1932

Abstract

As costs of next-generation sequencing decrease, identification of genetic variants has far outpaced our ability to understand their functional consequences. This lack of understanding is a central challenge to a key promise of pharmacogenomics: using genetic information to guide drug selection and dosing. Recently developed multiplexed assays of variant effect enable experimental measurement of the function of thousands of variants simultaneously. Here, we describe multiplexed assays that have been performed on nearly 25,000 variants in eight key pharmacogenes (, , , , , , , and the promoter), discuss advances in experimental design, and explore key challenges that must be overcome to maximize the utility of multiplexed functional data.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-032221-085807
2022-01-06
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-032221-085807.html?itemId=/content/journals/10.1146/annurev-pharmtox-032221-085807&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Devarajan S, Moon I, Ho M-F, Larson NB, Neavin DR et al. 2019. Pharmacogenomic next-generation DNA sequencing: lessons from the identification and functional characterization of variants of unknown significance in CYP2C9 and CYP2C19. Drug Metab. Dispos. 47:4425–35
    [Google Scholar]
  2. 2. 
    Zhou Y, Fujikura K, Mkrtchian S, Lauschke VM 2018. Computational methods for the pharmacogenetic interpretation of next generation sequencing data. Front. Pharmacol. 9:1437
    [Google Scholar]
  3. 3. 
    Katara P, Yadav A. 2019. Pharmacogenes (PGx-genes): current understanding and future directions. Gene 718:144050
    [Google Scholar]
  4. 4. 
    Schwarz UI, Gulilat M, Kim RB 2019. The role of next-generation sequencing in pharmacogenetics and pharmacogenomics. Cold Spring Harb. . Perspect. Med. 9:2a033027
    [Google Scholar]
  5. 5. 
    Ingelman-Sundberg M, Rodriguez-Antona C. 2005. Pharmacogenetics of drug-metabolizing enzymes: implications for a safer and more effective drug therapy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:14601563–70
    [Google Scholar]
  6. 6. 
    Kozyra M, Ingelman-Sundberg M, Lauschke VM. 2017. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet. Med. 19:120–29
    [Google Scholar]
  7. 7. 
    Schärfe CPI, Tremmel R, Schwab M, Kohlbacher O, Marks DS 2017. Genetic variation in human drug-related genes. Genome Med 9:1117
    [Google Scholar]
  8. 8. 
    Starita LM, Ahituv N, Dunham MJ, Kitzman JO, Roth FP et al. 2017. Variant interpretation: functional assays to the rescue. Am. J. Hum. Genet. 101:3315–25
    [Google Scholar]
  9. 9. 
    Relling MV, Evans WE. 2015. Pharmacogenomics in the clinic. Nature 526:7573343–50
    [Google Scholar]
  10. 10. 
    Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K et al. 2012. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 92:4414–17
    [Google Scholar]
  11. 11. 
    Relling MV, Klein TE. 2011. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 89:3464–67
    [Google Scholar]
  12. 12. 
    Russell LE, Schwarz UI. 2020. Variant discovery using next-generation sequencing and its future role in pharmacogenetics. Pharmacogenomics 21:7471–86
    [Google Scholar]
  13. 13. 
    Ingelman-Sundberg M, Mkrtchian S, Zhou Y, Lauschke VM. 2018. Integrating rare genetic variants into pharmacogenetic drug response predictions. Hum. Genom. 12:126
    [Google Scholar]
  14. 14. 
    Caspar SM, Schneider T, Meienberg J, Matyas G 2020. Added value of clinical sequencing: WGS-based profiling of pharmacogenes. Int. J. Mol. Sci. 21:72308
    [Google Scholar]
  15. 15. 
    Weile J, Roth FP. 2018. Multiplexed assays of variant effects contribute to a growing genotype-phenotype atlas. Hum. Genet. 137:9665–78
    [Google Scholar]
  16. 16. 
    Kinney JB, McCandlish DM. 2019. Massively parallel assays and quantitative sequence-function relationships. Annu. Rev. Genom. Hum. Genet. 20:99–127
    [Google Scholar]
  17. 17. 
