1932

Abstract

In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that μ-opioid receptor agonists that selectively activate G protein– over β-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the μ-opioid receptor are actually mediated by the G protein–dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the μ-opioid receptor and other opioid receptor subtypes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052120-091058
2023-01-20
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-052120-091058.html?itemId=/content/journals/10.1146/annurev-pharmtox-052120-091058&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Michel MC, Charlton SJ. 2018. Biased agonism in drug discovery—Is it too soon to choose a path?. Mol. Pharmacol. 93:259–65
    [Google Scholar]
  2. 2.
    Kenakin T, Christopoulos A. 2013. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 12:205–16
    [Google Scholar]
  3. 3.
    Smith JS, Lefkowitz RJ, Rajagopal S. 2018. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17:243–60
    [Google Scholar]
  4. 4.
    Che T, Dwivedi-Agnihotri H, Shukla AK, Roth BL. 2021. Biased ligands at opioid receptors: current status and future directions. Sci. Signal. 14:eaav0320
    [Google Scholar]
  5. 5.
    Wingler LM, Lefkowitz RJ. 2020. Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol. 30:736–47
    [Google Scholar]
  6. 6.
    Kenakin T. 2019. Biased receptor signaling in drug discovery. Pharmacol. Rev. 71:267–315
    [Google Scholar]
  7. 7.
    Onfroy L, Galandrin S, Pontier SM, Seguelas M-H, N'Guyen D et al. 2017. G protein stoichiometry dictates biased agonism through distinct receptor-G protein partitioning. Sci. Rep. 7:7885
    [Google Scholar]
  8. 8.
    Kelly E, Bailey C, Henderson G. 2008. Agonist-selective mechanisms of GPCR desensitization. Br. J. Pharmacol. 153:Suppl. 1S379–88
    [Google Scholar]
  9. 9.
    Kunselman JM, Lott J, Puthenveedu MA. 2021. Mechanisms of selective G protein-coupled receptor localization and trafficking. Curr. Opin. Cell Biol. 71:158–65
    [Google Scholar]
  10. 10.
    Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M et al. 2013. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev. 65:223–54
    [Google Scholar]
  11. 11.
    Weiss N, Zamponi GW. 2021. Opioid receptor regulation of neuronal voltage-gated calcium channels. Cell. Mol. Neurobiol. 41:839–47
    [Google Scholar]
  12. 12.
    Yudin Y, Rohacs T. 2018. Inhibitory Gi/o-coupled receptors in somatosensory neurons: potential therapeutic targets for novel analgesics. Mol. Pain 14:1744806918763646
    [Google Scholar]
  13. 13.
    Heinke B, Gingl E, Sandkühler J. 2011. Multiple targets of μ-opioid receptor-mediated presynaptic inhibition at primary afferent Aδ- and C-fibers. J. Neurosci. 31:1313–22
    [Google Scholar]
  14. 14.
    Laporte SA, Scott MGH. 2019. β-arrestins: multitask scaffolds orchestrating the where and when in cell signalling. Methods Mol. Biol. 1957:9–55
    [Google Scholar]
  15. 15.
    Stein C. 2016. Opioid receptors. Annu. Rev. Med. 67:433–51
    [Google Scholar]
  16. 16.
    Darcq E, Kieffer BL. 2018. Opioid receptors: drivers to addiction?. Nat. Rev. Neurosci. 19:499–514
    [Google Scholar]
  17. 17.
    Skolnick P. 2018. The opioid epidemic: crisis and solutions. Annu. Rev. Pharmacol. Toxicol. 58:143–59
    [Google Scholar]
  18. 18.
    Mores KL, Cummins BR, Cassell RJ, van Rijn RM. 2019. A review of the therapeutic potential of recently developed G protein-biased kappa agonists. Front. Pharmacol. 10:407
    [Google Scholar]
  19. 19.
    Conibear AE, Kelly E 2019. A biased view of mu-opioid receptors?. Mol. Pharmacol. 96:542–49
    [Google Scholar]
  20. 20.
    Grim TW, Acevedo-Canabal A, Bohn LM. 2020. Toward directing opioid receptor signaling to refine opioid therapeutics. Biol. Psychiatry 87:15–21
    [Google Scholar]
  21. 21.
    De Neve J, Barlow TMA, Tourwe D, Bihel F, Simonin F, Ballet S. 2021. Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Med. Chem. 12:828–70
    [Google Scholar]
  22. 22.
    Faouzi A, Varga BR, Majumdar S. 2020. Biased opioid ligands. Molecules 25:4257
    [Google Scholar]
  23. 23.
    Chang SD, Mascarella SW, Spangler SM, Gurevich VV, Navarro HA et al. 2015. Quantitative signaling and structure-activity analyses demonstrate functional selectivity at the nociceptin/orphanin FQ opioid receptor. Mol. Pharmacol. 88:502–11
    [Google Scholar]
  24. 24.
    Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. 1999. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 286:2495–98
    [Google Scholar]
  25. 25.
    Bohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG. 2000. μ-Opioid receptor desensitization by β-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–23
    [Google Scholar]
  26. 26.
    Raehal KM, Walker JK, Bohn LM. 2005. Morphine side effects in β-arrestin 2 knockout mice. J. Pharmacol. Exp. Ther. 314:1195–201
    [Google Scholar]
  27. 27.
    Raehal KM, Schmid CL, Groer CE, Bohn LM. 2011. Functional selectivity at the μ-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol. Rev. 63:1001–19
    [Google Scholar]
  28. 28.
    Kliewer A, Gillis A, Hill R, Schmiedel F, Bailey C et al. 2020. Morphine-induced respiratory depression is independent of β-arrestin2 signalling. Br. J. Pharmacol. 177:2923–31
    [Google Scholar]
  29. 29.
    Bachmutsky I, Wei XP, Durand A, Yackle K 2021. β-Arrestin 2 germline knockout does not attenuate opioid respiratory depression. eLife 10:e62552
    [Google Scholar]
  30. 30.
    Haouzi P, McCann M, Tubbs N. 2021. Respiratory effects of low and high doses of fentanyl in control and β-arrestin 2-deficient mice. J. Neurophysiol. 125:1396–407
    [Google Scholar]
  31. 31.
    He L, Gooding SW, Lewis E, Felth LC, Gaur A, Whistler JL. 2021. Pharmacological and genetic manipulations at the μ-opioid receptor reveal arrestin-3 engagement limits analgesic tolerance and does not exacerbate respiratory depression in mice. Neuropsychopharmacology 46:2241–49
    [Google Scholar]
  32. 32.
    Bateman JT, Levitt ES. 2021. Evaluation of G protein bias and β-arrestin 2 signaling in opioid-induced respiratory depression. Am. J. Physiol. Cell Physiol. 321:C681–83
    [Google Scholar]
  33. 33.
    Kliewer A, Schmiedel F, Sianati S, Bailey A, Bateman JT et al. 2019. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nat. Commun. 10:367
    [Google Scholar]
  34. 34.
    Lohse MJ, Hofmann KP. 2015. Spatial and temporal aspects of signaling by G-protein-coupled receptors. Mol. Pharmacol. 88:572–78
    [Google Scholar]
  35. 35.
    Ramirez J-M, Burgraff NJ, Wei AD, Baertsch NA, Varga AG et al. 2021. Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding. J. Neurophysiol. 125:1899–919
    [Google Scholar]
  36. 36.
    Montandon G, Ren J, Victoria NC, Liu H, Wickman K et al. 2016. G-protein-gated inwardly rectifying potassium channels modulate respiratory depression by opioids. Anesthesiology 124:641–50
    [Google Scholar]
  37. 37.
    Wei AD, Ramirez J-M. 2019. Presynaptic mechanisms and KCNQ potassium channels modulate opioid depression of respiratory drive. Front. Physiol. 10:1407
    [Google Scholar]
  38. 38.
    Kelly B, Hollingsworth SA, Blakemore DC, Owen RM, Storer RI et al. 2021. Delineating the ligand-receptor interactions that lead to biased signaling at the μ-opioid receptor. J. Chem. Inf. Model. 61:3696–707
    [Google Scholar]
  39. 39.
    Lee JH, Shon SY, Jeon W, Hong SJ, Ban J, Lee DS. 2021. Discovery of μ,δ-opioid receptor dual-biased agonists that overcome the limitation of prior biased agonists. ACS Pharmacol. Transl. Sci. 4:1149–60
    [Google Scholar]
  40. 40.
    Gillis A, Kliewer A, Kelly E, Henderson G, Christie MJ et al. 2020. Critical assessment of G protein-biased agonism at the μ-opioid receptor. Trends Pharmacol. Sci. 41:947–59
    [Google Scholar]
  41. 41.
    Bubier JA, He H, Philip VM, Roy T, Hernandez CM et al. 2020. Genetic variation regulates opioid-induced respiratory depression in mice. Sci. Rep. 10:14970
    [Google Scholar]
  42. 42.
    Mogil JS, Wilson SG. 1997. Nociceptive and morphine antinociceptive sensitivity of 129 and C57BL/6 inbred mouse strains: implications for transgenic knock-out studies. Eur. J. Pain 1:293–97
    [Google Scholar]
  43. 43.
    Crain SM, Shen K-F. 2000. Enhanced analgesic potency and reduced tolerance of morphine in 129/SvEv mice: evidence for a deficiency in GM1 ganglioside-regulated excitatory opioid receptor functions. Brain Res. 856:227–35
    [Google Scholar]
  44. 44.
    Bohn LM, Gainetdinov RR, Sotnikova TD, Medvedev IO, Lefkowitz RJ et al. 2003. Enhanced rewarding properties of morphine, but not cocaine, in βarrestin-2 knock-out mice. J. Neurosci. 23:10265–73
    [Google Scholar]
  45. 45.
    Bohn LM, Dykstra LA, Lefkowitz RJ, Caron MG, Barak LS. 2004. Relative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery. Mol. Pharmacol. 66:106–12
    [Google Scholar]
  46. 46.
    Raehal KM, Bohn LM. 2011. The role of beta-arrestin2 in the severity of antinociceptive tolerance and physical dependence induced by different opioid pain therapeutics. Neuropharmacology 60:58–65
    [Google Scholar]
  47. 47.
    Gillis A, Gondin AB, Kliewer A, Sanchez J, Lim HD et al. 2020. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci. Signal. 13:eaaz3140
    [Google Scholar]
  48. 48.
    Hill R, Canals M. 2022. Experimental considerations for the assessment of in vivo and in vitro opioid pharmacology. Pharmacol. Ther. 230:107961
    [Google Scholar]
  49. 49.
    Miess E, Gondin AB, Yousuf A, Steinborn R, Mosslein N et al. 2018. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci. Signal. 11:eaas9609
    [Google Scholar]
  50. 50.
    Gillis A, Christie MJ. 2021. Opioid overdose and tolerance: Is the recruitment of β-arrestin to the μ-receptor involved?. Neuropsychopharmacology 46:2226–27
    [Google Scholar]
  51. 51.
    Schmid CL, Kennedy NM, Ross NC, Lovell KM, Yue Z et al. 2017. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell 171:1165–75.e13
    [Google Scholar]
  52. 52.
    Black JW, Leff P. 1983. Operational models of pharmacological agonism. Proc. R. Soc. B 220:141–62
    [Google Scholar]
  53. 53.
    Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S 2012. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 3:193–203
    [Google Scholar]
  54. 54.
    Ehlert FJ. 2008. On the analysis of ligand-directed signaling at G protein-coupled receptors. Naunyn Schmiedebergs Arch. Pharmacol. 377:549–77
    [Google Scholar]
  55. 55.
    Rajagopal S, Ahn S, Rominger DH, Gowen-MacDonald W, Lam CM et al. 2011. Quantifying ligand bias at seven-transmembrane receptors. Mol. Pharmacol. 80:367–77
    [Google Scholar]
  56. 56.
    Borgland SL, Connor M, Osborne PB, Furness JB, Christie MJ. 2003. Opioid agonists have different efficacy profiles for G protein activation, rapid desensitization, and endocytosis of mu-opioid receptors. J. Biol. Chem. 278:18776–84
    [Google Scholar]
  57. 57.
    McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S et al. 2010. μ-Opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization. Mol. Pharmacol. 78:756–66
    [Google Scholar]
  58. 58.
    Molinari P, Vezzi V, Sbraccia M, Gro C, Riitano D et al. 2010. Morphine-like opiates selectively antagonize receptor-arrestin interactions. J. Biol. Chem. 285:12522–35
    [Google Scholar]
  59. 59.
    Rivero G, Llorente J, McPherson J, Cooke A, Mundell SJ et al. 2012. Endomorphin-2: a biased agonist at the μ-opioid receptor. Mol. Pharmacol. 82:178–88
    [Google Scholar]
  60. 60.
    Connor M, Osborne PB, Christie MJ. 2004. μ-Opioid receptor desensitization: Is morphine different?. Br. J. Pharmacol. 143:685–96
    [Google Scholar]
  61. 61.
    Kelly E. 2013. Efficacy and ligand bias at the μ-opioid receptor. Br. J. Pharmacol. 169:1430–46
    [Google Scholar]
  62. 62.
    Gillis A, Sreenivasan V, Christie MJ. 2020. Intrinsic efficacy of opioid ligands and its importance for apparent bias, operational analysis, and therapeutic window. Mol. Pharmacol. 98:410–24
    [Google Scholar]
  63. 63.
    Bailey CP, Llorente J, Gabra BH, Smith FL, Dewey WL et al. 2009. Role of protein kinase C and μ-opioid receptor (MOPr) desensitization in tolerance to morphine in rat locus coeruleus neurons. Eur. J. Neurosci. 29:307–18
    [Google Scholar]
  64. 64.
    Bohn LM, Lefkowitz RJ, Caron MG. 2002. Differential mechanisms of morphine antinociceptive tolerance revealed in βarrestin-2 knock-out mice. J. Neurosci. 22:10494–500
    [Google Scholar]
  65. 65.
    Kelly E, Bailey CP, Henderson G. 2008. Agonist-selective mechanisms of GPCR desensitization. Br. J. Pharmacol. 153:Suppl. 1S379–88
    [Google Scholar]
  66. 66.
    Kelly E, Sutcliffe K, Cavallo D, Ramos-Gonzalez N, Alhosan N, Henderson G 2021. The anomalous pharmacology of fentanyl. Br. J. Pharmacol. https://doi.org/10.1111/bph.15573
    [Crossref] [Google Scholar]
  67. 67.
    de Waal PW, Shi J, You E, Wang X, Melcher K et al. 2020. Molecular mechanisms of fentanyl mediated β-arrestin biased signaling. PLOS Comput. Biol. 16:e1007394
    [Google Scholar]
  68. 68.
    Podlewska S, Bugno R, Kudla L, Bojarski AJ, Przewlocki R. 2020. Molecular modeling of μ opioid receptor ligands with various functional properties: PZM21, SR-17018, morphine, and fentanyl—simulated interaction patterns confronted with experimental data. Molecules 25:4636
    [Google Scholar]
  69. 69.
    Winpenny D, Clark M, Cawkill D. 2016. Biased ligand quantification in drug discovery: from theory to high throughput screening to identify new biased mu opioid receptor agonists. Br. J. Pharmacol. 173:1393–403
    [Google Scholar]
  70. 70.
    Vasudevan L, Vandeputte M, Deventer M, Wouters E, Cannaert A, Stove CP. 2020. Assessment of structure-activity relationships and biased agonism at the Mu opioid receptor of novel synthetic opioids using a novel, stable bio-assay platform. Biochem. Pharmacol. 177:113910
    [Google Scholar]
  71. 71.
    DeWire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL et al. 2013. A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J. Pharmacol. Exp. Ther. 344:708–17
    [Google Scholar]
  72. 72.
    Altarifi AA, David B, Muchhala KH, Blough BE, Akbarali H, Negus SS. 2017. Effects of acute and repeated treatment with the biased mu opioid receptor agonist TRV130 (oliceridine) on measures of antinociception, gastrointestinal function, and abuse liability in rodents. J. Psychopharmacol. 31:730–39
    [Google Scholar]
  73. 73.
    FDA (US Food Drug Adm.) 2020. FDA approves new opioid for intravenous use in hospitals, other controlled clinical settings News Release, Aug. 7 FDA Silver Spring, MD: https://www.fda.gov/news-events/press-announcements/fda-approves-new-opioid-intravenous-use-hospitals-other-controlled-clinical-settings
  74. 74.
    Negus SS, Freeman KB. 2018. Abuse potential of biased mu opioid receptor agonists. Trends Pharmacol. Sci. 39:916–19
    [Google Scholar]
  75. 75.
    Schwienteck KL, Faunce KE, Rice KC, Obeng S, Zhang Y et al. 2019. Effectiveness comparisons of G-protein biased and unbiased mu opioid receptor ligands in warm water tail-withdrawal and drug discrimination in male and female rats. Neuropharmacology 150:200–9
    [Google Scholar]
  76. 76.
    Yudin Y, Rohacs T. 2019. The G-protein-biased agents PZM21 and TRV130 are partial agonists of μ-opioid receptor-mediated signalling to ion channels. Br. J. Pharmacol. 176:3110–25
    [Google Scholar]
  77. 77.
    Singleton S, Baptista-Hon DT, Edelsten E, McCaughey KS, Camplisson E, Hales TG. 2021. TRV130 partial agonism and capacity to induce anti-nociceptive tolerance revealed through reducing available μ-opioid receptor number. Br. J. Pharmacol. 178:1855–68
    [Google Scholar]
  78. 78.
    Bossert JM, Kiyatkin EA, Korah H, Hoots JK, Afzal A et al. 2020. In a rat model of opioid maintenance, the G protein-biased mu opioid receptor agonist TRV130 decreases relapse to oxycodone seeking and taking and prevents oxycodone-induced brain hypoxia. Biol. Psychiatry 88:935–44
    [Google Scholar]
  79. 79.
    Fakira AK, Devi LA, Kennedy PJ. 2020. Novel application for G protein-biased mu opioid receptor agonists in opioid relapse prevention. Biol. Psychiatry 88:896–97
    [Google Scholar]
  80. 80.
    Soergel DG, Subach RA, Sadler B, Connell J, Marion AS et al. 2014. First clinical experience with TRV130: pharmacokinetics and pharmacodynamics in healthy volunteers. J. Clin. Pharmacol. 54:351–57
    [Google Scholar]
  81. 81.
    Lambert D, Calo G. 2020. Approval of oliceridine (TRV130) for intravenous use in moderate to severe pain in adults. Br. J. Anaesth. 125:e473–74
    [Google Scholar]
  82. 82.
    Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D et al. 2016. Structure-based discovery of opioid analgesics with reduced side effects. Nature 537:185–90
    [Google Scholar]
  83. 83.
    Hill R, Disney A, Conibear A, Sutcliffe K, Dewey W et al. 2018. The novel μ-opioid receptor agonist PZM21 depresses respiration and induces tolerance to antinociception. Br. J. Pharmacol. 175:2653–61
    [Google Scholar]
  84. 84.
    Groom S, Blum NK, Conibear AE, Disney A, Hill R et al. 2020. A novel G protein-biased agonist at the μ opioid receptor induces substantial receptor desensitisation through G protein-coupled receptor kinase. Br. J. Pharmacol. https://doi.org/10.1111/bph.15334
    [Crossref] [Google Scholar]
  85. 85.
    Kudla L, Bugno R, Skupio U, Wiktorowska L, Solecki W et al. 2019. Functional characterization of a novel opioid, PZM21, and its effects on the behavioural responses to morphine. Br. J. Pharmacol. 176:4434–45
    [Google Scholar]
  86. 86.
    Fritzwanker S, Schulz S, Kliewer A. 2021. SR-17018 stimulates atypical μ-opioid receptor phosphorylation and dephosphorylation. Molecules 26:4509
    [Google Scholar]
  87. 87.
    Klein Herenbrink C, Sykes DA, Donthamsetti P, Canals M, Coudrat T et al. 2016. The role of kinetic context in apparent biased agonism at GPCRs. Nat. Commun. 7:10842
    [Google Scholar]
  88. 88.
    Grim TW, Schmid CL, Stahl EL, Pantouli F, Ho JH et al. 2020. A G protein signaling-biased agonist at the μ-opioid receptor reverses morphine tolerance while preventing morphine withdrawal. Neuropsychopharmacology 45:416–25
    [Google Scholar]
  89. 89.
    Kudla L, Przewlocki R. 2021. Influence of G protein-biased agonists of μ-opioid receptor on addiction-related behaviors. Pharmacol. Rep. 73:1033–51
    [Google Scholar]
  90. 90.
    Gutridge AM, Robins MT, Cassell RJ, Uprety R, Mores KL et al. 2020. G protein-biased kratom-alkaloids and synthetic carfentanil-amide opioids as potential treatments for alcohol use disorder. Br. J. Pharmacol. 177:1497–513
    [Google Scholar]
  91. 91.
    Todd DA, Kellogg JJ, Wallace ED, Khin M, Flores-Bocanegra L et al. 2020. Chemical composition and biological effects of kratom (Mitragyna speciosa): in vitro studies with implications for efficacy and drug interactions. Sci. Rep. 10:19158
    [Google Scholar]
  92. 92.
    Dekan Z, Sianati S, Yousuf A, Sutcliffe KJ, Gillis A et al. 2019. A tetrapeptide class of biased analgesics from an Australian fungus targets the μ-opioid receptor. PNAS 116:22353–58
    [Google Scholar]
  93. 93.
    Li Y, Cazares M, Wu J, Houghten RA, Toll L, Dooley C. 2016. Potent μ-opioid receptor agonists from cyclic peptides Tyr-c[d-Lys-Xxx-Tyr-Gly]: synthesis, biological, and structural evaluation. J. Med. Chem. 59:1239–45
    [Google Scholar]
  94. 94.
    Kaserer T, Steinacher T, Kainhofer R, Erli F, Sturm S et al. 2020. Identification and characterization of plant-derived alkaloids, corydine and corydaline, as novel mu opioid receptor agonists. Sci. Rep. 10:13804
    [Google Scholar]
  95. 95.
    Kennedy NM, Schmid CL, Ross NC, Lovell KM, Yue Z et al. 2018. Optimization of a series of mu opioid receptor (MOR) agonists with high G protein signaling bias. J. Med. Chem. 61:8895–907
    [Google Scholar]
  96. 96.
    Yang Y, Wang Y, Zuo A, Li C, Wang W et al. 2022. Synthesis, biological, and structural explorations of a series of μ-opioid receptor (MOR) agonists with high G protein signaling bias. Eur. J. Med. Chem. 228:113986
    [Google Scholar]
  97. 97.
    Wang H, Hetzer F, Huang W, Qu Q, Meyerowitz J et al. 2022. Structure-based evolution of G protein-biased μ-opioid receptor agonists. Angew. Chem. Int. Ed. Engl. 61:e202200269
    [Google Scholar]
  98. 98.
    Ehrlich AT, Semache M, Gross F, Da Fonte DF, Runtz L et al. 2019. Biased signaling of the μ opioid receptor revealed in native neurons. iScience 14:47–57
    [Google Scholar]
  99. 99.
    Dahan A, van Dam CJ, Niesters M, van Velzen M, Fossler MJ et al. 2020. Benefit and risk evaluation of biased μ-receptor agonist oliceridine versus morphine. Anesthesiology 133:559–68
    [Google Scholar]
  100. 100.
    Goudra B, Mason KP. 2021. Emerging approaches in intravenous moderate and deep sedation. J. Clin. Med. 10:1735
    [Google Scholar]
  101. 101.
    Liu Y, Hu Q, Yang J 2021. Oliceridine for the management of acute postoperative pain. Ann. Pharmacother. 55:1283–89
    [Google Scholar]
  102. 102.
    Finlay JE, Leslie K. 2021. Sedation/analgesia techniques for nonoperating room anesthesia: new drugs and devices. Curr. Opin. Anaesthesiol. 34:678–82
    [Google Scholar]
  103. 103.
    Kaye AD, Edinoff AN, Babin KC, Hebert CM, Hardin JL et al. 2021. Pharmacological advances in opioid therapy: a review of the role of oliceridine in pain management. Pain Ther. 10:1003–12
    [Google Scholar]
  104. 104.
    Azevedo Neto J, Costanzini A, De Giorgio R, Lambert DG, Ruzza C, Calò G 2020. Biased versus partial agonism in the search for safer opioid analgesics. Molecules 25:3870
    [Google Scholar]
  105. 105.
    Pineyro G, Nagi K. 2021. Signaling diversity of mu- and delta- opioid receptor ligands: re-evaluating the benefits of β-arrestin/G protein signaling bias. Cell. Signal. 80:109906
    [Google Scholar]
  106. 106.
    Nickolls SA, Waterfield A, Williams RE, Kinloch RA. 2011. Understanding the effect of different assay formats on agonist parameters: a study using the μ-opioid receptor. J. Biomol. Screen. 16:706–16
    [Google Scholar]
  107. 107.
    Stahl EL, Zhou L, Ehlert FJ, Bohn LM. 2015. A novel method for analyzing extremely biased agonism at G protein-coupled receptors. Mol. Pharmacol. 87:866–77
    [Google Scholar]
  108. 108.
    Gundry J, Glenn R, Alagesan P, Rajagopal S. 2017. A practical guide to approaching biased agonism at G protein coupled receptors. Front. Neurosci. 11:17
    [Google Scholar]
  109. 109.
    Stahl EL, Bohn LM. 2022. Low intrinsic efficacy alone cannot explain the improved side effect profiles of new opioid agonists. Biochemistry 61:18192335
    [Google Scholar]
  110. 110.
    Pedersen MF, Wrobel TM, Marcher-Rorsted E, Pedersen DS, Moller TC et al. 2020. Biased agonism of clinically approved μ-opioid receptor agonists and TRV130 is not controlled by binding and signaling kinetics. Neuropharmacology 166:107718
    [Google Scholar]
  111. 111.
    Onaran HO, Costa T. 2021. Conceptual and experimental issues in biased agonism. Cell. Signal. 82:109955
    [Google Scholar]
  112. 112.
    Benredjem B, Gallion J, Pelletier D, Dallaire P, Charbonneau J et al. 2019. Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response. Nat. Commun. 10:4075
    [Google Scholar]
  113. 113.
    Groer CE, Schmid CL, Jaeger AM, Bohn LM. 2011. Agonist-directed interactions with specific β-arrestins determine μ-opioid receptor trafficking, ubiquitination, and dephosphorylation. J. Biol. Chem. 286:31731–41
    [Google Scholar]
  114. 114.
    Markova V, Hejnova L, Benda A, Novotny J, Melkes B. 2021. β-Arrestin 1 and 2 similarly influence μ-opioid receptor mobility and distinctly modulate adenylyl cyclase activity. Cell. Signal. 87:110124
    [Google Scholar]
  115. 115.
    Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY et al. 2014. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512:218–22
    [Google Scholar]
  116. 116.
    Cahill TJ 3rd, Thomsen AR, Tarrasch JT, Plouffe B, Nguyen AH et al. 2017. Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis. PNAS 114:2562–67
    [Google Scholar]
  117. 117.
    Zimmerman B, Beautrait A, Aguila B, Charles R, Escher E et al. 2012. Differential β-arrestin-dependent conformational signaling and cellular responses revealed by angiotensin analogs. Sci. Signal. 5:ra33
    [Google Scholar]
  118. 118.
    Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM et al. 2022. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br. J. