1932

Abstract

The microbial community colonizing the gastrointestinal tract, collectively termed the gut microbiota, is an important element of the host organism due to its impact on multiple aspects of health. The digestion of food, secretion of immunostimulatory molecules, performance of chemical reactions in the intestine, and production of metabolites by the microbiota contribute to host homeostasis and disease. Recent discoveries indicate that these major functions are not constantly performed over the course of a day, but rather undergo diurnal fluctuations due to compositional and biogeographical oscillations in the microbiota. Here, we summarize the characteristics and origins of diurnal microbiome rhythms as well as their functional consequences for the circadian biology of the host. We describe the major known pathways of circadian host-microbiome communication and discuss possible implications of altered diurnal microbiome rhythms for human disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-062320-111321
2022-08-22
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/nutr/42/1/annurev-nutr-062320-111321.html?itemId=/content/journals/10.1146/annurev-nutr-062320-111321&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Allaband C, Lingaraju A, Martino C, Russell B, Tripathi A et al. 2021. Intermittent hypoxia and hypercapnia alter diurnal rhythms of luminal gut microbiome and metabolome. mSystems 6:3e0011621
    [Google Scholar]
  2. 2.
    Astiz M, Heyde I, Oster H. 2019. Mechanisms of communication in the mammalian circadian timing system. Int. J. Mol. Sci. 20:2343
    [Google Scholar]
  3. 3.
    Bass J, Lazar MA. 2016. Circadian time signatures of fitness and disease. Science 354:6315994–99
    [Google Scholar]
  4. 4.
    Beccuti G, Monagheddu C, Evangelista A, Ciccone G, Broglio F et al. 2017. Timing of food intake: Sounding the alarm about metabolic impairments? A systematic review. Pharmacol. Res. 125:132–41
    [Google Scholar]
  5. 5.
    Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. Cell 157:1121–41
    [Google Scholar]
  6. 6.
    Bellet MM, Deriu E, Liu JZ, Grimaldi B, Blaschitz C et al. 2013. Circadian clock regulates the host response to Salmonella. PNAS 110:249897–902
    [Google Scholar]
  7. 7.
    Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE et al. 2005. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. 6:7544–56
    [Google Scholar]
  8. 8.
    Brooks JF, Behrendt CL, Ruhn KA, Lee S, Raj P et al. 2021. The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock. Cell 184:164154–67.e12Discovery of rhythmic intestinal antimicrobial activity mediated by the microbiome.
    [Google Scholar]
  9. 9.
    Damiola F, Minh NL, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:232950–61
    [Google Scholar]
  10. 10.
    Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ et al. 2013. Reprogramming of the circadian clock by nutritional challenge. Cell 155:71464–78
    [Google Scholar]
  11. 11.
    Eelderink-Chen Z, Bosman J, Sartor F, Dodd AN, Kovács ÁT, Merrow M. A circadian clock in a nonphotosynthetic prokaryote. Sci. Adv. 7:2eabe2086
    [Google Scholar]
  12. 12.
    Fessler J, Matson V, Gajewski TF. 2019. Exploring the emerging role of the microbiome in cancer immunotherapy. J. Immunother. Cancer 7:1108
    [Google Scholar]
  13. 13.
    Frazier K, Kambal A, Zale EA, Pierre JF, Hubert N et al. 2022. High-fat diet disrupts REG3γ and gut microbial rhythms promoting metabolic dysfunction. Cell Host Microbe 30680923.e6
  14. 14.
    Godinho-Silva C, Domingues RG, Rendas M, Raposo B, Ribeiro H et al. 2019. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature 574:7777254–58
    [Google Scholar]
  15. 15.
    Gombert M, Carrasco-Luna J, Pin-Arboledas G, Codoñer-Franch P. 2019. The connection of circadian rhythm to inflammatory bowel disease. Transl. Res. 206:107–18
    [Google Scholar]
  16. 16.
    Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA et al. 2012. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:6848–60
    [Google Scholar]
  17. 17.
    Jacquelot N, Belz GT, Seillet C. 2021. Neuroimmune interactions and rhythmic regulation of innate lymphoid cells. Front. Neurosci. 15:657081
    [Google Scholar]
  18. 18.
    Johnson CH. 2004. Precise circadian clocks in prokaryotic cyanobacteria. Curr. Issues Mol. Biol. 6:2103–10
    [Google Scholar]
  19. 19.
    Johnson CH, Zhao C, Xu Y, Mori T. 2017. Timing the day: What makes bacterial clocks tick?. Nat. Rev. Microbiol. 15:4232–42
    [Google Scholar]
  20. 20.
    Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C et al. 2007. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:5414–21
    [Google Scholar]
  21. 21.
    Kuang Z, Wang Y, Li Y, Ye C, Ruhn KA et al. 2019. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science 365:64601428–34Discovery of a pathway by which the microbiome affects host lipid absorption, via HDAC3.
