1932

Abstract

Colchicine is one of the most ancient medications still prescribed. It is extracted from the plant and is routinely used because of its broad anti-inflammatory properties to treat gout and familial Mediterranean fever. Colchicine has shown efficacy in various clinical settings in which inflammation is a key component, and it has become first-line therapy for acute and recurrent pericarditis. Two landmark clinical trials have recently shown that colchicine significantly improves cardiovascular outcomes on background statin and antiplatelet therapy in patients with coronary artery disease, supporting its role for the prevention of atherothrombotic events. Favorable results have also emerged in atrial fibrillation. We herein briefly review the most recent data related to the multiple cardiovascular conditions for which colchicine has been successfully repurposed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052120-020445
2022-01-06
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-052120-020445.html?itemId=/content/journals/10.1146/annurev-pharmtox-052120-020445&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hartung EF. 1954. History of the use of colchicum and related medicaments in gout; with suggestions for further research. Ann. Rheum. Dis. 13:190–200
    [Google Scholar]
  2. 2. 
    Sari I, Yuksel A, Kozaci D, Selcuk S, Gokce G et al. 2012. The effect of regular colchicine treatment on biomarkers related with vascular injury in newly diagnosed patients with familial Mediterranean fever. Inflammation 35:1191–97
    [Google Scholar]
  3. 3. 
    Imazio M, Bobbio M, Cecchi E, Demarie D, Demichelis B et al. 2005. Colchicine in addition to conventional therapy for acute pericarditis: results of the COlchicine for acute PEricarditis (COPE) trial. Circulation 112:2012–16
    [Google Scholar]
  4. 4. 
    Imazio M, Bobbio M, Cecchi E, Demarie D, Pomari F et al. 2005. Colchicine as first-choice therapy for recurrent pericarditis: results of the CORE (COlchicine for REcurrent pericarditis) trial. Arch. Intern. Med. 165:1987–91
    [Google Scholar]
  5. 5. 
    Imazio M, Brucato A, Cemin R, Ferrua S, Belli R et al. 2011. Colchicine for recurrent pericarditis (CORP): a randomized trial. Ann. Intern. Med. 155:409–14
    [Google Scholar]
  6. 6. 
    Imazio M, Brucato A, Cemin R, Ferrua S, Maggiolini S et al. 2013. A randomized trial of colchicine for acute pericarditis. N. Engl. J. Med. 369:1522–28
    [Google Scholar]
  7. 7. 
    Imazio M, Belli R, Brucato A, Cemin R, Ferrua S et al. 2014. Efficacy and safety of colchicine for treatment of multiple recurrences of pericarditis (CORP-2): a multicentre, double-blind, placebo-controlled, randomised trial. Lancet 383:2232–37
    [Google Scholar]
  8. 8. 
    Ridker PM. 2016. Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin. Eur. Heart J. 37:1720–22
    [Google Scholar]
  9. 9. 
    Ridker PM. 2020. From CANTOS to CIRT to COLCOT to clinic: Will all atherosclerosis patients soon be treated with combination lipid-lowering and inflammation-inhibiting agents?. Circulation 141:787–89
    [Google Scholar]
  10. 10. 
    Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S et al. 2004. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428:198–202
    [Google Scholar]
  11. 11. 
    Leung YY, Yao Hui LL, Kraus VB 2015. Colchicine—update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum. 45:341–50
    [Google Scholar]
  12. 12. 
    Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R et al. 2019. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381:2497–505
    [Google Scholar]
  13. 13. 
    Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A et al. 2020. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383:1838–47
    [Google Scholar]
  14. 14. 
    Bhattacharyya B, Howard R, Maity SN, Brossi A, Sharma PN, Wolff J. 1986. B ring regulation of colchicine binding kinetics and fluorescence. PNAS 83:2052–55
    [Google Scholar]
  15. 15. 
    Chen K, Schenone AL, Borges N, Militello M, Menon V 2017. Teaching an old dog new tricks: colchicine in cardiovascular medicine. Am. J. Cardiovasc. Drugs 17:347–60
    [Google Scholar]
  16. 16. 