    Chiasson M, Dunham MJ, Rettie AE, Fowler DM. 2019. Applying multiplex assays to understand variation in pharmacogenes. Clin. Pharmacol. Ther. 106:2290–94
    [Google Scholar]
  18. 18. 
    Zhang L, Sarangi V, Moon I, Yu J, Liu D et al. 2020. CYP2C9 and CYP2C19: deep mutational scanning and functional characterization of genomic missense variants. Clin. Transl. Sci. 13:4727–42
    [Google Scholar]
  19. 19. 
    Gasperini M, Starita L, Shendure J. 2016. The power of multiplexed functional analysis of genetic variants. Nat. Protoc. 11:101782–87
    [Google Scholar]
  20. 20. 
    Starita LM, Fields S. 2015. Deep mutational scanning: library construction, functional selection, and high-throughput sequencing. Cold Spring Harb. Protoc. 2015:8777–80
    [Google Scholar]
  21. 21. 
    Starita LM, Fields S. 2015. Deep mutational scanning: calculating enrichment scores for protein variants from DNA sequencing output files. Cold Spring Harb. Protoc. 2015:8781–83
    [Google Scholar]
  22. 22. 
    Fowler DM, Fields S. 2014. Deep mutational scanning: a new style of protein science. Nat. Methods 11:8801–7
    [Google Scholar]
  23. 23. 
    Matreyek KA, Starita LM, Stephany JJ, Martin B, Chiasson MA et al. 2018. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat. Genet. 50:6874–82
    [Google Scholar]
  24. 24. 
    Laurent JM, Garge RK, Teufel AI, Wilke CO, Kachroo AH, Marcotte EM. 2020. Humanization of yeast genes with multiple human orthologs reveals functional divergence between paralogs. PLOS Biol 18:5e3000627
    [Google Scholar]
  25. 25. 
    Sun S, Yang F, Tan G, Costanzo M, Oughtred R et al. 2016. An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Res 26:5670–80
    [Google Scholar]
  26. 26. 
    Chen H, Zhang Z, Jiang S, Li R, Li W et al. 2020. New insights on human essential genes based on integrated analysis and the construction of the HEGIAP web-based platform. Brief. Bioinform. 21:41397–410
    [Google Scholar]
  27. 27. 
    Boone C, Andrews BJ. 2015. The indispensable genome. Science 350:62641028–29
    [Google Scholar]
  28. 28. 
    Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP et al. 2018. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562:7726217–22
    [Google Scholar]
  29. 29. 
    Chiasson MA, Rollins NJ, Stephany JJ, Sitko KA, Matreyek KA et al. 2020. Multiplexed measurement of variant abundance and activity reveals VKOR topology, active site and human variant impact. eLife 9:e58026
    [Google Scholar]
  30. 30. 
    Kircher M, Xiong C, Martin B, Schubach M, Inoue F et al. 2019. Saturation mutagenesis of twenty disease-associated regulatory elements at single base-pair resolution. Nat. Commun. 10:13583
    [Google Scholar]
  31. 31. 
    Amorosi CJ, Chiasson MA, McDonald MG, Wong LH, Sitko KA et al. 2021. Massively parallel characterization of CYP2C9 variant enzyme activity and abundance. Am. J. Hum. Genet. 108:91735–51
    [Google Scholar]
  32. 32. 
    Gelman H, Dines JN, Berg J, Berger AH, Brnich S et al. 2019. Recommendations for the collection and use of multiplexed functional data for clinical variant interpretation. Genome Med 11:185
    [Google Scholar]
  33. 33. 
    Coulthard S, Hogarth L 2005. The thiopurines: an update. Investig. New Drugs. 23:6523–32
    [Google Scholar]
  34. 34. 
    Lennard L, Van Loon JA, Lilleyman JS, Weinshilboum RM. 1987. Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin. Pharmacol. Ther. 41:118–25
    [Google Scholar]
  35. 35. 
    Szumlanski CL, Honchel R, Scott MC, Weinshilboum RM 1992. Human liver thiopurine methyltransferase pharmacogenetics: biochemical properties, liver-erythrocyte correlation and presence of isozymes. Pharmacogenetics 2:4148–59
    [Google Scholar]
  36. 36. 
    Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui C-H et al. 2019. Clinical Pharmacogenetics Implementation Consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin. Pharmacol. Ther. 105:51095–105
    [Google Scholar]
  37. 37. 
    Wang L, Pelleymounter L, Weinshilboum R, Johnson JA, Hebert JM et al. 2010. Very important pharmacogene summary: thiopurine S-methyltransferase. Pharmacogenet. Genom. 20:6401–5
    [Google Scholar]
  38. 38. 
    Katara P, Kuntal H. 2016. TPMT polymorphism: when shield becomes weakness. Interdiscip. Sci. 8:2150–55
    [Google Scholar]
  39. 39. 
    Schaeffeler E, Fischer C, Brockmeier D, Wernet D, Moerike K et al. 2004. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 14:7407–17
    [Google Scholar]
  40. 40. 
    Dean L 2012. Azathioprine therapy and TPMT and NUDT15 genotype. Medical Genetics Summaries VM Pratt, SA Scott, M Pirmohamed, B Esquivel, MS Kane, et al Bethesda, MD: Natl. Cent. Biotechnol. Inf.
    [Google Scholar]
  41. 41. 
    Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui C-H et al. 2013. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin. Pharmacol. Ther. 93:4324–25
    [Google Scholar]
  42. 42. 
    Tai HL, Krynetski EY, Schuetz EG, Yanishevski Y, Evans WE 1997. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. PNAS 94:126444–49
    [Google Scholar]
  43. 43. 
    Salavaggione OE, Wang L, Wiepert M, Yee VC, Weinshilboum RM 2005. Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics. Pharmacogenet. Genom. 15:11801–15
    [Google Scholar]
  44. 44. 
    Wu H, Horton JR, Battaile K, Allali-Hassani A, Martin F et al. 2007. Structural basis of allele variation of human thiopurine-S-methyltransferase. Proteins 67:1198–208
    [Google Scholar]
  45. 45. 
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:7616285–91
    [Google Scholar]
  46. 46. 
    Appell ML, Berg J, Duley J, Evans WE, Kennedy MA et al. 2013. Nomenclature for alleles of the thiopurine methyltransferase gene. Pharmacogenet. Genom. 23:4242–48
    [Google Scholar]
  47. 47. 
    Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J et al. 2020. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581:7809434–43
    [Google Scholar]
  48. 48. 
    Suiter CC, Moriyama T, Matreyek KA, Yang W, Scaletti ER et al. 2020. Massively parallel variant characterization identifies NUDT15 alleles associated with thiopurine toxicity. PNAS 117:105394–5401
    [Google Scholar]
  49. 49. 
    Yang JJ, Whirl-Carrillo M, Scott SA, Turner AJ, Schwab M et al. 2019. Pharmacogene Variation Consortium gene introduction: NUDT15. Clin. Pharmacol. Ther. 105:51091–94
    [Google Scholar]
  50. 50. 
    Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA et al. 2016. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat. Genet. 48:4367–73
    [Google Scholar]
  51. 51. 
    Yang JJ, Landier W, Yang W, Liu C, Hageman L et al. 2015. Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J. Clin. Oncol. 33:111235–42
    [Google Scholar]
  52. 52. 
    Cagiada M, Johansson KE, Valanciute A, Nielsen SV, Hartmann-Petersen R et al. 2021. Understanding the origins of loss of protein function by analyzing the effects of thousands of variants on activity and abundance. Mol. Biol. Evol. 38:83235–46
    [Google Scholar]
  53. 53. 
    Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hörtnagel K et al. 2004. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427:6974537–41
    [Google Scholar]
  54. 54. 
    Li T, Chang C-Y, Jin D-Y, Lin P-J, Khvorova A, Stafford DW 2004. Identification of the gene for vitamin K epoxide reductase. Nature 427:6974541–44
    [Google Scholar]
  55. 55. 
    Kane SP. 2020. ClinCalc DrugStats database Database ClinCalc http://www.clincalc.com/drugstats
  56. 56. 
    Owen RP, Gong L, Sagreiya H, Klein TE, Altman RB. 2010. VKORC1 pharmacogenomics summary. Pharmacogenet. Genom. 20:10642–44
    [Google Scholar]
  57. 57. 
