1932

Abstract

The coordinated movement of organic anions (e.g., drugs, metabolites, signaling molecules, nutrients, antioxidants, gut microbiome products) between tissues and body fluids depends, in large part, on organic anion transporters (OATs) [solute carrier 22 (SLC22)], organic anion transporting polypeptides (OATPs) [solute carrier organic (SLCO)], and multidrug resistance proteins (MRPs) [ATP-binding cassette, subfamily C (ABCC)]. Depending on the range of substrates, transporters in these families can be considered multispecific, oligospecific, or (relatively) monospecific. Systems biology analyses of these transporters in the context of expression patterns reveal they are hubs in networks involved in interorgan and interorganismal communication. The remote sensing and signaling theory explains how the coordinated functions of drug transporters, drug-metabolizing enzymes, and regulatory proteins play a role in optimizing systemic and local levels of important endogenous small molecules. We focus on the role of OATs, OATPs, and MRPs in endogenous metabolism and how their substrates (e.g., bile acids, short chain fatty acids, urate, uremic toxins) mediate interorgan and interorganismal communication and help maintain and restore homeostasis in healthy and disease states.

Keyword(s): ABCC2ABCC4ABCG2BCRPMRP2MRP4OAT1OAT3OATP1B1OATP1B3SLC22A6SLC22A8SLCO1B1SLCO1B3
Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-030322-084058
2023-01-20
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-030322-084058.html?itemId=/content/journals/10.1146/annurev-pharmtox-030322-084058&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Nigam SK. 2015. What do drug transporters really do?. Nat. Rev. Drug Discov. 14:29–44
    [Google Scholar]
  2. 2.
    You G, Morris ME. 2022. Drug Transporters: Molecular Characterization and Role in Drug Disposition Hoboken, NJ: Wiley
  3. 3.
    Rosenthal SB, Bush KT, Nigam SK. 2019. A network of SLC and ABC transporter and DME genes involved in remote sensing and signaling in the gut-liver-kidney axis. Sci. Rep. 9:11879
    [Google Scholar]
  4. 4.
    Cesar-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G et al. 2015. A call for systematic research on solute carriers. Cell 162:478–87
    [Google Scholar]
  5. 5.
    Bush KT, Wu W, Lun C, Nigam SK. 2017. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut-liver-kidney axis. J. Biol. Chem. 292:15789–803
    [Google Scholar]
  6. 6.
    Granados JC, Nigam AK, Bush KT, Jamshidi N, Nigam SK. 2021. A key role for the transporter OAT1 in systemic lipid metabolism. J. Biol. Chem. 296:100603
    [Google Scholar]
  7. 7.
    Granados JC, Richelle A, Gutierrez JM, Zhang P, Zhang X et al. 2021. Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters OAT1 and OAT3. J. Biol. Chem. 296:100575
    [Google Scholar]
  8. 8.
    Wu W, Bush KT, Nigam SK. 2017. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci. Rep. 7:4939
    [Google Scholar]
  9. 9.
    Zhang J, Wang H, Fan Y, Yu Z, You G 2021. Regulation of organic anion transporters: role in physiology, pathophysiology, and drug elimination. Pharmacol. Ther. 217:107647
    [Google Scholar]
  10. 10.
    Zhang P, Azad P, Engelhart DC, Haddad GG, Nigam SK. 2021. SLC22 transporters in the fly renal system regulate response to oxidative stress in vivo. Int. J. Mol. Sci. 22:13407
    [Google Scholar]
  11. 11.
    Nigam SK, Bhatnagar V. 2018. The systems biology of uric acid transporters: the role of remote sensing and signaling. Curr. Opin. Nephrol. Hypertens. 27:305–13
    [Google Scholar]
  12. 12.
    Kell DB, Oliver SG. 2014. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front. Pharmacol. 5:231
    [Google Scholar]
  13. 13.
    Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC et al. 2015. The organic anion transporter (OAT) family: a systems biology perspective. Physiol. Rev. 95:83–123
    [Google Scholar]
  14. 14.
    Roth M, Obaidat A, Hagenbuch B. 2012. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br. J. Pharmacol. 165:1260–87
    [Google Scholar]
  15. 15.
    Borst P, Evers R, Kool M, Wijnholds J. 2000. A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Inst. 92:1295–302
    [Google Scholar]
  16. 16.
    Basit A, Radi Z, Vaidya VS, Karasu M, Prasad B 2019. Kidney cortical transporter expression across species using quantitative proteomics. Drug Metab. Dispos. 47:802–8
    [Google Scholar]
  17. 17.
    Prasad B, Johnson K, Billington S, Lee C, Chung GW et al. 2016. Abundance of drug transporters in the human kidney cortex as quantified by quantitative targeted proteomics. Drug Metab. Dispos. 44:1920–24
    [Google Scholar]
  18. 18.
    Ahn SY, Nigam SK. 2009. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol. Pharmacol. 76:481–90
    [Google Scholar]
  19. 19.
    Wu W, Dnyanmote AV, Nigam SK. 2011. Remote communication through solute carriers and ATP binding cassette drug transporter pathways: an update on the remote sensing and signaling hypothesis. Mol. Pharmacol. 79:795–805
    [Google Scholar]
  20. 20.
    Nigam SK, Wu W, Bush KT, Hoenig MP, Blantz RC, Bhatnagar V. 2015. Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin. J. Am. Soc. Nephrol. 10:2039–49
    [Google Scholar]
  21. 21.
    Nigam SK. 2018. The SLC22 transporter family: a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease. Annu. Rev. Pharmacol. Toxicol. 58:663–87
    [Google Scholar]
  22. 22.
    Nigam SK, Bush KT, Bhatnagar V, Poloyac SM, Momper JD. 2020. The systems biology of drug metabolizing enzymes and transporters: relevance to quantitative systems pharmacology. Clin. Pharmacol. Ther. 108:40–53
    [Google Scholar]
  23. 23.
    Davidson AL, Dassa E, Orelle C, Chen J 2008. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72:317–64
    [Google Scholar]
  24. 24.
    Engelhart DC, Azad P, Ali S, Granados JC, Haddad GG, Nigam SK. 2020. Drosophila SLC22 orthologs related to OATs, OCTs, and OCTNs regulate development and responsiveness to oxidative stress. Int. J. Mol. Sci. 21: 2002.
    [Google Scholar]
  25. 25.
    Engelhart DC, Granados JC, Shi D, Saier MH Jr., Baker ME et al. 2020. Systems biology analysis reveals eight SLC22 transporter subgroups, including OATs, OCTs, and OCTNs. Int. J. Mol. Sci. 21:1791
    [Google Scholar]
  26. 26.
    Zhu C, Nigam KB, Date RC, Bush KT, Springer SA et al. 2015. Evolutionary analysis and classification of OATs, OCTs, OCTNs, and other SLC22 transporters: structure-function implications and analysis of sequence motifs. PLOS ONE 10:e0140569
    [Google Scholar]
  27. 27.
    Pou Casellas C, Jansen K, Rookmaaker MB, Clevers H, Verhaar MC, Masereeuw R 2022. Regulation of solute carriers oct2 and OAT1/3 in the kidney: a phylogenetic, ontogenetic, and cell dynamic perspective. Physiol. Rev. 102:993–1024
    [Google Scholar]
  28. 28.
    Gonzalez FJ, Nebert DW. 1990. Evolution of the P450 gene superfamily: animal-plant ‘warfare’, molecular drive and human genetic differences in drug oxidation. Trends Genet. 6:182–86
    [Google Scholar]
  29. 29.
    Chahine S, Campos A, O'Donnell MJ. 2012. Genetic knockdown of a single organic anion transporter alters the expression of functionally related genes in Malpighian tubules of Drosophila melanogaster. J. Exp. Biol. 215:Part 152601–10
    [Google Scholar]
  30. 30.
    Chahine S, Seabrooke S, O'Donnell MJ. 2012. Effects of genetic knock-down of organic anion transporter genes on secretion of fluorescent organic ions by Malpighian tubules of Drosophila melanogaster. Arch. Insect Biochem. Physiol. 81:228–40
    [Google Scholar]
  31. 31.
    Huang H, Lu-Bo Y, Haddad GG. 2014. A Drosophila ABC transporter regulates lifespan. PLOS Genet. 10:e1004844
    [Google Scholar]
  32. 32.
    Mayerl S, Visser TJ, Darras VM, Horn S, Heuer H. 2012. Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 153:1528–37
    [Google Scholar]
  33. 33.
    Yee SW, Stecula A, Chien HC, Zou L, Feofanova EV et al. 2019. Unraveling the functional role of the orphan solute carrier, SLC22A24 in the transport of steroid conjugates through metabolomic and genome-wide association studies. PLOS Genet. 15:e1008208
    [Google Scholar]
  34. 34.
    Kell DB. 2016. Implications of endogenous roles of transporters for drug discovery: hitchhiking and metabolite-likeness. Nat. Rev. Drug Discov. 15:143
    [Google Scholar]
  35. 35.
    Nigam SK, Granados JC. 2022. A biological basis for pharmacokinetics: the remote sensing and signaling theory. Clin. Pharmacol. Ther. 112:45660
    [Google Scholar]
  36. 36.
    Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KLR et al. 2010. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9:215–36
    [Google Scholar]
  37. 37.
    Yin J, Wang J. 2016. Renal drug transporters and their significance in drug-drug interactions. Acta Pharm. Sin. B 6:363–73
    [Google Scholar]
  38. 38.
    Burckhardt G. 2012. Drug transport by organic anion transporters (OATs). Pharmacol. Ther. 136:106–30
    [Google Scholar]
  39. 39.
    Vallon V, Rieg T, Ahn SY, Wu W, Eraly SA, Nigam SK. 2008. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am. J. Physiol. Renal Physiol. 294:F867–73
    [Google Scholar]
  40. 40.
    VanWert AL, Srimaroeng C, Sweet DH. 2008. Organic anion transporter 3 (Oat3/Slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin. Mol. Pharmacol. 74:122–31
    [Google Scholar]
  41. 41.
    VanWert AL, Bailey RM, Sweet DH. 2007. Organic anion transporter 3 (Oat3/Slc22a8) knockout mice exhibit altered clearance and distribution of penicillin G. Am. J. Physiol. Renal Physiol. 293:F1332–41
    [Google Scholar]
  42. 42.
    Torres AM, Dnyanmote AV, Bush KT, Wu W, Nigam SK. 2011. Deletion of multispecific organic anion transporter Oat1/Slc22a6 protects against mercury-induced kidney injury. J. Biol. Chem. 286:26391–95
    [Google Scholar]
  43. 43.
    Truong DM, Kaler G, Khandelwal A, Swaan PW, Nigam SK. 2008. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J. Biol. Chem. 283:8654–63
    [Google Scholar]
  44. 44.
    Bush KT, Singh P, Nigam SK. 2020. Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease. JCI Insight 5:e133817
    [Google Scholar]
  45. 45.
    Liu HC, Jamshidi N, Chen YC, Eraly SA, Cho SY et al. 2016. An organic anion transporter 1 (OAT1)-centered metabolic network. J. Biol. Chem. 291:19474–86
    [Google Scholar]
  46. 46.
    Wu W, Jamshidi N, Eraly SA, Liu HC, Bush KT et al. 2013. Multispecific drug transporter Slc22a8 (Oat3) regulates multiple metabolic and signaling pathways. Drug Metab. Dispos. 41:1825–34
    [Google Scholar]
  47. 47.
    Ahn SY, Jamshidi N, Mo ML, Wu W, Eraly SA et al. 2011. Linkage of organic anion transporter-1 to metabolic pathways through integrated “omics”-driven network and functional analysis. J. Biol. Chem. 286:31522–31
    [Google Scholar]
  48. 48.
    Wikoff WR, Nagle MA, Kouznetsova VL, Tsigelny IF, Nigam SK. 2011. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J. Proteome Res. 10:2842–51
    [Google Scholar]
  49. 49.
    Eraly SA, Vallon V, Rieg T, Gangoiti JA, Wikoff WR et al. 2008. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol. Genom. 33:180–92
    [Google Scholar]
  50. 50.
    Vallon V, Eraly SA, Wikoff WR, Rieg T, Kaler G et al. 2008. Organic anion transporter 3 contributes to the regulation of blood pressure. J. Am. Soc. Nephrol. 19:1732–40
    [Google Scholar]
  51. 51.
    Eraly SA, Vallon V, Vaughn DA, Gangoiti JA, Richter K et al. 2006. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J. Biol. Chem. 281:5072–83
    [Google Scholar]
  52. 52.
    Kaler G, Truong DM, Sweeney DE, Logan DW, Nagle M et al. 2006. Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochem. Biophys. Res. Commun. 351:872–76
    [Google Scholar]
  53. 53.
    Kalliokoski A, Niemi M. 2009. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol. 158:693–705
    [Google Scholar]
  54. 54.
    Nigam AK, Ojha AA, Li JG, Shi D, Bhatnagar V et al. 2021. Molecular properties of drugs handled by kidney OATs and liver OATPs revealed by chemoinformatics and machine learning: implications for kidney and liver disease. Pharmaceutics 13:1720
    [Google Scholar]
  55. 55.
    Ali Y, Shams T, Wang K, Cheng Z, Li Y et al. 2020. The involvement of human organic anion transporting polypeptides (OATPs) in drug-herb/food interactions. Chin. Med. 15:71
    [Google Scholar]
  56. 56.
    Varma MV, El-Kattan AF. 2016. Transporter-enzyme interplay: deconvoluting effects of hepatic transporters and enzymes on drug disposition using static and dynamic mechanistic models. J. Clin. Pharmacol. 56:Suppl. 7S99–109
    [Google Scholar]
  57. 57.
    Wen FJ, Shi MZ, Bian JL, Zhang HJ, Gui CS. 2016. Identification of natural products as modulators of OATP2B1 using LC-MS/MS to quantify OATP-mediated uptake. Pharm. Biol. 54:293–302
    [Google Scholar]
  58. 58.
    Zhang YC, Hays A, Noblett A, Thapa M, Hua DH, Hagenbuch B. 2013. Transport by OATP1B1 and OATP1B3 enhances the cytotoxicity of epigallocatechin 3-O-gallate and several quercetin derivatives. J. Nat. Prod. 76:368–73
    [Google Scholar]
  59. 59.
    Roth M, Timmermann BN, Hagenbuch B. 2011. Interactions of green tea catechins with organic anion-transporting polypeptides. Drug Metab. Dispos. 39:920–26
    [Google Scholar]
  60. 60.
    Kiriyama Y, Nochi H 2021. Physiological role of bile acids modified by the gut microbiome. Microorganisms 10:68
    [Google Scholar]
  61. 61.
    Choudhuri S, Klaassen CD. 2006. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int. J. Toxicol. 25:231–59
    [Google Scholar]
  62. 62.
    Zhou SF, Wang LL, Di YM, Xue CC, Duan W et al. 2008. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr. Med. Chem. 15:1981–2039
    [Google Scholar]
  63. 63.
    Zhang Y-K, Wang Y-J, Gupta P, Chen Z-S. 2015. Multidrug resistance proteins (MRPs) and cancer therapy. AAPS J. 17:802–12
    [Google Scholar]
  64. 64.
    Zelcer N, Reid G, Wielinga P, Kuil A, van der Heijden I et al. 2003. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem. J. 371:361–67
    [Google Scholar]
  65. 65.
    Tanigawara Y. 2000. Role of P-glycoprotein in drug disposition. Ther. Drug Monit. 22:137–40
    [Google Scholar]
  66. 66.
    Nakanishi T, Ross DD. 2012. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin. J. Cancer 31:73–99
    [Google Scholar]
  67. 67.
    Alrefai WA, Gill RK. 2007. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm. Res. 24:1803–23
    [Google Scholar]
  68. 68.
    Kubitz R, Droge C, Stindt J, Weissenberger K, Haussinger D. 2012. The bile salt export pump (BSEP) in health and disease. Clin. Res. Hepatol. Gastroenterol. 36:536–53
    [Google Scholar]
  69. 69.
    Stieger B. 2011. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb. Exp. Pharmacol. 201:205–59
    [Google Scholar]
  70. 70.
    Ballatori N, Li N, Fang F, Boyer JL, Christian WV, Hammond CL. 2009. OST alpha-OST beta: a key membrane transporter of bile acids and conjugated steroids. Front. Biosci. 14:2829–44
    [Google Scholar]
  71. 71.
    Jancova P, Anzenbacher P, Anzenbacherova E. 2010. Phase II drug metabolizing enzymes. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 154:103–16
    [Google Scholar]
  72. 72.
    Alluri RV, Li R, Varma MVS. 2020. Transporter-enzyme interplay and the hepatic drug clearance: What have we learned so far?. Expert Opin. Drug Metab. Toxicol. 16:387–401
    [Google Scholar]
  73. 73.
    Knights KM, Rowland A, Miners JO 2013. Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br. J. Clin. Pharmacol. 76:587–602
    [Google Scholar]
  74. 74.
    Sever R, Glass CK. 2013. Signaling by nuclear receptors. Cold Spring Harb. Perspect. Biol. 5:a016709
    [Google Scholar]
  75. 75.
    Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC et al. 2018. The nuclear receptor field: a historical overview and future challenges. Nucl. Receptor Res. 5:101320
    [Google Scholar]
  76. 76.
    Larigot L, Benoit L, Koual M, Tomkiewicz C, Barouki R, Coumoul X. 2022. Aryl hydrocarbon receptor and its diverse ligands and functions: an exposome receptor. Annu. Rev. Pharmacol. Toxicol. 62:383–404
    [Google Scholar]
  77. 77.
    Yuan X, Ta TC, Lin M, Evans JR, Dong Y et al. 2009. Identification of an endogenous ligand bound to a native orphan nuclear receptor. PLOS ONE 4:e5609
    [Google Scholar]
  78. 78.
    Giguere V. 1999. Orphan nuclear receptors: from gene to function. Endocr. Rev. 20:689–725
    [Google Scholar]
  79. 79.
    Escriva H, Bertrand S, Laudet V. 2004. The evolution of the nuclear receptor superfamily. Essays Biochem. 40:11–26
    [Google Scholar]
  80. 80.
    Mayati A, Moreau A, Le Vée M, Stieger B, Denizot C et al. 2017. Protein kinases C-mediated regulations of drug transporter activity, localization and expression. Int. J. Mol. Sci. 18:764
    [Google Scholar]
  81. 81.
    Shukla S, Chen Z-S, Ambudkar SV. 2012. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist. Updat. 15:70–80
    [Google Scholar]
  82. 82.
    Yosef N, Regev A. 2011. Impulse control: temporal dynamics in gene transcription. Cell 144:886–96
    [Google Scholar]
  83. 83.
    Kimura T, Takahashi M, Yan K, Sakurai H 2014. Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells. PLOS ONE 9:e84996
    [Google Scholar]
  84. 84.
    Lee W, Ha JM, Sugiyama Y. 2020. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides. J. Biol. Chem. 295:17349–64
    [Google Scholar]
  85. 85.
    Czuba LC, Hillgren KM, Swaan PW. 2018. Post-translational modifications of transporters. Pharmacol. Ther. 192:88–99
    [Google Scholar]
  86. 86.
    Crawford RR, Potukuchi PK, Schuetz EG, Schuetz JD. 2018. Beyond competitive inhibition: regulation of ABC transporters by kinases and protein-protein interactions as potential mechanisms of drug-drug interactions. Drug Metab. Dispos. 46:567–80
    [Google Scholar]
  87. 87.
    Yu Z, Liu C, Zhang J, Liang Z, You G. 2021. Protein kinase C regulates organic anion transporter 1 through phosphorylating ubiquitin ligase Nedd4–2. BMC Mol. Cell Biol. 22:53
    [Google Scholar]
  88. 88.
    Sager G, Smaglyukova N, Fuskevaag O-M. 2018. The role of OAT2 (SLC22A7) in the cyclic nucleotide biokinetics of human erythrocytes. J. Cell. Physiol. 233:5972–80
    [Google Scholar]
  89. 89.
    Russel FG, Koenderink JB, Masereeuw R. 2008. Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol. Sci. 29:200–7
    [Google Scholar]
  90. 90.
    Shen H, Lai Y, Rodrigues AD. 2017. Organic anion transporter 2: an enigmatic human solute carrier. Drug Metab. Dispos. 45:228–36
    [Google Scholar]
  91. 91.
    Martovetsky G, Bush KT, Nigam SK. 2016. Kidney versus liver specification of SLC and ABC drug transporters, tight junction molecules, and biomarkers. Drug Metab. Dispos. 44:1050–60
    [Google Scholar]
  92. 92.
    Martovetsky G, Tee JB, Nigam SK. 2013. Hepatocyte nuclear factors 4α and 1α regulate kidney developmental expression of drug-metabolizing enzymes and drug transporters. Mol. Pharmacol. 84:808–23
    [Google Scholar]
  93. 93.
    Liu HC, Jamshidi N, Chen Y, Eraly SA, Cho SY et al. 2016. An organic anion transporter 1 (OAT1)-centered metabolic network. J. Biol. Chem. 291:19474–86
    [Google Scholar]
  94. 94.
    Vallon V, Eraly SA, Rao SR, Gerasimova M, Rose M et al. 2012. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am. J. Physiol. Renal Physiol. 302:F1293–99
    [Google Scholar]
  95. 95.
    Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK. 2002. Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J. Biol. Chem. 277:26934–43
    [Google Scholar]
  96. 96.
    Cole SP. 2014. Multidrug resistance protein 1 (MRP1, ABCC1), a “multitasking” ATP-binding cassette (ABC) transporter. J. Biol. Chem. 289:30880–88
    [Google Scholar]
  97. 97.
    Chu XY, Strauss JR, Mariano MA, Li J, Newton DJ et al. 2006. Characterization of mice lacking the multidrug resistance protein MRP2 (ABCC2). J. Pharmacol. Exp. Ther. 317:579–89
    [Google Scholar]
  98. 98.
    Belinsky MG, Dawson PA, Shchaveleva I, Bain LJ, Wang R et al. 2005. Analysis of the in vivo functions of Mrp3. Mol. Pharmacol. 68:160–68
    [Google Scholar]
  99. 99.
    van de Steeg E, Wagenaar E, van der Kruijssen CMM, Burggraaff JEC, de Waart DR et al. 2010. Organic anion transporting polypeptide 1a/1b-knockout mice provide insights into hepatic handling of bilirubin, bile acids, and drugs. J. Clin. Investig. 120:2942–52
    [Google Scholar]
  100. 100.
    Zhang Y, Limaye PB, Lehman-McKeeman LD, Klaassen CD 2012. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice. PLOS ONE 7:e34522
    [Google Scholar]
  101. 101.
    Gong L, Aranibar N, Han YH, Zhang Y, Lecureux L et al. 2011. Characterization of organic anion-transporting polypeptide (Oatp) 1a1 and 1a4 null mice reveals altered transport function and urinary metabolomic profiles. Toxicol. Sci. 122:587–97
    [Google Scholar]
  102. 102.
    Zaher H, Meyer zu Schwabedissen HE, Tirona RG, Cox ML, Obert LA et al. 2008. Targeted disruption of murine organic anion-transporting polypeptide 1b2 (Oatp1b2/Slco1b2) significantly alters disposition of prototypical drug substrates pravastatin and rifampin. Mol. Pharmacol. 74:320–29
    [Google Scholar]
  103. 103.
    Mayerl S, Alcaide Martin A, Bauer R, Schwaninger M, Heuer H, ffrench-Constant C 2022. Distinct actions of the thyroid hormone transporters Mct8 and Oatp1c1 in murine adult hippocampal neurogenesis. Cells 11:524
    [Google Scholar]
  104. 104.
    Jimbo K, Okuno T, Ohgaki R, Nishikubo K, Kitamura Y et al. 2020. A novel mutation in the SLCO2A1 gene, encoding a prostaglandin transporter, induces chronic enteropathy. PLOS ONE 15:e0241869
    [Google Scholar]
  105. 105.
    Pan Q, Zhang X, Zhang L, Cheng Y, Zhao N et al. 2018. Solute carrier organic anion transporter family member 3A1 is a bile acid efflux transporter in cholestasis. Gastroenterology 155:1578–92.e16
    [Google Scholar]
  106. 106.
    Yee SW, Giacomini MM, Hsueh CH, Weitz D, Liang X et al. 2016. Metabolomic and genome-wide association studies reveal potential endogenous biomarkers for OATP1B1. Clin. Pharmacol. Ther. 100:524–36
    [Google Scholar]
  107. 107.
    Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M et al. 2022. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature 602:101–5
    [Google Scholar]
  108. 108.
    Wu H, Zhao XK, Zhu JJ. 2021. Clinical characteristics and ABCC2 genotype in Dubin-Johnson syndrome: a case report and review of the literature. World J. Clin. Cases 9:878–85
    [Google Scholar]
  109. 109.
    Sakiyama M, Matsuo H, Shimizu S, Nakashima H, Nakamura T et al. 2016. The effects of URAT1/SLC22A12 nonfunctional variants, R90H and W258X, on serum uric acid levels and gout/hyperuricemia progression. Sci. Rep. 6:20148
    [Google Scholar]
  110. 110.
    van de Steeg E, Stranecky V, Hartmannova H, Noskova L, Hrebicek M et al. 2012. Complete OATP1B1 and OATP1B3 deficiency causes human rotor syndrome by interrupting conjugated bilirubin reuptake into the liver. J. Clin. Investig. 122:519–28
    [Google Scholar]
  111. 111.
    Thomas C, Auwerx J, Schoonjans K. 2008. Bile acids and the membrane bile acid receptor TGR5—connecting nutrition and metabolism. Thyroid 18:167–74
    [Google Scholar]
  112. 112.
    Rizzo G, Renga B, Mencarelli A, Pellicciari R, Fiorucci S. 2005. Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5:289–303
    [Google Scholar]
  113. 113.
    Libby AE, Jones B, Lopez-Santiago I, Rowland E, Levi M 2020. Nuclear receptors in the kidney during health and disease. Mol. Aspects Med. 78:100935
    [Google Scholar]
  114. 114.
    Sautin YY, Johnson RJ. 2008. Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 27:608–19
    [Google Scholar]
  115. 115.
    Bhatnagar V, Richard EL, Wu W, Nievergelt CM, Lipkowitz MS et al. 2016. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling. Clin. Kidney J. 9:444–53
    [Google Scholar]
  116. 116.
    Sato M, Mamada H, Anzai N, Shirasaka Y, Nakanishi T, Tamai I. 2010. Renal secretion of uric acid by organic anion transporter 2 (OAT2/SLC22A7) in human. Biol. Pharm. Bull. 33:498–503
    [Google Scholar]
  117. 117.
    Ekaratanawong S, Anzai N, Jutabha P, Miyazaki H, Noshiro R et al. 2004. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J. Pharmacol. Sci. 94:297–304
    [Google Scholar]
  118. 118.
    Xu X, Li C, Zhou P, Jiang T. 2016. Uric acid transporters hiding in the intestine. Pharm. Biol. 54:3151–55
    [Google Scholar]
  119. 119.
    Togawa N, Miyaji T, Izawa S, Omote H, Moriyama Y. 2012. A Na+-phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter. Am. J. Physiol. Cell Physiol. 302:C1652–60
    [Google Scholar]
  120. 120.
    Chiba T, Matsuo H, Kawamura Y, Nagamori S, Nishiyama T et al. 2015. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol. 67:281–87
    [Google Scholar]
  121. 121.
    Yano H, Tamura Y, Kobayashi K, Tanemoto M, Uchida S. 2014. Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clin. Exp. Nephrol. 18:50–55
    [Google Scholar]
  122. 122.
    Chen M, Lu X, Lu C, Shen N, Jiang Y et al. 2018. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway. Arthritis Res. Ther. 20:20
    [Google Scholar]
  123. 123.
    Walker N, Filis P, Soffientini U, Bellingham M, O'Shaughnessy PJ, Fowler PA 2017. Placental transporter localization and expression in the human: the importance of species, sex, and gestational age differences. Biol. Reprod. 96:733–42
    [Google Scholar]
  124. 124.
    Krautkramer KA, Fan J, Bäckhed F 2020. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 19:77–94
    [Google Scholar]
  125. 125.
    Liu YL, Hou YL, Wang GJ, Zheng X, Hao HP. 2020. Gut microbial metabolites of aromatic amino acids as signals in host-microbe interplay. Trends Endocrinol. Metab. 31:818–34
    [Google Scholar]
  126. 126.
    Gryp T, De Paepe K, Vanholder R, Kerckhof FM, Van Biesen W et al. 2020. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 97:1230–42
    [Google Scholar]
  127. 127.
    Visconti A, Le Roy CI, Rosa F, Rossi N, Martin TC et al. 2019. Interplay between the human gut microbiome and host metabolism. Nat. Commun. 10:4505
    [Google Scholar]
  128. 128.
    Graboski AL, Redinbo MR. 2020. Gut-derived protein-bound uremic toxins. Toxins 12:590
    [Google Scholar]
  129. 129.
    Vanholder R, Nigam SK, Burtey S, Glorieux G. 2022. What if not all metabolites from the uremic toxin generating pathways are toxic? A hypothesis.. Toxins 14:221
    [Google Scholar]
  130. 130.
    Vyhlídalová B, Krasulová K, Pečinková P, Marcalíková A, Vrzal R et al. 2020. Gut microbial catabolites of tryptophan are ligands and agonists of the aryl hydrocarbon receptor: a detailed characterization. Int. J. Mol. Sci. 21:2614
    [Google Scholar]
  131. 131.
    Jansen J, Jansen K, Neven E, Poesen R, Othman A et al. 2019. Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome-derived organic anion secretion. PNAS 116:16105–10
    [Google Scholar]
  132. 132.
    Torres AM, Dnyanmote AV, Granados JC, Nigam SK. 2021. Renal and non-renal response of ABC and SLC transporters in chronic kidney disease. Expert Opin. Drug Metab. Toxicol. 17:515–42
    [Google Scholar]
  133. 133.
    Nigam SK, Bush KT. 2019. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat. Rev. Nephrol. 15:301–16
    [Google Scholar]
  134. 134.
    Lowenstein J, Nigam SK. 2021. Uremic toxins in organ crosstalk. Front. Med. 8:592602
    [Google Scholar]
  135. 135.
    Granados JC, Bhatnagar V, Nigam SK. 2022. Blockade of organic anion transport in humans after treatment with the drug probenecid leads to major metabolic alterations in plasma and urine. Clin. Pharmacol. Ther. 112:653–64
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-030322-084058
Loading
/content/journals/10.1146/annurev-pharmtox-030322-084058
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error