    Chappey ON, Niel E, Wautier JL, Hung PP, Dervichian M et al. 1993. Colchicine disposition in human leukocytes after single and multiple oral administration. Clin. Pharmacol. Ther. 54:360–67
    [Google Scholar]
  17. 17. 
    Martinez GJ, Celermajer DS, Patel S. 2018. Corrigendum to: “The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation” [Atherosclerosis. 2018 Feb;269:262–71]. Atherosclerosis 273:157
    [Google Scholar]
  18. 18. 
    Perico N, Ostermann D, Bontempeill M, Morigi M, Amuchastegui CS et al. 1996. Colchicine interferes with l-selectin and leukocyte function-associated antigen-1 expression on human T lymphocytes and inhibits T cell activation. J. Am. Soc. Nephrol. 7:594–601
    [Google Scholar]
  19. 19. 
    Hansson GK. 2005. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352:1685–95
    [Google Scholar]
  20. 20. 
    Soehnlein O. 2012. Multiple roles for neutrophils in atherosclerosis. Circ. Res. 110:875–88
    [Google Scholar]
  21. 21. 
    Libby P, Tabas I, Fredman G, Fisher EA 2014. Inflammation and its resolution as determinants of acute coronary syndromes. Circ. Res. 114:1867–79
    [Google Scholar]
  22. 22. 
    Rymer JA, Newby LK. 2017. Failure to launch: targeting inflammation in acute coronary syndromes. JACC Basic Transl. Sci. 2:484–97
    [Google Scholar]
  23. 23. 
    Rajamaki K, Lappalainen J, Oorni K, Valimaki E, Matikainen S et al. 2010. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLOS ONE 5:e11765
    [Google Scholar]
  24. 24. 
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G et al. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–61
    [Google Scholar]
  25. 25. 
    Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. 2013. Low-dose colchicine for secondary prevention of cardiovascular disease. J. Am. Coll. Cardiol. 61:404–10
    [Google Scholar]
  26. 26. 
    Liuzzo G, Biasucci LM, Gallimore JR, Grillo RL, Rebuzzi AG et al. 1994. The prognostic value of C-reactive protein and serum amyloid A protein in severe unstable angina. N. Engl. J. Med. 331:417–24
    [Google Scholar]
  27. 27. 
    Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F et al. 2011. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123:594–604
    [Google Scholar]
  28. 28. 
    Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO et al. 2016. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J. Am. Coll. Cardiol. 67:2050–60
    [Google Scholar]
  29. 29. 
    Chen B, Frangogiannis NG 2017. Immune cells in repair of the infarcted myocardium. Microcirculation 24:e12305
    [Google Scholar]
  30. 30. 
    Gao R, Shi H, Chang S, Gao Y, Li X et al. 2019. The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction. Int. Immunopharmacol. 74:105575
    [Google Scholar]
  31. 31. 
    Bouabdallaoui N, Tardif JC, Waters DD, Pinto FJ, Maggioni AP et al. 2020. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur. Heart J. 41:4092–99
    [Google Scholar]
  32. 32. 
    Samuel M, Tardif JC, Khairy P, Roubille F, Waters DD et al. 2020. Cost-effectiveness of low-dose colchicine after myocardial infarction in the colchicine cardiovascular outcomes trial (COLCOT). Eur. Heart J. Qual. Care Clin. Outcomes 7(5):486–95
    [Google Scholar]
  33. 33. 
    Tong DC, Quinn S, Nasis A, Hiew C, Roberts-Thomson P et al. 2020. Colchicine in patients with acute coronary syndrome: the Australian COPS randomized clinical trial. Circulation 142:1890–900
    [Google Scholar]
  34. 34. 
    Samuel M, Tardif JC, Bouabdallaoui N, Khairy P, Dube MP et al. 2020. Colchicine for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Can. J. Cardiol. 37:5776–85
    [Google Scholar]
  35. 35. 
    Fiolet ATL, Opstal TSJ, Mosterd A, Eikelboom JW, Jolly SS et al. 2021. Efficacy and safety of low-dose colchicine in patients with coronary disease: a systematic review and meta-analysis of randomized trials. Eur. Heart J. 2021:ehab115
    [Google Scholar]
  36. 36. 