    Duconge J, Cadilla CL, Windemuth A, Kocherla M, Gorowski K et al. 2009. Prevalence of combinatorial CYP2C9 and VKORC1 genotypes in Puerto Ricans: implications for warfarin management in Hispanics. Ethn. Dis. 19:4390–95
    [Google Scholar]
  58. 58. 
    Rettie AE, Tai G. 2006. The pharmacogenomics of warfarin: closing in on personalized medicine. Mol. Interv. 6:4223–27
    [Google Scholar]
  59. 59. 
    Kamali F. 2006. Genetic influences on the response to warfarin. Curr. Opin. Hematol. 13:5357–61
    [Google Scholar]
  60. 60. 
    Wadelius M, Pirmohamed M. 2007. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J 7:299–111
    [Google Scholar]
  61. 61. 
    Gage BF, Lesko LJ. 2008. Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues. J. Thromb. Thrombolysis. 25:145–51
    [Google Scholar]
  62. 62. 
    Czogalla KJ, Biswas A, Höning K, Hornung V, Liphardt K et al. 2017. Warfarin and vitamin K compete for binding to Phe55 in human VKOR. Nat. Struct. Mol. Biol. 24:177–85
    [Google Scholar]
  63. 63. 
    Shen G, Cui W, Zhang H, Zhou F, Huang W et al. 2017. Warfarin traps human vitamin K epoxide reductase in an intermediate state during electron transfer. Nat. Struct. Mol. Biol. 24:169–76
    [Google Scholar]
  64. 64. 
    Tie J-K, Jin D-Y, Tie K, Stafford DW 2013. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells. J. Thromb. Haemost. 11:81556–64
    [Google Scholar]
  65. 65. 
    Gong IY, Schwarz UI, Crown N, Dresser GK, Lazo-Langner A et al. 2011. Clinical and genetic determinants of warfarin pharmacokinetics and pharmacodynamics during treatment initiation. PLOS ONE 6:11e27808
    [Google Scholar]
  66. 66. 
    Johnson JA, Caudle KE, Gong L, Whirl-Carrillo M, Stein CM et al. 2017. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin. Pharmacol. Ther. 102:3397–404
    [Google Scholar]
  67. 67. 
    Landrum MJ, Chitipiralla S, Brown GR, Chen C, Gu B et al. 2020. ClinVar: improvements to accessing data. Nucleic Acids Res 48:D1D835–44
    [Google Scholar]
  68. 68. 
    Haque JA, McDonald MG, Kulman JD, Rettie AE. 2014. A cellular system for quantitation of vitamin K cycle activity: structure-activity effects on vitamin K antagonism by warfarin metabolites. Blood 123:4582–89
    [Google Scholar]
  69. 69. 
    Schulman S, Wang B, Li W, Rapoport TA 2010. Vitamin K epoxide reductase prefers ER membrane-anchored thioredoxin-like redox partners. PNAS 107:3415027–32
    [Google Scholar]
  70. 70. 
    Wu S, Chen X, Jin D-Y, Stafford DW, Pedersen LG, Tie J-K 2018. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition. Blood 132:6647–57
    [Google Scholar]
  71. 71. 
    Tie J-K, Jin D-Y, Stafford DW 2012. Human vitamin K epoxide reductase and its bacterial homologue have different membrane topologies and reaction mechanisms. J. Biol. Chem. 287:4133945–55
    [Google Scholar]
  72. 72. 
    Rost S, Pelz H-J, Menzel S, MacNicoll AD, León V et al. 2009. Novel mutations in the VKORC1 gene of wild rats and mice—a response to 50 years of selection pressure by warfarin?. BMC Genet 10:4
    [Google Scholar]
  73. 73. 
    Li W, Schulman S, Dutton RJ, Boyd D, Beckwith J, Rapoport TA. 2010. Structure of a bacterial homologue of vitamin K epoxide reductase. Nature 463:7280507–12
    [Google Scholar]
  74. 74. 
    Yuan H-Y, Chen J-J, Lee MTM, Wung J-C, Chen Y-F et al. 2005. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum. Mol. Genet. 14:131745–51
    [Google Scholar]
  75. 75. 