    [Google Scholar]
  22. 22.
    Le Minh N, Damiola F, Tronche F, Schütz G, Schibler U 2001. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20:247128–36
    [Google Scholar]
  23. 23.
    Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY et al. 2015. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17:5681–89One of the first studies to discover microbiome oscillations and how they are affected by HFD.
    [Google Scholar]
  24. 24.
    Liang X, Bushman FD, FitzGerald GA. 2015. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. PNAS 112:3310479–84Discovery of sex-specific differences in microbiome oscillations.
    [Google Scholar]
  25. 25.
    Mao K, Baptista AP, Tamoutounour S, Zhuang L, Bouladoux N et al. 2018. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 554:7691255–59
    [Google Scholar]
  26. 26.
    Martchenko SE, Martchenko A, Cox BJ, Naismith K, Waller A et al. 2020. Circadian GLP-1 secretion in mice is dependent on the intestinal microbiome for maintenance of diurnal metabolic homeostasis. Diabetes 69:122589–602
    [Google Scholar]
  27. 27.
    Masri S, Papagiannakopoulos T, Kinouchi K, Liu Y, Cervantes M et al. 2016. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell 165:4896–909
    [Google Scholar]
  28. 28.
    Mohawk JA, Green CB, Takahashi JS. 2012. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35:445–62
    [Google Scholar]
  29. 29.
    Montagner A, Korecka A, Polizzi A, Lippi Y, Blum Y et al. 2016. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Sci. Rep. 6:120127
    [Google Scholar]
  30. 30.
    Mukherji A, Kobiita A, Ye T, Chambon P. 2013. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153:4812–27
    [Google Scholar]
  31. 31.
    Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A et al. 2013. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502:7470245–48
    [Google Scholar]
  32. 32.
    Org E, Mehrabian M, Parks BW, Shipkova P, Liu X et al. 2016. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7:4313–22
    [Google Scholar]
  33. 33.
    Paulose JK, Cassone CV, Graniczkowska KB, Cassone VM. 2019. Entrainment of the circadian clock of the enteric bacterium Klebsiella aerogenes by temperature cycles. iScience 19:1202–13
    [Google Scholar]
  34. 34.
    Paulose JK, Wright JM, Patel AG, Cassone VM. 2016. Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLOS ONE 11:1e0146643
    [Google Scholar]
  35. 35.
    Reitmeier S, Kiessling S, Clavel T, List M, Almeida EL et al. 2020. Arrhythmic gut microbiome signatures predict risk of type 2 diabetes. Cell Host Microbe 28:2258–72.e6First study to show that certain human diseases are characterized by loss of microbiome rhythmicity.
    [Google Scholar]
  36. 36.
    Risely A, Wilhelm K, Clutton-Brock T, Manser MB, Sommer S. 2021. Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat. Commun. 12:16017
    [Google Scholar]
  37. 37.
    Sano T, Huang W, Hall JA, Yang Y, Chen A et al. 2015. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163:2381–93
    [Google Scholar]
  38. 38.
    Sanos SL, Bui VL, Mortha A, Oberle K, Heners C et al. 2009. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10:183–91
    [Google Scholar]
  39. 39.
    Segers A, Desmet L, Sun S, Verbeke K, Tack J, Depoortere I. 2020. Night-time feeding of Bmal1−/− mice restores SCFA rhythms and their effect on ghrelin. J. Endocrinol. 245:1155–64
    [Google Scholar]
  40. 40.
    Segers A, Desmet L, Thijs T, Verbeke K, Tack J, Depoortere I. 2019. The circadian clock regulates the diurnal levels of microbial short-chain fatty acids and their rhythmic effects on colon contractility in mice. Acta Physiol 225:3e13193
    [Google Scholar]
  41. 41.
    Seillet C, Luong K, Tellier J, Jacquelot N, Shen RD et al. 2020. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat. Immunol. 21:2168–77
    [Google Scholar]
  42. 42.
    Stokkan K-A, Yamazaki S, Tei H, Sakaki Y, Menaker M. 2001. Entrainment of the circadian clock in the liver by feeding. Science 291:5503490–93
    [Google Scholar]
  43. 43.
    Tahara Y, Yamazaki M, Sukigara H, Motohashi H, Sasaki H et al. 2018. Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Sci. Rep. 8:11395
    [Google Scholar]
  44. 44.
    Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18:3164–79
    [Google Scholar]
  45. 45.
    Takayasu L, Suda W, Takanashi K, Iioka E, Kurokawa R et al. 2017. Circadian oscillations of microbial and functional composition in the human salivary microbiome. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 24:3261–70
    [Google Scholar]
  46. 46.
    Talbot J, Hahn P, Kroehling L, Nguyen H, Li D, Littman DR. 2020. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature 579:7800575–80
    [Google Scholar]
  47. 47.
    Teng F, Goc J, Zhou L, Chu C, Shah MA et al. 2019. A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. Sci. Immunol. 4:40eaax1215
    [Google Scholar]
  48. 48.
    Thaiss CA, Levy M, Korem T, Dohnalová L, Shapiro H et al. 2016. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167:61495–510.e12First characterization of the epithelial-associated microbiome and its effects on host tissues.
    [Google Scholar]
  49. 49.
    Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J et al. 2014. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:3514–29One of the first studies to discover microbiome oscillations and prove their dependency on feeding-fasting cycles.
    [Google Scholar]
  50. 50.
    Tognini P, Thaiss CA, Elinav E, Sassone-Corsi P. 2017. Circadian coordination of antimicrobial responses. Cell Host Microbe 22:2185–92
    [Google Scholar]
  51. 51.
    Tuganbaev T, Mor U, Bashiardes S, Liwinski T, Nobs SP et al. 2020. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. Cell 182:61441–59 e21Discovery of rhythmic intestinal antigen presentation and intestinal permeability.
    [Google Scholar]
  52. 52.
    Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P et al. 2014. Circadian disorganization alters intestinal microbiota. PLOS ONE 9:5e97500
    [Google Scholar]
  53. 53.
    Voigt RM, Summa KC, Forsyth CB, Green SJ, Engen P et al. 2016. The circadian Clock mutation promotes intestinal dysbiosis. Alcohol. Clin. Exp. Res. 40:2335–47
    [Google Scholar]
  54. 54.
    Wang Q, Colonna M. 2020. Keeping time in group 3 innate lymphoid cells. Nat. Rev. Immunol. 20:12720–26
    [Google Scholar]
  55. 55.
    Wang Q, Robinette ML, Billon C, Collins PL, Bando JK et al. 2019. Circadian rhythm-dependent and circadian rhythm-independent impacts of the molecular clock on type 3 innate lymphoid cells. Sci. Immunol. 4:40eaay7501
    [Google Scholar]
  56. 56.
    Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. 2017. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357:6354912–16First demonstration that the microbiome affects host lipid absorption, via Nfil3.
    [Google Scholar]
  57. 57.
    Weger BD, Gobet C, Yeung J, Martin E, Jimenez S et al. 2019. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 29:2362–82 e8Discovery of the relationship between the microbiome and sexual dimorphism.
    [Google Scholar]
  58. 58.
    Weger BD, Rawashdeh O, Gachon F. 2019. At the intersection of microbiota and circadian clock: Are sexual dimorphism and growth hormones the missing link to pathology?. BioEssays 41:91900059
    [Google Scholar]
  59. 59.
    Welsh DK, Takahashi JS, Kay SA. 2010. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72:551–77
    [Google Scholar]
  60. 60.
    Wilkins D, Tong X, Leung MHY, Mason CE, Lee PKH. 2021. Diurnal variation in the human skin microbiome affects accuracy of forensic microbiome matching. Microbiome 9:1129
    [Google Scholar]
  61. 61.
    Wosen JE, Mukhopadhyay D, Macaubas C, Mellins ED. 2018. Epithelial MHC class II expression and its role in antigen presentation in the gastrointestinal and respiratory tracts. Front. Immunol. 9:2144
    [Google Scholar]
  62. 62.
    Wu S-E, Hashimoto-Hill S, Woo V, Eshleman EM, Whitt J et al. 2020. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature 586:7827108–12
    [Google Scholar]
  63. 63.
    Yin J, Li Y, Han H, Ma J, Liu G et al. 2020. Administration of exogenous melatonin improves the diurnal rhythms of the gut microbiota in mice fed a high-fat diet. mSystems 5:3e00002–20
    [Google Scholar]
  64. 64.
    Yoo S-H, Yamazaki S, Lowrey PL, Shimomura K, Ko CH et al. 2004. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. PNAS 101:155339–46
    [Google Scholar]
  65. 65.
    Zarrinpar A, Chaix A, Yooseph S, Panda S. 2014. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 20:61006–17One of the first studies to discover microbiome oscillations and how they are affected by HFD.
    [Google Scholar]
  66. 66.
    Zhang SL, Bai L, Goel N, Bailey A, Jang CJ et al. 2017. Human and rat gut microbiome composition is maintained following sleep restriction. PNAS 114:8E1564–71
    [Google Scholar]
  67. 67.
    Zhang Y-KJ, Guo GL, Klaassen CD. 2011. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PLOS ONE 6:2e16683
    [Google Scholar]
  68. 68.
    Zwighaft Z, Aviram R, Shalev M, Rousso-Noori L, Kraut-Cohen J et al. 2015. Circadian clock control by polyamine levels through a mechanism that declines with age. Cell Metab 22:5874–85
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-062320-111321
Loading
/content/journals/10.1146/annurev-nutr-062320-111321
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error