. 114:3641–49
    [Google Scholar]
  37. 37. 
    Hug I, Deshpande S, Sprecher KS, Pfohl T, Jenal U 2017. Second messenger–mediated tactile response by a bacterial rotary motor. Science 358:6362531–34
    [Google Scholar]
  38. 38. 
    Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC 2012. Advanced fluorescence microscopy techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17:44047–132
    [Google Scholar]
  39. 39. 
    Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers BD et al. 2004. MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillussubtilis. Mol. Microbiol 53:41035–49
    [Google Scholar]
  40. 40. 
    Ito M, Terahara N, Fujinami S, Krulwich TA 2005. Properties of motility in Bacillussubtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J. Mol. Biol. 352:2396–408
    [Google Scholar]
  41. 41. 
    Johnson S, Fong YH, Deme J, Furlong E, Kuhlen L, Lea SM 2019. Structure of the bacterial flagellar rotor MS-ring: a minimum inventory/maximum diversity system. bioRxiv 718072
  42. 42. 
    Kaplan M, Subramanian P, Ghosal D, Oikonomou CM, Pirbadian S et al. 2019. In situ imaging of the bacterial flagellar motor disassembly and assembly processes. EMBO J 38:14e100957
    [Google Scholar]
  43. 43. 
    Kim EA, Panushka J, Meyer T, Carlisle R, Baker S et al. 2017. Architecture of the flagellar switch complex of Escherichia coli: conformational plasticity of FliG and implications for adaptive remodeling. J. Mol. Biol. 429:91305–20
    [Google Scholar]
  44. 44. 
    Kim EA, Panushka J, Meyer T, Ide N, Carlisle R et al. 2017. Biogenesis of the flagellar switch complex in Escherichia coli: formation of sub-complexes independently of the basal-body MS-ring. J. Mol. Biol. 429:152353–59
    [Google Scholar]
  45. 45. 
    Kojima S. 2015. Dynamism and regulation of the stator, the energy conversion complex of the bacterial flagellar motor. Curr. Opin. Microbiol. 28:66–71
    [Google Scholar]
  46. 46. 
    Kojima S, Imada K, Sakuma M, Suda Y Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB Mol. . Microbiol 73:4710–18
    [Google Scholar]
  47. 47. 
    Kojima S, Takao M, Almira G, Kawahara I, Sakuma M et al. 2018. The helix rearrangement in the periplasmic domain of the flagellar stator B subunit activates peptidoglycan binding and ion influx. Structure 26:4590–98.e5
    [Google Scholar]
  48. 48. 
    Kuchma SL, Delalez NJ, Filkins LM, Snavely EA, Armitage JP, O'Toole GA 2015. Cyclic di-GMP-mediated repression of swarming motility by Pseudomonasaeruginosa PA14 requires the MotAB stator. J. Bacteriol. 197:3420–30
    [Google Scholar]
  49. 49. 
    Larsen SH, Reader RW, Kort EN, Tso WW, Adler J 1974. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. . Nature 249:45274–77
    [Google Scholar]
  50. 50. 
    Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP 2006. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:7109355–58
    [Google Scholar]
  51. 51. 
    Lee LK, Ginsburg MA, Crovace C, Donohoe M, Stock D 2010. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466:7309996–1000
    [Google Scholar]
  52. 52. 
    Leewenhoeck A. 1684. An abstract of a letter from Mr. Anthony Leevvenhoeck at Delft, dated Sep. 17. 1683. Containing some microscopical observations, about animals in the scurf of the teeth, the substance call'd worms in the nose, the cuticula consisting of scales. Philos. Trans. R. Soc. London 14:159568–74
    [Google Scholar]
  53. 53. 
    Lele PP, Branch RW, Nathan VSJ, Berg HC 2012. Mechanism for adaptive remodeling of the bacterial flagellar switch. PNAS 109:4920018–22
    [Google Scholar]
  54. 54. 