    Rettie AE, Jones JP. 2005. Clinical and toxicological relevance of CYP2C9: drug-drug interactions and pharmacogenetics. Annu. Rev. Pharmacol. Toxicol. 45:477–94
    [Google Scholar]
  76. 76. 
    Theken KN, Lee CR, Gong L, Caudle KE, Formea CM et al. 2020. Clinical Pharmacogenetics Implementation Consortium guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs. Clin. Pharmacol. Ther. 108:2191–200
    [Google Scholar]
  77. 77. 
    Karnes JH, Rettie AE, Somogyi AA, Huddart R, Fohner AE et al. 2021. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and HLA-B genotypes and phenytoin dosing: 2020 update. Clin. Pharmacol. Ther. 109:2302–9
    [Google Scholar]
  78. 78. 
    Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL et al. 2002. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287:131690–98
    [Google Scholar]
  79. 79. 
    Pirmohamed M, Kamali F, Daly AK, Wadelius M. 2015. Oral anticoagulation: a critique of recent advances and controversies. Trends Pharmacol. Sci. 36:3153–63
    [Google Scholar]
  80. 80. 
    Lee CR, Goldstein JA, Pieper JA. 2002. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 12:3251–63
    [Google Scholar]
  81. 81. 
    Huang M, Joensson HN, Nielsen J. 2018. High-throughput microfluidics for the screening of yeast libraries. Methods Mol. Biol. 1671:307–17
    [Google Scholar]
  82. 82. 
    Woronoff G, El Harrak A, Mayot E, Schicke O, Miller OJ et al. 2011. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications. Anal. Chem. 83:82852–57
    [Google Scholar]
  83. 83. 
    Zanger UM, Schwab M. 2013. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138:1103–41
    [Google Scholar]
  84. 84. 
    Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD et al. 2009. Cytochrome p-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 360:4354–62
    [Google Scholar]
  85. 85. 
    Sim SC, Risinger C, Dahl M-L, Aklillu E, Christensen M et al. 2006. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther. 79:1103–13
    [Google Scholar]
  86. 86. 
    Zabalza M, Subirana I, Sala J, Lluis-Ganella C, Lucas G et al. 2012. Meta-analyses of the association between cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular outcomes in patients with coronary artery disease treated with clopidogrel. Heart 98:2100–108
    [Google Scholar]
  87. 87. 
    Litonjua AA, Gong L, Duan QL, Shin J, Moore MJ et al. 2010. Very important pharmacogene summary ADRB2. Pharmacogenet. Genom. 20:164–69
    [Google Scholar]
  88. 88. 
    García-Menaya JM, Cordobés-Durán C, García-Martín E, Agúndez JAG. 2019. Pharmacogenetic factors affecting asthma treatment response. Potential implications for drug therapy. Front. Pharmacol. 10:520
    [Google Scholar]
  89. 89. 
    Hizawa N. 2011. Pharmacogenetics of β2-agonists. Allergol. Int. 60:3239–46
    [Google Scholar]
  90. 90. 
    Jones EM, Lubock NB, Venkatakrishnan AJ, Wang J, Tseng AM et al. 2020. Structural and functional characterization of G protein-coupled receptors with deep mutational scanning. eLife 9:623108
    [Google Scholar]
  91. 91. 
    Pacanowski MA, Johnson JA. 2007. PharmGKB submission update: IX. ADRB1 gene summary. Pharmacol. Rev. 59:12–4
    [Google Scholar]
  92. 92. 
    Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. 2017. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16:12829–42
    [Google Scholar]
  93. 93. 
    Lee HH, Ho RH. 2017. Interindividual and interethnic variability in drug disposition: polymorphisms in organic anion transporting polypeptide 1B1 (OATP1B1; SLCO1B1). Br. J. Clin. Pharmacol. 83:61176–84
    [Google Scholar]
  94. 94. 
    Voora D, Shah SH, Spasojevic I, Ali S, Reed CR et al. 2009. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 54:171609–16
    [Google Scholar]
  95. 95. 
    Ramsey LB, Johnson SG, Caudle KE, Haidar CE, Voora D et al. 2014. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin. Pharmacol. Ther. 96:4423–28
    [Google Scholar]
  96. 96. 
    Tirona RG, Leake BF, Merino G, Kim RB 2001. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J. Biol. Chem. 276:3835669–75
    [Google Scholar]
  97. 97. 
