1932

Abstract

Ubiquitously expressed throughout the body, ATP-sensitive potassium (K) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to K channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051921-123023
2023-01-20
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-051921-123023.html?itemId=/content/journals/10.1146/annurev-pharmtox-051921-123023&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Nichols CG. 2006. KATP channels as molecular sensors of cellular metabolism. Nature 440:471–76
    [Google Scholar]
  2. 2.
    Martin GM, Yoshioka C, Rex EA, Fay JF, Xie Q et al. 2017. Cryo-EM structure of the ATP-sensitive potassium channel illuminates mechanisms of assembly and gating. eLife 6:e24149
    [Google Scholar]
  3. 3.
    Martin GM, Kandasamy B, DiMaio F, Yoshioka C, Shyng SL. 2017. Anti-diabetic drug binding site in a mammalian KATP channel revealed by Cryo-EM. eLife 6:e31054
    [Google Scholar]
  4. 4.
    Lee KPK, Chen J, MacKinnon R. 2017. Molecular structure of human KATP in complex with ATP and ADP. eLife 6:e32481
    [Google Scholar]
  5. 5.
    Li N, Wu JX, Ding D, Cheng J, Gao N et al. 2017. Structure of a pancreatic ATP-sensitive potassium channel. Cell 168:101–110.e10
    [Google Scholar]
  6. 6.
    Shyng S, Nichols CG. 1997. Octameric stoichiometry of the KATP channel complex. J. Gen. Physiol. 110:655–64
    [Google Scholar]
  7. 7.
    Zhao C, MacKinnon R. 2021. Molecular structure of an open human KATP channel. PNAS 118:e2112267118
    [Google Scholar]
  8. 8.
    Wang M, Wu J-X, Ding D, Duan X, Ma S et al. 2022. Structural insights into the mechanism of nucleotide regulation of pancreatic KATP channel. bioRxiv 2021.11.29.470334. https://doi.org/10.1101/2021.11.29.470334
    [Crossref]
  9. 9.
    Enkvetchakul D, Nichols CG. 2003. Gating mechanism of KATP channels: Function fits form. J. Gen. Physiol. 122:471–80
    [Google Scholar]
  10. 10.
    Babenko AP, Bryan J. 2003. SUR domains that associate with and gate KATP pores define a novel gatekeeper. J. Biol. Chem. 278:41577–80
    [Google Scholar]
  11. 11.
    Sung MW, Yang Z, Driggers CM, Patton BL, Mostofian B et al. 2021. Vascular KATP channel structural dynamics reveal regulatory mechanism by Mg-nucleotides. PNAS 118:e2109441118
    [Google Scholar]
  12. 12.
    Quinn KV, Cui Y, Giblin JP, Clapp LH, Tinker A. 2003. Do anionic phospholipids serve as cofactors or second messengers for the regulation of activity of cloned ATP-sensitive K+ channels?. Circ. Res. 93:646–55
    [Google Scholar]
  13. 13.
    Hu H, Sato T, Seharaseyon J, Liu Y, Johns DC et al. 1999. Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels. Mol. Pharmacol. 55:1000–5
    [Google Scholar]
  14. 14.
    Inagaki N, Gonoi T, Clement JP, Wang CZ, Aguilar-Bryan L et al. 1996. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 16:1011–17
    [Google Scholar]
  15. 15.
    Cheng WWL, Tong A, Flagg TP, Nichols CG. 2008. Random assembly of SUR subunits in KATP channel complexes. Channels 2:34–38
    [Google Scholar]
  16. 16.
    Chan KW, Wheeler A, Csanady L. 2008. Sulfonylurea receptors type 1 and 2A randomly assemble to form heteromeric KATP channels of mixed subunit composition. J. Gen. Physiol. 131:43–58
    [Google Scholar]
  17. 17.
    Pountney DJ, Sun ZQ, Porter LM, Nitabach MN, Nakamura TY et al. 2001. Is the molecular composition of KATP channels more complex than originally thought?. J. Mol. Cell. Cardiol. 33:1541–46
    [Google Scholar]
  18. 18.
    Flagg TP, Nichols CG. 2011.. “ Cardiac KATP”: a family of ion channels. Circ. Arrhythm. Electrophysiol. 4:796–98
    [Google Scholar]
  19. 19.
    Nichols CG, Shyng SL, Nestorowicz A, Glaser B, Clement JP et al. 1996. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272:1785–87
    [Google Scholar]
  20. 20.
    Thomas PM, Cote GJ, Hallman DM, Mathew PM. 1995. Homozygosity mapping, to chromosome 11p, of the gene for familial persistent hyperinsulinemic hypoglycemia of infancy. Am. J. Hum. Genet. 56:416–21
    [Google Scholar]
  21. 21.
    Nestorowicz A, Wilson BA, Schoor KP, Inoue H, Glaser B et al. 1996. Mutations in the sulonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum. Mol. Genet. 5:1813–22
    [Google Scholar]
  22. 22.
    Pinney SE, MacMullen C, Becker S, Lin YW, Hanna C et al. 2008. Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. J. Clin. Investig. 118:2877–86
    [Google Scholar]
  23. 23.
    Huopio H, Reimann F, Ashfield R, Komulainen J, Lenko HL et al. 2000. Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J. Clin. Investig. 106:897–906
    [Google Scholar]
  24. 24.
    Dunne MJ, West-Jordan JA, Abraham RJ, Edwards RHT, Peterson OH. 1988. The gating of nucleotide-sensitive K+ channels in insulin- secreting cells can be modulated by changes in the ratio ATP4−/ATP3− and by nonhydrolyzable derivatives of both ATP and ADP. J. Membr. Biol. 104:165–77
    [Google Scholar]
  25. 25.
    Saint-Martin C, Cauchois-Le Miere M, Rex E, Soukarieh O, Arnoux JB et al. 2021. Functional characterization of ABCC8 variants of unknown significance based on bioinformatics predictions, splicing assays, and protein analyses: benefits for the accurate diagnosis of congenital hyperinsulinism. Hum. Mutat. 42:408–20
    [Google Scholar]
  26. 26.
    Shyng SL, Ferrigni T, Shepard JB, Nestorowicz A, Glaser B et al. 1998. Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes 47:1145–51
    [Google Scholar]
  27. 27.
    Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ et al. 2004. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. New Engl. J. Med. 350:1838–49
    [Google Scholar]
  28. 28.
    Babenko AP, Polak M, Cave H, Busiah K, Czernichow P et al. 2006. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med. 355:456–66
    [Google Scholar]
  29. 29.
    Tornovsky S, Crane A, Cosgrove KE, Hussain K, Lavie J et al. 2004. Hyperinsulinism of infancy: novel ABCC8 and KCNJ11 mutations and evidence for additional locus heterogeneity. J. Clin. Endocrinol. Metab. 89:6224–34
    [Google Scholar]
  30. 30.
    Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. 2020. New insights into KATP channel gene mutations and neonatal diabetes mellitus. Nat. Rev. Endocrinol. 16:378–93
    [Google Scholar]
  31. 31.
    Iafusco D, Massa O, Pasquino B, Colombo C, Iughetti L et al. 2012. Minimal incidence of neonatal/infancy onset diabetes in Italy is 1:90,000 live births. Acta Diabetol 49:405–8
    [Google Scholar]
  32. 32.
    Mlynarski W, Tarasov AI, Gach A, Girard CA, Pietrzak I et al. 2007. Sulfonylurea improves CNS function in a case of intermediate DEND syndrome caused by a mutation in KCNJ11. Nat. Clin. Pract. Neurol. 3:640–45
    [Google Scholar]
  33. 33.
    Hattersley AT, Pearson ER. 2006. Minireview: pharmacogenetics and beyond: the interaction of therapeutic response, β-cell physiology, and genetics in diabetes. Endocrinology 147:2657–63
    [Google Scholar]
  34. 34.
    Gloyn AL, Siddiqui J, Ellard S. 2006. Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum. Mutat. 27:220–31
    [Google Scholar]
  35. 35.
    Koster JC, Marshall BA, Ensor N, Corbett JA, Nichols CG. 2000. Targeted overactivity of β cell KATP channels induces profound neonatal diabetes. Cell 100:645–54
    [Google Scholar]
  36. 36.
    Remedi MS, Kurata HT, Scott A, Wunderlich FT, Rother E et al. 2009. Secondary consequences of β cell inexcitability: identification and prevention in a murine model of KATP-induced neonatal diabetes mellitus. Cell Metab 9:140–51
    [Google Scholar]
  37. 37.
    Girard CA, Wunderlich FT, Shimomura K, Collins S, Kaizik S et al. 2009. Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic β cells recapitulates neonatal diabetes. J. Clin. Investig. 119:80–90
    [Google Scholar]
  38. 38.
    Karschin C, Ecke C, Ashcroft FM, Karschin A. 1997. Overlapping distribution of KATP channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett 401:59–64
    [Google Scholar]
  39. 39.
    Clark RH, McTaggart JS, Webster R, Mannikko R, Iberl M et al. 2010. Muscle dysfunction caused by a KATP channel mutation in neonatal diabetes is neuronal in origin. Science 329:458–61
    [Google Scholar]
  40. 40.
    Yahil S, Wozniak DF, Yan Z, Mennerick S, Remedi MS. 2021. Cognitive deficits and impaired hippocampal long-term potentiation in KATP-induced DEND syndrome. PNAS 118:e2109721118
    [Google Scholar]
  41. 41.
    Koster JC, Remedi MS, Dao C, Nichols CG. 2005. ATP and sulfonylurea sensitivity of mutant ATP-sensitive K+ channels in neonatal diabetes: implications for pharmacogenomic therapy. Diabetes 54:2645–54
    [Google Scholar]
  42. 42.
    Masia R, De Leon DD, MacMullen C, McKnight H, Stanley CA et al. 2007. A mutation in the TMD0-L0 region of sulfonylurea receptor-1 (L225P) causes permanent neonatal diabetes mellitus (PNDM). Diabetes 56:1357–62
    [Google Scholar]
  43. 43.
    Proks P, Antcliff JF, Lippiat J, Gloyn AL, Hattersley AT et al. 2004. Molecular basis of Kir6.2 mutations associated with neonatal diabetes plus neurological features. PNAS 101:17539–544
    [Google Scholar]
  44. 44.
    de Wet H, Rees MG, Shimomura K, Aittoniemi J, Patch AM et al. 2007. Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes. PNAS 104:18988–92
    [Google Scholar]
  45. 45.
    Proks P, Girard C, Ashcroft FM. 2005. Functional effects of KCNJ11 mutations causing neonatal diabetes: enhanced activation by MgATP. Hum. Mol. Genet. 14:2717–26
    [Google Scholar]
  46. 46.
    Tammaro P, Proks P, Ashcroft FM. 2006. Functional effects of naturally occurring KCNJ11 mutations causing neonatal diabetes on cloned cardiac KATP channels. J. Physiol. 571:3–14
    [Google Scholar]
  47. 47.
    Yorifuji T, Nagashima K, Kurokawa K, Kawai M, Oishi M et al. 2005. The C42R mutation in the Kir6.2 (KCNJ11) gene as a cause of transient neonatal diabetes, childhood diabetes, or later-onset, apparently type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 90:3174–78
    [Google Scholar]
  48. 48.
    Flanagan SE, Patch AM, Mackay DJ, Edghill EL, Gloyn AL et al. 2007. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 56:1930–37
    [Google Scholar]
  49. 49.
    Patch AM, Flanagan SE, Boustred C, Hattersley AT, Ellard S. 2007. Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period. Diabetes Obes. Metab. 9:Suppl. 228–39
    [Google Scholar]
  50. 50.
    Cantú JM, Garcia-Cruz D, Sanchez-Corona J, Hernandez A, Nazar Z. 1982. A distinct osteochondrodysplasia with hypertrichosis? Individualization of a probable autosomal recessive entity. Hum. Genet. 60:36–41
    [Google Scholar]
  51. 51.
    Grange DK, Roessler HI, McClenaghan C, Duran K, Shields K et al. 2019. Cantú syndrome: findings from 74 patients in the International Cantú Syndrome Registry. Am. J. Med. Genet. C Semin. Med. Genet. 181:658–81
    [Google Scholar]
  52. 52.
    Park JY, Koo SH, Jung YJ, Lim YJ, Chung ML. 2014. A patient with Cantú syndrome associated with fatal bronchopulmonary dysplasia and pulmonary hypertension. Am. J. Med. Genet. A 164A:2118–20
    [Google Scholar]
  53. 53.
    Harakalova M, van Harssel JJ, Terhal PA, van Lieshout S, Duran K et al. 2012. Dominant missense mutations in ABCC9 cause Cantú syndrome. Nat. Genet. 44:793–96
    [Google Scholar]
  54. 54.
    van Bon BW, Gilissen C, Grange DK, Hennekam RC, Kayserili H et al. 2012. Cantú syndrome is caused by mutations in ABCC9. Am. J. Hum. Genet. 90:1094–101
    [Google Scholar]
  55. 55.
    Brownstein CA, Towne MC, Luquette LJ, Harris DJ, Marinakis NS et al. 2013. Mutation of KCNJ8 in a patient with Cantú syndrome with unique vascular abnormalities—support for the role of KATP channels in this condition. Eur. J. Med. Genet. 56:678–82
    [Google Scholar]
  56. 56.
    Cooper PE, Reutter H, Woelfle J, Engels H, Grange DK et al. 2014. Cantú syndrome resulting from activating mutation in the KCNJ8 gene. Hum. Mutat. 35:809–13
    [Google Scholar]
  57. 57.
    Kirk EP, Scurr I, van Haaften G, van Haelst MM, Nichols CG et al. 2017. Clinical utility gene card for: Cantú syndrome. Eur. J. Hum. Genet. 25:512
    [Google Scholar]
  58. 58.
    Afifi HH, Abdel-Hamid MS, Eid MM, Mostafa IS, Abdel-Salam GM 2016. De novo mutation in ABCC9 causes hypertrichosis acromegaloid facial features disorder. Pediatr. Dermatol. 33:e109–13
    [Google Scholar]
  59. 59.
    Hiraki Y, Miyatake S, Hayashidani M, Nishimura Y, Matsuura H et al. 2014. Aortic aneurysm and craniosynostosis in a family with Cantú syndrome. Am. J. Med. Genet. A 164A:231–36
    [Google Scholar]
  60. 60.
    Czeschik JC, Voigt C, Goecke TO, Ludecke HJ, Wagner N et al. 2013. Wide clinical variability in conditions with coarse facial features and hypertrichosis caused by mutations in ABCC9. Am. J. Med. Genet. A 161A:295–300
    [Google Scholar]
  61. 61.
    Kim H, Kim S, Jeon H, Kim J, Yoo J et al. 2017. Clinical and molecular delineation of a novel Cys1050Phe missense mutation in the ABCC9 gene in a Korean patient with Cantú syndrome. Clin. Lab. 63:991–95
    [Google Scholar]
  62. 62.
    Marques P, Spencer R, Morrison PJ, Carr IM, Dang MN et al. 2018. Cantú syndrome with coexisting familial pituitary adenoma. Endocrine 59:677–84
    [Google Scholar]
  63. 63.
    Cooper PE, Sala-Rabanal M, SJ Lee, Nichols CG. 2015. Differential mechanisms of Cantú syndrome-associated gain of function mutations in the ABCC9 (SUR2) subunit of the KATP channel. J. Gen. Physiol. 146:527–40
    [Google Scholar]
  64. 64.
    McClenaghan C, Hanson A, Sala-Rabanal M, Roessler HI, Josifova D et al. 2018. Cantú syndrome-associated SUR2 (ABCC9) mutations in distinct structural domains result in KATP channel gain-of-function by differential mechanisms. J. Biol. Chem. 293:2041–52
    [Google Scholar]
  65. 65.
    Houtman MJC, Chen X, Qile M, Duran K, van Haaften G et al. 2019. Glibenclamide and HMR1098 normalize Cantú syndrome-associated gain-of-function currents. J. Cell. Mol. Med. 23:4962–69
    [Google Scholar]
  66. 66.
    Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. 2010. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol. Rev. 90:799–829
    [Google Scholar]
  67. 67.
    Huang Y, McClenaghan C, Harter TM, Hinman K, Halabi CM et al. 2018. Cardiovascular consequences of KATP overactivity in Cantú syndrome. JCI Insight 3:e121153
    [Google Scholar]
  68. 68.
    McClenaghan C, Huang Y, Matkovich SJ, Kovacs A, Weinheimer CJ et al. 2020. The mechanism of high-output cardiac hypertrophy arising from potassium channel gain-of-function in Cantú syndrome. Function 1:zqaa004
    [Google Scholar]
  69. 69.
    McClenaghan C, Huang Y, Yan Z, Harter T, Halabi CM et al. 2020. Glibenclamide reverses cardiovascular abnormalities of Cantu syndrome driven by KATP channel overactivity. J. Clin. Investig. 130:31116–21
    [Google Scholar]
  70. 70.
    Scala R, Maqoud F, Zizzo N, Passantino G, Mele A et al. 2021. Consequences of SUR2[A478V] mutation in skeletal muscle of murine model of Cantu syndrome. Cells 10:1791
    [Google Scholar]
  71. 71.
    Scala R, Maqoud F, Zizzo N, Mele A, Camerino GM et al. 2020. Pathophysiological consequences of KATP channel overactivity and pharmacological response to glibenclamide in skeletal muscle of a murine model of Cantú syndrome. Front. Pharmacol. 11:604885
    [Google Scholar]
  72. 72.
    Powers SK, Morton AB, Hyatt H, Hinkley MJ. 2018. The renin-angiotensin system and skeletal muscle. Exerc. Sport Sci. Rev. 46:205–14
    [Google Scholar]
  73. 73.
    Rossi A, Cantisani C, Melis L, Iorio A, Scali E et al. 2012. Minoxidil use in dermatology, side effects and recent patents. Recent Pat. Inflamm. . Allergy Drug Discov 6:130–36
    [Google Scholar]
  74. 74.
    York NW, Parker H, Xie Z, Tyus D, Waheed MA et al. 2020. Kir6.1- and SUR2-dependent KATP over-activity disrupts intestinal motility in murine models of Cantú syndrome. JCI Insight 5:e141443
    [Google Scholar]
  75. 75.
    Davis MJ, Kim HJ, Zawieja SD, Castorena-Gonzalez JA, Gui P et al. 2020. Kir6.1-dependent KATP channels in lymphatic smooth muscle and vessel dysfunction in mice with Kir6.1 gain-of-function. J. Physiol. 598:3107–27
    [Google Scholar]
  76. 76.
    von der Weid PY. 1998. ATP-sensitive K+ channels in smooth muscle cells of guinea-pig mesenteric lymphatics: role in nitric oxide and β-adrenoceptor agonist-induced hyperpolarizations. Br. J. Pharmacol. 125:17–22
    [Google Scholar]
  77. 77.
    Mizuno R, Ono N, Ohhashi T. 1999. Involvement of ATP-sensitive K+ channels in spontaneous activity of isolated lymph microvessels in rats. Am. J. Physiol. 277:H1453–56
    [Google Scholar]
  78. 78.
    Minoretti P, Falcone C, Aldeghi A, Olivieri V, Mori F et al. 2006. A novel Val734Ile variant in the ABCC9 gene associated with myocardial infarction. Clin. Chim. Acta 370:124–28
    [Google Scholar]
  79. 79.
    Smith KJ, Chadburn AJ, Adomaviciene A, Minoretti P, Vignali L et al. 2013. Coronary spasm and acute myocardial infarction due to a mutation (V734I) in the nucleotide binding domain 1 of ABCC9. Int. J. Cardiol. 168:3506–13
    [Google Scholar]
  80. 80.
    Hu D, Barajas-Martinez H, Terzic A, Park S, Pfeiffer R et al. 2014. ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene. Int. J. Cardiol. 171:431–42
    [Google Scholar]
  81. 81.
    Haïssaguerre M, Chatel S, Sacher F, Weerasooriya R, Probst V et al. 2009. Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/KATP channel. J. Cardiovasc. Electrophysiol. 20:93–98
    [Google Scholar]
  82. 82.
    Medeiros-Domingo A, Tan B-H, Crotti L, Tester DJ, Eckhardt L et al. 2010. Gain-of-function mutation S422L in the KCNJ8-encoded cardiac KATP channel Kir6.1 as a pathogenic substrate for J-wave syndromes. Heart Rhythm 7:1466–71
    [Google Scholar]
  83. 83.
    Barajas-Martinez H, Hu D, Ferrer T, Onetti CG, Wu Y et al. 2012. Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm 9:548–55
    [Google Scholar]
  84. 84.
    Delaney JT, Muhammad R, Blair MA, Kor K, Fish FA et al. 2012. A KCNJ8 mutation associated with early repolarization and atrial fibrillation. EP Europace 14:1428–32
    [Google Scholar]
  85. 85.
    Veeramah KR, Karafet TM, Wolf D, Samson RA, Hammer MF. 2014. The KCNJ8-S422L variant previously associated with J-wave syndromes is found at an increased frequency in Ashkenazi Jews. Eur. J. Hum. Genet. 22:94–98
    [Google Scholar]
  86. 86.
    Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O'Cochlain F et al. 2004. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat. Genet. 36:382–87
    [Google Scholar]
  87. 87.
    Olson TM, Alekseev AE, Moreau C, Liu XK, Zingman LV et al. 2007. KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat. Clin. Pract. Cardiovasc. Med. 4:110–16
    [Google Scholar]
  88. 88.
    Zhang L, Tester DJ, Lang D, Chen Y, Zheng J et al. 2016. Does sudden unexplained nocturnal death syndrome remain the autopsy-negative disorder: a gross, microscopic, and molecular autopsy investigation in southern China. Mayo Clin. Proc. 91:1503–14
    [Google Scholar]
  89. 89.
    Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC et al. 2011. Loss-of-function mutations in the KCNJ8-encoded Kir6.1 KATP channel and sudden infant death syndrome. Circ. Cardiovasc. Genet. 4:510–15
    [Google Scholar]
  90. 90.
    Smeland MF, McClenaghan C, Roessler HI, Savelberg S, Hansen GAM et al. 2019. ABCC9-related Intellectual disability Myopathy Syndrome is a KATP channelopathy with loss-of-function mutations in ABCC9. Nat. Commun. 10:4457
    [Google Scholar]
  91. 91.