    Lele PP, Hosu BG, Berg HC 2013. Dynamics of mechanosensing in the bacterial flagellar motor. PNAS 110:2911839–44
    [Google Scholar]
  55. 55. 
    Lele PP, Shrivastava A, Roland T, Berg HC 2015. Response thresholds in bacterial chemotaxis. Sci. Adv. 1:9e1500299
    [Google Scholar]
  56. 56. 
    Li H, Sourjik V. 2011. Assembly and stability of flagellar motor in Escherichia coli. Mol. Microbiol 80:4886–99
    [Google Scholar]
  57. 57. 
    Macnab RM. 2004. Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta. Mol. Cell Res. 1694:1–3207–17
    [Google Scholar]
  58. 58. 
    Manson MD. 1977. A protonmotive force drives bacterial flagella. PNAS 74:73060–64
    [Google Scholar]
  59. 59. 
    McDowell MA, Marcoux J, McVicker G, Johnson S, Fong YH et al. 2016. Characterisation of Shigella Spa33 and Thermotoga FliM/N reveals a new model for C-ring assembly in T3SS. Mol. Microbiol. 99:4749–66
    [Google Scholar]
  60. 60. 
    Minamino T, Morimoto YV, Hara N, Namba K 2011. An energy transduction mechanism used in bacterial flagellar type III protein export. Nat. Commun. 2:475
    [Google Scholar]
  61. 61. 
    Minamino T, Morimoto YV, Kinoshita M, Aldridge PD, Namba K 2014. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis. Sci. Rep. 4:7579
    [Google Scholar]
  62. 62. 
    Minamino T, Namba K. 2004. Self-assembly and type III protein export of the bacterial flagellum. J. Mol. Microbiol. Biotechnol. 7:1–25–7
    [Google Scholar]
  63. 63. 
    Morimoto YV, Ito M, Hiraoka KD, Che Y-S, Bai F et al. 2014. Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body. Mol. Microbiol. 91:61214–26
    [Google Scholar]
  64. 64. 
    Morimoto YV, Nakamura S, Kami-ike N, Namba K, Minamino T 2010. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor. Mol. Microbiol. 78:51117–29
    [Google Scholar]
  65. 65. 
    Nakamura S, Hanaizumi Y, Morimoto YV, Inoue Y, Erhardt M et al. 2020. Direct observation of speed fluctuations of flagellar motor rotation at extremely low load close to zero. Mol. Microbiol. 113:4755–65
    [Google Scholar]
  66. 66. 
    Nieto V, Partridge JD, Severin GB, Lai R-Z, Waters CM et al. 2019. Under elevated c-di-GMP in Escherichia coli, YcgR alters flagellar motor bias and speed sequentially, with additional negative control of the flagellar regulon via the adaptor protein RssB. J. Bacteriol. 202:1e00578–19
    [Google Scholar]
  67. 67. 
    Nirody JA, Nord AL, Berry RM 2019. Load-dependent adaptation near zero load in the bacterial flagellar motor. J. R. Soc. Interface 16:15920190300
    [Google Scholar]
  68. 68. 
    Nord AL, Gachon E, Perez-Carrasco R, Nirody JA, Barducci A et al. 2017. Catch bond drives stator mechanosensitivity in the bacterial flagellar motor. PNAS 114:4912952–57
    [Google Scholar]
  69. 69. 
    Nord AL, Sowa Y, Steel BC, Lo C-J, Berry RM 2017. Speed of the bacterial flagellar motor near zero load depends on the number of stator units. PNAS 114:4411603–8
    [Google Scholar]
  70. 70. 
    Notti RQ, Bhattacharya S, Lilic M, Stebbins CE 2015. A common assembly module in injectisome and flagellar type III secretion sorting platforms. Nat. Commun. 6:May7125
    [Google Scholar]
  71. 71. 
    Onoue Y, Iwaki M, Shinobu A, Nishihara Y, Iwatsuki H et al. 2019. Essential ion binding residues for Na+ flow in stator complex of the Vibrio flagellar motor. Sci. Rep. 9:111216
    [Google Scholar]
  72. 72. 
    Paul K, Blair DF. 2006. Organization of FliN subunits in the flagellar motor of Escherichia coli. J. Bacteriol 188:72502–11
    [Google Scholar]
  73. 73. 
    Paulick A, Delalez NJ, Brenzinger S, Steel BC, Berry RM et al. 2015. Dual stator dynamics in the Shewanellaoneidensis MR-1 flagellar motor. Mol. Microbiol. 96:5993–1001
    [Google Scholar]
  74. 74. 
    Paulick A, Koerdt A, Lassak J, Huntley S, Wilms I et al. 2009. Two different stator systems drive a single polar flagellum in Shewanellaoneidensis MR-1. Mol. Microbiol. 71:4836–50
    [Google Scholar]
  75. 75. 
    Pfeffer W. 1884. Locomotorische Richtungsbewegungen durch chemische. Reise. Untersuch. Bot. Inst. Tübingen. 1:363–482
    [Google Scholar]
  76. 76. 
    Pilizota T, Brown MT, Leake MC, Branch RW, Berry RM, Armitage JP 2009. A molecular brake, not a clutch, stops the Rhodobactersphaeroides flagellar motor. PNAS 106:2811582–87
    [Google Scholar]
  77. 77. 
    Purcell E. 1977. Life at low Reynolds number. Am. J. Phys. 45:13
    [Google Scholar]
  78. 78. 
    Reid SW, Leake MC, Chandler JH, Lo C-J, Armitage JP, Berry RM 2006. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. PNAS 103:218066–71
    [Google Scholar]
  79. 79. 
    Rossmann FM, Beeby M. 2018. Insights into the evolution of bacterial flagellar motors from high-throughput in situ electron cryotomography and subtomogram averaging. Acta Crystallogr. Sect. D 74:Part 6585–94
    [Google Scholar]
  80. 80. 
    Sakai T, Miyata T, Terahara N, Mori K, Inoue Y et al. 2019. Novel insights into conformational rearrangements of the bacterial flagellar switch complex. mBio 10:2e00079–19
    [Google Scholar]
  81. 81. 
    Sarkar MK, Paul K, Blair DF 2010. Subunit organization and reversal-associated movements in the flagellar switch of Escherichia coli. J. Biol. Chem 285:1675–84
    [Google Scholar]
  82. 82. 
    Sharp LL, Zhou J, Blair DF 1995. Features of MotA proton channel structure revealed by tryptophan-scanning mutagenesis. PNAS 92:177946–50
    [Google Scholar]
  83. 83. 
    Silverman M, Simon M. 1974. Flagellar rotation and the mechanism of bacterial motility. Nature 249:545273–74
    [Google Scholar]
  84. 84. 
    Sowa Y, Homma M, Ishijima A, Berry RM 2014. Hybrid-fuel bacterial flagellar motors in Escherichia coli. . PNAS 111:93436–41
    [Google Scholar]
  85. 85. 
    Sowa Y, Rowe AD, Leake MC, Yakushi T, Homma M et al. 2005. Direct observation of steps in rotation of the bacterial flagellar motor. Nature 437:7060916–19
    [Google Scholar]
  86. 86. 
    Subramanian S, Gao X, Dann CE, Kearns DB 2017. MotI (DgrA) acts as a molecular clutch on the flagellar stator protein MotA in Bacillussubtilis. . PNAS 114:5113537–42
    [Google Scholar]
  87. 87. 
    Suchanek VM, Esteban-López M, Colin R, Besharova O, Fritz K, Sourjik V 2020. Chemotaxis and cyclic-di-GMP signalling control surface attachment of Escherichia coli. . Mol. Microbiol 113:4728–39
    [Google Scholar]
  88. 88. 
    Sudo Y, Terashima H, Abe-Yoshizumi R, Kojima S, Homma M 2009. Comparative study of the ion flux pathway in stator units of proton- and sodium-driven flagellar motors. Biophysics 5:45–52
    [Google Scholar]
  89. 89. 
    Terahara N, Kodera N, Uchihashi T, Ando T, Namba K, Minamino T 2017. Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor. Sci. Adv. 3:11eaao4119
    [Google Scholar]
  90. 90. 
    Terahara N, Noguchi Y, Nakamura S, Kami-ike N, Ito M et al. 2017. Load- and polysaccharide-dependent activation of the Na+-type MotPS stator in the Bacillussubtilis flagellar motor. Sci. Rep. 7:46081
    [Google Scholar]
  91. 91. 
    Thomas D, Morgan DG, DeRosier DJ 2001. Structures of bacterial flagellar motors from two FliF-FliG gene fusion mutants. J. Bacteriol. 183:216404–12
    [Google Scholar]
  92. 92. 
    Thomas DR, Francis NR, Xu C, DeRosier DJ 2006. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonellaenterica serovar Typhimurium. J. Bacteriol. 188:207039–48
    [Google Scholar]
  93. 93. 
    Tipping MJ, Delalez NJ, Lim R, Berry RM, Armitage JP 2013. Load-dependent assembly of the bacterial flagellar motor. mBio 4:4e00551–13
    [Google Scholar]
  94. 94. 
    Tipping MJ, Steel BC, Delalez NJ, Berry RM, Armitage JP 2013. Quantification of flagellar motor stator dynamics through in vivo proton-motive force control. Mol. Microbiol. 87:2338–47
    [Google Scholar]
  95. 95. 
    Tusk SE, Delalez NJ, Berry RM 2018. Subunit exchange in protein complexes. J. Mol. Biol. 430:224557–79
    [Google Scholar]
  96. 96. 
    Wadhams GH, Armitage JP. 2004. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5:121024–37
    [Google Scholar]
  97. 97. 
    Wadhwa N, Phillips R, Berg HC 2019. Torque-dependent remodeling of the bacterial flagellar motor. PNAS 116:2411764–69
    [Google Scholar]
  98. 98. 
    Walter JM, Greenfield D, Bustamante C, Liphardt J 2007. Light-powering Escherichia coli with proteorhodopsin. PNAS 104:72408–12
    [Google Scholar]
  99. 99. 
    Wang R, Wang F, He R, Zhang R, Yuan J 2018. The second messenger c-di-GMP adjusts motility and promotes surface aggregation of bacteria. Biophys. J. 115:112242–49
    [Google Scholar]
  100. 100. 
    Xing J, Bai F, Berry R, Oster G 2006. Torque-speed relationship of the bacterial flagellar motor. PNAS 103:51260–65
    [Google Scholar]
  101. 101. 
    Yamashita I, Hasegawa K, Suzuki H, Vonderviszt F, Mimori-Kiyosue Y, Namba K 1998. Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nat. Struct. Biol. 5:2125–32
    [Google Scholar]
  102. 102. 
    Yuan J, Berg HC. 2013. Ultrasensitivity of an adaptive bacterial motor. J. Mol. Biol. 425:101760–64
    [Google Scholar]
  103. 103. 
    Yuan J, Branch RW, Hosu BG, Berg HC 2012. Adaptation at the output of the chemotaxis signalling pathway. Nature 484:7393233–36
    [Google Scholar]
  104. 104. 
    Zhou J, Lloyd SA, Blair DF 1998. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. PNAS 95:116436–41
    [Google Scholar]
  105. 105. 
    Zhou J, Sharp LL, Tang HL, Lloyd SA, Billings S et al. 1998. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J. Bacteriol. 180:102729–35
    [Google Scholar]
  106. 106. 
    Zhu S, Kumar A, Kojima S, Homma M 2015. FliL associates with the stator to support torque generation of the sodium-driven polar flagellar motor of Vibrio. Mol. Microbiol 98:1101–10
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090816-093411
Loading
/content/journals/10.1146/annurev-micro-090816-093411
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error