    Wang X, Chen J, Xu S, Ni C, Fang Z, Hong M 2019. Amino-terminal region of human organic anion transporting polypeptide 1B1 dictates transporter stability and substrate interaction. Toxicol. Appl. Pharmacol. 378:114642
    [Google Scholar]
  98. 98. 
    Yao J, Hong W, Huang J, Zhan K, Huang H, Hong M. 2012. N-glycosylation dictates proper processing of organic anion transporting polypeptide 1B1. PLOS ONE 7:12e52563
    [Google Scholar]
  99. 99. 
    Zhang L, Sarangi V, Ho M-F, Moon I, Kalari KR et al. 2021. SLCO1B1: application and limitations of deep mutational scanning for genomic missense variant function. Drug Metab. Dispos. 49:5395–404
    [Google Scholar]
  100. 100. 
    Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K. 2005. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet. Genom. 15:7513–22
    [Google Scholar]
  101. 101. 
    Santos PCJL, Pereira AC. 2015. Type of LDLR mutation and the pharmacogenetics of familial hypercholesterolemia treatment. Pharmacogenomics 16:151743–50
    [Google Scholar]
  102. 102. 
    Kolovou GD, Kostakou PM, Anagnostopoulou KK. 2011. Familial hypercholesterolemia and triglyceride metabolism. Int. J. Cardiol. 147:3349–58
    [Google Scholar]
  103. 103. 
    Scholtz CL, Peeters AV, Hoogendijk CF, Thiart R, de Villiers JN et al. 1999. Mutation −59c→t in repeat 2 of the LDL receptor promoter: reduction in transcriptional activity and possible allelic interaction in a South African family with familial hypercholesterolaemia. Hum. Mol. Genet. 8:112025–30
    [Google Scholar]
  104. 104. 
    Mozas P, Galetto R, Albajar M, Ros E, Pocoví M, Rodríguez-Rey JC 2002. A mutation (−49C>T) in the promoter of the low density lipoprotein receptor gene associated with familial hypercholesterolemia. J. Lipid Res. 43:113–18
    [Google Scholar]
  105. 105. 
    De Castro-Orós I, Pampín S, Bolado-Carrancio A, De Cubas A, Palacios L et al. 2011. Functional analysis of LDLR promoter and 5′ UTR mutations in subjects with clinical diagnosis of familial hypercholesterolemia. Hum. Mutat. 32:8868–72
    [Google Scholar]
  106. 106. 
    Reeskamp LF, Hartgers ML, Peter J, Dallinga-Thie GM, Zuurbier L et al. 2018. A deep intronic variant in LDLR in familial hypercholesterolemia. Circ. Genom. Precis. Med. 11:12e002385
    [Google Scholar]
  107. 107. 
    Schwarz UI, Meyer zu Schwabedissen HE, Tirona RG, Suzuki A, Leake BF et al. 2011. Identification of novel functional organic anion-transporting polypeptide 1B3 polymorphisms and assessment of substrate specificity. Pharmacogenet. Genom. 21:3103–14
    [Google Scholar]
  108. 108. 
    Kuang D, Weile J, Kishore N, Rubin AF, Fields S et al. 2021. MaveRegistry: a collaboration platform for multiplexed assays of variant effect. Bioinformatics 2021:btab215
    [Google Scholar]
  109. 109. 
    Starita LM, Young DL, Islam M, Kitzman JO, Gullingsrud J et al. 2015. Massively parallel functional analysis of BRCA1 RING domain variants. Genetics 200:2413–22
    [Google Scholar]
  110. 110. 
    Starita LM, Islam MM, Banerjee T, Adamovich AI, Gullingsrud J et al. 2018. A multiplex homology-directed DNA repair assay reveals the impact of more than 1,000 BRCA1 missense substitution variants on protein function. Am. J. Hum. Genet. 103:4498–508
    [Google Scholar]
  111. 111. 
    Muir AJ, Gong L, Johnson SG, Lee MTM, Williams MS et al. 2014. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-α-based regimens. Clin. Pharmacol. Ther. 95:2141–46
    [Google Scholar]
  112. 112. 