    Schwanstecher C, Meyer U, Schwanstecher M. 2002. KIR6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic β-cell ATP-sensitive K+ channels. Diabetes 51:875–79
    [Google Scholar]
  92. 92.
    Hani EH, Boutin P, Durand E, Inoue H, Permutt MA et al. 1998. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): A meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia 41:1511–15
    [Google Scholar]
  93. 93.
    Villareal DT, Koster JC, Robertson H, Akrouh A, Miyake K et al. 2009. Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes 58:1869–78
    [Google Scholar]
  94. 94.
    Hamming KS, Soliman D, Matemisz LC, Niazi O, Lang Y et al. 2009. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K+ channel. Diabetes 58:2419–24
    [Google Scholar]
  95. 95.
    Florez JC, Burtt N, de Bakker PI, Almgren P, Tuomi T et al. 2004. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 53:1360–68
    [Google Scholar]
  96. 96.
    Sachse G, Haythorne E, Hill T, Proks P, Joynson R et al. 2021. The KCNJ11-E23K gene variant hastens diabetes progression by impairing glucose-induced insulin secretion. Diabetes 70:1145–56
    [Google Scholar]
  97. 97.
    Sesti G, Laratta E, Cardellini M, Andreozzi F, Del Guerra S et al. 2006. The E23K variant of KCNJ11 encoding the pancreatic β-cell adenosine 5'-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 91:2334–39
    [Google Scholar]
  98. 98.
    Flagg TP, Kurata HT, Masia R, Caputa G, Magnuson MA et al. 2008. Differential structure of atrial and ventricular KATP: Atrial KATP channels require SUR1. Circ. Res. 103:1458–65
    [Google Scholar]
  99. 99.
    Fedorov VV, Glukhov AV, Ambrosi CM, Kostecki G, Chang R et al. 2011. Effects of KATP channel openers diazoxide and pinacidil in coronary-perfused atria and ventricles from failing and non-failing human hearts. J. Mol. Cell Cardiol. 51:215–25
    [Google Scholar]
  100. 100.
    Le Ribeuz H, Masson B, Capuano V, Dutheil M, Gooroochurn H et al. 2022. SUR1 as a new therapeutic target for pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol. 66:539–54
    [Google Scholar]
  101. 101.
    Bohnen MS, Ma L, Zhu N, Qi H, McClenaghan C et al. 2018. Loss-of-function ABCC8 mutations in pulmonary arterial hypertension. Circ. Genom. Precis Med. 11:e002087
    [Google Scholar]
  102. 102.
    Loubatières A. 1969.. [ The discovery of hypoglycemic sulfonamides and particularly of their action mechanism. ]. Acta Diabetol. Lat. 6:Suppl. 120–56 In French )
    [Google Scholar]
  103. 103.
    Kharade SV, Nichols C, Denton JS. 2016. The shifting landscape of KATP channelopathies and the need for ‘sharper’ therapeutics. Future Med. Chem. 8:789–802
    [Google Scholar]
  104. 104.
    Koster JC, Sha Q, Nichols CG 1999. Sulfonylurea and K+-channel opener sensitivity of KATP channels. Functional coupling of Kir6.2 and SUR1 subunits. J. Gen. Physiol. 114:203–13
    [Google Scholar]
  105. 105.
    Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B et al. 2019. Mechanism of pharmacochaperoning in a mammalian KATP channel revealed by cryo-EM. eLife 8:e46417
    [Google Scholar]
  106. 106.
    Ding D, Wang M, Wu J-X, Kang Y, Chen L 2019. The structural basis for the binding of repaglinide to the pancreatic KATP channel. Cell Rep. 27:1848–57.e4
    [Google Scholar]
  107. 107.
    Wu JX, Ding D, Wang M, Kang Y, Zeng X et al. 2018. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels. Protein Cell 9:553–67
    [Google Scholar]
  108. 108.
    Wu JX, Ding D, Wang M, Chen L 2020. Structural insights into the inhibitory mechanism of insulin secretagogues on the pancreatic ATP-sensitive potassium channel. Biochemistry 59:18–25
    [Google Scholar]
  109. 109.
    Ashfield R, Gribble FM, Ashcroft SJ, Ashcroft FM. 1999. Identification of the high-affinity tolbutamide site on the SUR1 subunit of the KATP channel. Diabetes 48:1341–47
    [Google Scholar]
  110. 110.
    Hambrock A, Loffler-Walz C, Russ U, Lange U, Quast U. 2001. Characterization of a mutant sulfonylurea receptor SUR2B with high affinity for sulfonylureas and openers: differences in the coupling to Kir6.x subtypes. Mol. Pharmacol. 60:190–99
    [Google Scholar]
  111. 111.
    Kuhner P, Prager R, Stephan D, Russ U, Winkler M et al. 2012. Importance of the Kir6.2 N-terminus for the interaction of glibenclamide and repaglinide with the pancreatic KATP channel. Naunyn Schmiedebergs Arch. Pharmacol. 385:299–311
    [Google Scholar]
  112. 112.
    Mannhold R. 2004. KATP channel openers: structure-activity relationships and therapeutic potential. Med. Res. Rev. 24:213–66
    [Google Scholar]
  113. 113.
    Schwanstecher M, Sieverding C, Dorschner H, Gross I, Aguilar-Bryan L et al. 1998. Potassium channel openers require ATP to bind to and act through sulfonylurea receptors. EMBO J 17:5529–35
    [Google Scholar]
  114. 114.
    Uhde I, Toman A, Gross I, Schwanstecher C, Schwanstecher M. 1999. Identification of the potassium channel opener site on sulfonylurea receptors. J. Biol. Chem. 274:28079–82
    [Google Scholar]
  115. 115.
    Matsuoka T, Matsushita K, Katayama Y, Fujita A, Inageda K et al. 2000. C-terminal tails of sulfonylurea receptors control ADP-induced activation and diazoxide modulation of ATP-sensitive K+ channels. Circ. Res. 87:873–80
    [Google Scholar]
  116. 116.
    Ding D, Wu J-X, Duan X, Ma S, Lai L, Chen L 2022. Structural identification of vasodilator binding sites on the SUR2 subunit. Nat. Commun. 13:2675
    [Google Scholar]
  117. 117.
    Reimann F, Gribble FM, Ashcroft FM. 2000. Differential response of KATP channels containing SUR2A or SUR2B subunits to nucleotides and pinacidil. Mol. Pharmacol. 58:1318–25
    [Google Scholar]
  118. 118.
    Rubin AA, Roth FE, Taylor RM, Rosenkilde H. 1962. Pharmacology of diazoxide, an antihypertensive, nondiuretic benzothiadiazine. J. Pharmacol. Exp. Ther. 136:344–52
    [Google Scholar]
  119. 119.
    Drash A, Wolff F. 1964. Drug therapy in leucine-sensitive hypoglycemia. Metabolism 13:487–92
    [Google Scholar]
  120. 120.
    Henwood MJ, Kelly A, Macmullen C, Bhatia P, Ganguly A et al. 2005. Genotype-phenotype correlations in children with congenital hyperinsulinism due to recessive mutations of the adenosine triphosphate-sensitive potassium channel genes. J. Clin. Endocrinol. Metab. 90:789–94
    [Google Scholar]
  121. 121.
    De Leon DD, Stanley CA. 2007. Mechanisms of disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat. Clin. Pract. Endocrinol. Metab. 3:57–68
    [Google Scholar]
  122. 122.
    Hussain K, Aynsley-Green A. 2000. Management of hyperinsulinism in infancy and childhood. Ann. Med. 32:544–51
    [Google Scholar]
  123. 123.
    Hardy OT, Hernandez-Pampaloni M, Saffer JR, Suchi M, Ruchelli E et al. 2007. Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J. Pediatr. 150:140–45
    [Google Scholar]
  124. 124.
    Banerjee I, Skae M, Flanagan SE, Rigby L, Patel L et al. 2011. The contribution of rapid KATP channel gene mutation analysis to the clinical management of children with congenital hyperinsulinism. Eur. J. Endocrinol. 164:733–40
    [Google Scholar]
  125. 125.
    Salomon-Estebanez M, Flanagan SE, Ellard S, Rigby L, Bowden L et al. 2016. Conservatively treated congenital hyperinsulinism (CHI) due to K-ATP channel gene mutations: reducing severity over time. Orphanet J. Rare Dis. 11:163
    [Google Scholar]
  126. 126.
    Mazor-Aronovitch K, Gillis D, Lobel D, Hirsch HJ, Pinhas-Hamiel O et al. 2007. Long-term neurodevelopmental outcome in conservatively treated congenital hyperinsulinism. Eur. J. Endocrinol. 157:491–97
    [Google Scholar]
  127. 127.
    Martinez R, Fernandez-Ramos C, Vela A, Velayos T, Aguayo A et al. 2016. Clinical and genetic characterization of congenital hyperinsulinism in Spain. Eur. J. Endocrinol. 174:717–26
    [Google Scholar]
  128. 128.
    Kapoor RR, Flanagan SE, Arya VB, Shield JP, Ellard S et al. 2013. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur. J. Endocrinol. 168:557–64
    [Google Scholar]
  129. 129.
    Abdulhadi-Atwan M, Bushman J, Tornovsky-Babaey S, Perry A, Abu-Libdeh A et al. 2008. Novel de novo mutation in sulfonylurea receptor 1 presenting as hyperinsulinism in infancy followed by overt diabetes in early adolescence. Diabetes 57:1935–40
    [Google Scholar]
  130. 130.
    Gussinyer M, Clemente M, Cebrian R, Yeste D, Albisu M et al. 2008. Glucose intolerance and diabetes are observed in the long-term follow-up of nonpancreatectomized patients with persistent hyperinsulinemic hypoglycemia of infancy due to mutations in the ABCC8 gene. Diabetes Care 31:1257–59
    [Google Scholar]
  131. 131.
    Remedi MS, Rocheleau JV, Tong A, Patton BL, McDaniel ML et al. 2006. Hyperinsulinism in mice with heterozygous loss of KATP channels. Diabetologia 49:2368–78
    [Google Scholar]
  132. 132.
    Koster JC, Remedi MS, Flagg TP, Johnson JD, Markova KP et al. 2002. Hyperinsulinism induced by targeted suppression of beta cell KATP channels. PNAS 99:16992–97
    [Google Scholar]
  133. 133.
    Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H et al. 1998. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. PNAS 95:10402–6
    [Google Scholar]
  134. 134.
    Miki T, Tashiro F, Iwanaga T, Nagashima K, Yoshitomi H et al. 1997. Abnormalities of pancreatic islets by targeted expression of a dominant-negative KATP channel. PNAS 94:11969–73
    [Google Scholar]
  135. 135.
    Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J. 2000. Sur1 knockout mice: a model for KATP channel-independent regulation of insulin secretion. J. Biol. Chem. 275:9270–77
    [Google Scholar]
  136. 136.
    Remedi MS, Koster JC, Markova K, Seino S, Miki T et al. 2004. Diet-induced glucose intolerance in mice with decreased β-cell ATP-sensitive K+ channels. Diabetes 53:3159–67
    [Google Scholar]
  137. 137.
    Shimomura K, Tusa M, Iberl M, Brereton MF, Kaizik S et al. 2013. A mouse model of human hyperinsulinism produced by the E1506K mutation in the sulphonylurea receptor SUR1. Diabetes 62:3797–806
    [Google Scholar]
  138. 138.
    Sakura H, Ashcroft SJ, Terauchi Y, Kadowaki T, Ashcroft FM. 1998. Glucose modulation of ATP-sensitive K-currents in wild-type, homozygous and heterozygous glucokinase knock-out mice. Diabetologia 41:654–59
    [Google Scholar]
  139. 139.
    Glaser B, Kesavan P, Heyman M, Davis E, Cuesta A et al. 1998. Familial hyperinsulinism caused by an activating glucokinase mutation. N. Engl. J. Med. 338:226–30
    [Google Scholar]
  140. 140.
    Pearson ER, Flechtner I, Njolstad PR, Malecki MT, Flanagan SE et al. 2006. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N. Engl. J. Med. 355:467–77
    [Google Scholar]
  141. 141.
    Remedi MS, Koster JC. 2010. KATP channelopathies in the pancreas. Pflugers Arch 460:307–20
    [Google Scholar]
  142. 142.
    Koster JC, Cadario F, Peruzzi C, Colombo C, Nichols CG et al. 2008. The G53D mutation in Kir6.2 (KCNJ11) is associated with neonatal diabetes and motor dysfunction in adulthood that is improved with sulfonylurea therapy. J. Clin. Endocrinol. Metab. 93:1054–61
    [Google Scholar]
  143. 143.
    Wambach JA, Marshall BA, Koster JC, White NH, Nichols CG. 2009. Successful sulfonylurea treatment of an insulin-naive neonate with diabetes mellitus due to a KCNJ11 mutation. Pediatr. Diabetes 11:286–88
    [Google Scholar]
  144. 144.
    Sagen JV, Raeder H, Hathout E, Shehadeh N, Gudmundsson K et al. 2004. Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 53:2713–18
    [Google Scholar]
  145. 145.
    Tonini G, Bizzarri C, Bonfanti R, Vanelli M, Cerutti F et al. 2006. Sulfonylurea treatment outweighs insulin therapy in short-term metabolic control of patients with permanent neonatal diabetes mellitus due to activating mutations of the KCNJ11 (KIR6.2) gene. Diabetologia 49:2210–13
    [Google Scholar]
  146. 146.
    Sumnik Z, Kolouskova S, Wales JK, Komarek V, Cinek O. 2007. Sulphonylurea treatment does not improve psychomotor development in children with KCNJ11 mutations causing permanent neonatal diabetes mellitus accompanied by developmental delay and epilepsy (DEND syndrome). Diabet. Med. 24:1176–78
    [Google Scholar]
  147. 147.
    Masia R, Koster JC, Tumini S, Chiarelli F, Colombo C et al. 2007. An ATP-binding mutation (G334D) in KCNJ11 is associated with a sulfonylurea-insensitive form of developmental delay, epilepsy, and neonatal diabetes. Diabetes 56:328–36
    [Google Scholar]
  148. 148.
    Slingerland AS, Nuboer R, Hadders-Algra M, Hattersley AT, Bruining GJ. 2006. Improved motor development and good long-term glycaemic control with sulfonylurea treatment in a patient with the syndrome of intermediate developmental delay, early-onset generalised epilepsy and neonatal diabetes associated with the V59M mutation in the KCNJ11 gene. Diabetologia 49:2559–63
    [Google Scholar]
  149. 149.
    Takanaga H, Murakami H, Koyabu N, Matsuo H, Naito M et al. 1998. Efflux transport of tolbutamide across the blood-brain barrier. J. Pharm. Pharmacol. 50:1027–33
    [Google Scholar]
  150. 150.
    Bessadok A, Garcia E, Jacquet H, Martin S, Garrigues A et al. 2011. Recognition of sulfonylurea receptor (ABCC8/9) ligands by the multidrug resistance transporter P-glycoprotein (ABCB1): functional similarities based on common structural features between two multispecific ABC proteins. J. Biol. Chem. 286:3552–69
    [Google Scholar]
  151. 151.
    Proks P, de Wet H, Ashcroft FM. 2013. Molecular mechanism of sulphonylurea block of KATP channels carrying mutations that impair ATP inhibition and cause neonatal diabetes. Diabetes 62:3909–19
    [Google Scholar]
  152. 152.
    Greeley SA, Zielinski MC, Poudel A, Ye H, Berry S et al. 2017. Preservation of reduced numbers of insulin-positive cells in sulfonylurea-unresponsive KCNJ11-related diabetes. J. Clin. Endocrinol. Metab. 102:1–5
    [Google Scholar]
  153. 153.
    Wang Z, York NW, Nichols CG, Remedi MS. 2014. Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab 19:872–82
    [Google Scholar]
  154. 154.
    Remedi MS, Agapova SE, Vyas AK, Hruz PW, Nichols CG. 2011. Acute sulfonylurea therapy at disease onset can cause permanent remission of KATP-induced diabetes. Diabetes 60:2515–22
    [Google Scholar]
  155. 155.
    Carmody D, Bell CD, Hwang JL, Dickens JT, Sima DI et al. 2014. Sulfonylurea treatment before genetic testing in neonatal diabetes: pros and cons. J. Clin. Endocrinol. Metab. 99:E2709–14
    [Google Scholar]
  156. 156.
    Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC. 1998. UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet. Med. 15:297–303
    [Google Scholar]
  157. 157.
    Bowman P, Sulen A, Barbetti F, Beltrand J, Svalastoga P et al. 2018. Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabet. Endocrinol. 6:637–46
    [Google Scholar]
  158. 158.
    Iafusco D, Bizzarri C, Cadario F, Pesavento R, Tonini G et al. 2011. No beta cell desensitisation after a median of 68 months on glibenclamide therapy in patients with KCNJ11-associated permanent neonatal diabetes. Diabetologia 54:2736–38
    [Google Scholar]
  159. 159.
    Leon Guerrero CR, Pathak S, Grange DK, Singh GK, Nichols CG et al. 2016. Neurologic and neuroimaging manifestations of Cantú syndrome: a case series. Neurology 87:270–76
    [Google Scholar]
  160. 160.
    Levin MD, Singh GK, Zhang HX, Uchida K, Kozel BA et al. 2016. KATP channel gain-of-function leads to increased myocardial L-type Ca2+ current and contractility in Cantú syndrome. PNAS 113:6773–78
    [Google Scholar]
  161. 161.
    Ma A, Gurnasinghani S, Kirk EP, McClenaghan C, Singh GK et al. 2019. Glibenclamide treatment in a Cantú syndrome patient with a pathogenic ABCC9 gain-of-function variant: initial experience. Am. J. Med. Genet. A 179:1585–90
    [Google Scholar]
  162. 162.
    Desai J, Key L, Swindall A, Gaston K, Talati AJ. 2021. The danger of diazoxide in the neonatal intensive care unit. Ther. Adv. Drug Saf. 12:20420986211011338
    [Google Scholar]
  163. 163.
    Tater KC, Gwaltney-Brant S, Wismer T. 2021. Topical minoxidil exposures and toxicoses in dogs and cats: 211 cases (2001–2019). J. Am. Anim. Hosp. Assoc. 57:225–31
    [Google Scholar]
  164. 164.
    Beltrand J, Baptiste A, Busiah K, Bouazza N, Godot C et al. 2019. Glibenclamide oral suspension: suitable and effective in patients with neonatal diabetes. Pediatr. Diabetes 20:246–54
    [Google Scholar]
  165. 165.
    Remedi MS, Nichols CG. 2008. Chronic antidiabetic sulfonylureas in vivo: reversible effects on mouse pancreatic β-cells. PLOS Med. 5:e206
    [Google Scholar]
  166. 166.
    Teramoto N. 2006. Pharmacological profile of U-37883A, a channel blocker of smooth muscle-type ATP-sensitive K channels. Cardiovasc. Drug Rev. 24:25–32
    [Google Scholar]
  167. 167.
    Smith MP, Humphrey SJ, Jackson WF. 1994. Selective in vivo antagonism of pinacidil-induced hypotension by the guanidine U37883A in anesthetized rats. Pharmacology 49:363–75
    [Google Scholar]
  168. 168.
    Gaidukov L, Wroblewska L, Teague B, Nelson T, Zhang X et al. 2018. A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Res 46:4072–86
    [Google Scholar]
  169. 169.
    Gao J, Nichols C. 2022. Rapid characterization of the functional and pharmacological consequences of Cantú syndrome KATP channel mutations in intact cells. Biophys. J. 121:388A–89A
    [Google Scholar]
  170. 170.
    Raphemot R, Weaver CD, Denton JS. 2013. High-throughput screening for small-molecule modulators of inward rectifier potassium channels. J. Vis. Exp. Genet. 71:e4209
    [Google Scholar]
  171. 171.
    Raphemot R, Swale DR, Dadi PK, Jacobson DA, Cooper P et al. 2014. Direct activation of β-cell KATP channels with a novel xanthine derivative. Mol. Pharmacol. 85:858–65
    [Google Scholar]
  172. 172.
    Bekaert B, Boel A, Cosemans G, De Witte L, Menten B et al. 2022. CRISPR/Cas gene editing in the human germline. Semin. Cell Dev. Biol. 131:93107
    [Google Scholar]
  173. 173.
    Ramu Y, Xu Y, Lu Z. 2018. A novel high-affinity inhibitor against the human ATP-sensitive Kir6.2 channel. J. Gen. Physiol. 150:969–76
    [Google Scholar]
  174. 174.
    Ramu Y, Yamakaze J, Zhou Y, Hoshi T, Lu Z. 2022. Blocking Kir6.2 channels with SpTx1 potentiates glucose-stimulated insulin secretion from murine pancreatic β cells and lowers blood glucose in diabetic mice. eLife 11:e77026
    [Google Scholar]
  175. 175.
    Houtman MJC, Friesacher T, Chen X, Zangerl-Plessl EM, van der Heyden MAG et al. 2021. Development of IKATP ion channel blockers targeting sulfonylurea resistant mutant KIR6.2 based channels for treating DEND syndrome. Front. Pharmacol. 12:814066
    [Google Scholar]
  176. 176.
    Partridge CJ, Beech DJ, Sivaprasadarao A. 2001. Identification and pharmacological correction of a membrane trafficking defect associated with a mutation in the sulfonylurea receptor causing familial hyperinsulinism. J. Biol. Chem. 276:35947–52
    [Google Scholar]
  177. 177.
    Yan FF, Casey J, Shyng SL 2006. Sulfonylureas correct trafficking defects of disease-causing ATP-sensitive potassium channels by binding to the channel complex. J. Biol. Chem. 281:33403–13
    [Google Scholar]
  178. 178.
    Chen PC, Olson EM, Zhou Q, Kryukova Y, Sampson HM et al. 2013. Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism. J. Biol. Chem. 288:20942–54
    [Google Scholar]
  179. 179.
    Salido-Vallejo R, Gómez-García FJ, Garnacho-Saucedo G, Galán-Gutiérrez M. 2013. Acquired generalized hypertrichosis due to diazoxide. Actas Dermosifiliogr. 104:166–67
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051921-123023
Loading
/content/journals/10.1146/annurev-pharmtox-051921-123023
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error