    Prince SE, Cunha BA. 1997. Postpericardiotomy syndrome. Heart Lung 26:165–68
    [Google Scholar]
  37. 37. 
    Imazio M, Trinchero R, Brucato A, Rovere ME, Gandino A et al. 2010. COlchicine for the Prevention of the Post-pericardiotomy Syndrome (COPPS): a multicentre, randomized, double-blind, placebo-controlled trial. Eur. Heart J. 31:2749–54
    [Google Scholar]
  38. 38. 
    Imazio M, Brucato A, Ferrazzi P, Pullara A, Adler Y et al. 2014. Colchicine for prevention of postpericardiotomy syndrome and postoperative atrial fibrillation: the COPPS-2 randomized clinical trial. JAMA 312:1016–23
    [Google Scholar]
  39. 39. 
    Maisel WH, Rawn JD, Stevenson WG. 2001. Atrial fibrillation after cardiac surgery. Ann. Intern. Med. 135:1061–73
    [Google Scholar]
  40. 40. 
    Walsh SR, Tang T, Wijewardena C, Yarham SI, Boyle JR, Gaunt ME. 2007. Postoperative arrhythmias in general surgical patients. Ann. R. Coll. Surg. Engl. 89:91–95
    [Google Scholar]
  41. 41. 
    Abdelhadi RH, Gurm HS, Van Wagoner DR, Chung MK. 2004. Relation of an exaggerated rise in white blood cells after coronary bypass or cardiac valve surgery to development of atrial fibrillation postoperatively. Am. J. Cardiol. 93:1176–78
    [Google Scholar]
  42. 42. 
    Ishii Y, Schuessler RB, Gaynor SL, Yamada K, Fu AS et al. 2005. Inflammation of atrium after cardiac surgery is associated with inhomogeneity of atrial conduction and atrial fibrillation. Circulation 111:2881–88
    [Google Scholar]
  43. 43. 
    Sarzaeem M, Shayan N, Bagheri J, Jebelli M, Mandegar M 2014. Low dose Colchicine in prevention of atrial fibrillation after coronary artery bypass graft: a double blind clinical trial. Tehran Univ. Med. J. 72:147–54
    [Google Scholar]
  44. 44. 
    Tabbalat RA, Hamad NM, Alhaddad IA, Hammoudeh A, Akasheh BF, Khader Y. 2016. Effect of colchicine on the incidence of atrial fibrillation in open heart surgery patients: END-AF trial. Am. Heart J. 178:102–7
    [Google Scholar]
  45. 45. 
    Zarpelon CS, Netto MC, Jorge JC, Fabris CC, Desengrini D et al. 2016. Colchicine to reduce atrial fibrillation in the postoperative period of myocardial revascularization. Arq. Bras. Cardiol. 107:4–9
    [Google Scholar]
  46. 46. 
    Lennerz C, Barman M, Tantawy M, Sopher M, Whittaker P. 2017. Colchicine for primary prevention of atrial fibrillation after open-heart surgery: systematic review and meta-analysis. Int. J. Cardiol. 249:127–37
    [Google Scholar]
  47. 47. 
    Meyre PB, Sticherling C, Spies F, Aeschbacher S, Blum S et al. 2020. C-reactive protein for prediction of atrial fibrillation recurrence after catheter ablation. BMC Cardiovasc. Disord. 20:427
    [Google Scholar]
  48. 48. 
    Deftereos S, Giannopoulos G, Kossyvakis C, Efremidis M, Panagopoulou V et al. 2012. Colchicine for prevention of early atrial fibrillation recurrence after pulmonary vein isolation: a randomized controlled study. J. Am. Coll. Cardiol. 60:1790–96
    [Google Scholar]
  49. 49. 
    Deftereos S, Giannopoulos G, Efremidis M, Kossyvakis C, Katsivas A et al. 2014. Colchicine for prevention of atrial fibrillation recurrence after pulmonary vein isolation: mid-term efficacy and effect on quality of life. Heart Rhythm 11:620–28
    [Google Scholar]
  50. 50. 
    Emerg. Risk Factors Collab 2010. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375:2215–22
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052120-020445
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error