    Nies AT, Niemi M, Burk O, Winter S, Zanger UM et al. 2013. Genetics is a major determinant of expression of the human hepatic uptake transporter OATP1B. 1 , but not of OATP1B3 and OATP2B1. Genome Med 5:11
    [Google Scholar]
  113. 113. 
    Park J, Lee SY, Baik SY, Park CH, Yoon JH et al. 2020. Gene-wise burden of coding variants correlates to noncoding pharmacogenetic risk variants. Int. J. Mol. Sci. 21:93091
    [Google Scholar]
  114. 114. 
    Santos M, Niemi M, Hiratsuka M, Kumondai M, Ingelman-Sundberg M et al. 2018. Novel copy-number variations in pharmacogenes contribute to interindividual differences in drug pharmacokinetics. Genet. Med. 20:6622–29
    [Google Scholar]
  115. 115. 
    Lauschke VM, Ingelman-Sundberg M. 2020. Emerging strategies to bridge the gap between pharmacogenomic research and its clinical implementation. NPJ Genomic Med 5:19
    [Google Scholar]
  116. 116. 
    Del Tredici AL, Malhotra A, Dedek M, Espin F, Roach D et al. 2018. Frequency of CYP2D6 alleles including structural variants in the United States. Front. Pharmacol. 9:305
    [Google Scholar]
  117. 117. 
    Morelli A, Cabezas Y, Mills LJ, Seelig B. 2017. Extensive libraries of gene truncation variants generated by in vitro transposition. Nucleic Acids Res 45:10e78
    [Google Scholar]
  118. 118. 
    Guo X, Chavez A, Tung A, Chan Y, Kaas C et al. 2018. High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR/Cas9 in yeast. Nat. Biotechnol. 36:6540–46
    [Google Scholar]
  119. 119. 
    Cheung R, Insigne KD, Yao D, Burghard CP, Wang J et al. 2019. A multiplexed assay for exon recognition reveals that an unappreciated fraction of rare genetic variants cause large-effect splicing disruptions. Mol. Cell. 73:1183–94.e8
    [Google Scholar]
  120. 120. 
    Esposito D, Weile J, Shendure J, Starita LM, Papenfuss AT et al. 2019. MaveDB: an open-source platform to distribute and interpret data from multiplexed assays of variant effect. Genome Biol 20:1223
    [Google Scholar]
  121. 121. 
    Masso M. 2020. Functional analysis of BRCA1 RING domain variants: computationally derived structural data can improve upon experimental features for training predictive models. Integr. Biol. 12:9233–39
    [Google Scholar]
  122. 122. 
    Masso M, Bansal A, Bansal A, Henderson A. 2020. Structure-based functional analysis of BRCA1 RING domain variants: concordance of computational mutagenesis, experimental assay, and clinical data. Biophys. Chem. 266:106442
    [Google Scholar]
  123. 123. 
    Gray VE, Hause RJ, Luebeck J, Shendure J, Fowler DM 2018. Quantitative missense variant effect prediction using large-scale mutagenesis data. Cell Syst 6:1116–24.e3
    [Google Scholar]
  124. 124. 
    Weile J, Sun S, Cote AG, Knapp J, Verby M et al. 2017. A framework for exhaustively mapping functional missense variants. Mol. Syst. Biol. 13:12957
    [Google Scholar]
  125. 125. 
    Tafazoli A, Wawrusiewicz-Kurylonek N, Posmyk R, Miltyk W 2020. Pharmacogenomics, how to deal with different types of variants in next generation sequencing data in the personalized medicine area. J. Clin. Med. Res. 10:134
    [Google Scholar]
  126. 126. 
    Richards S, Aziz N, Bale S, Bick D, Das S et al. 2015. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17:5405–24
    [Google Scholar]
  127. 127. 
    Abou Tayoun AN, Pesaran T, DiStefano MT, Oza A, Rehm HL et al. 2018. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum. Mutat. 39:111517–24
    [Google Scholar]
  128. 128. 
    Brnich SE, Abou Tayoun AN, Couch FJ, Cutting GR, Greenblatt MS et al. 2019. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med. 12:13
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-032221-085807
Loading
/content/journals/10.1146/annurev-pharmtox-032221-085807
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error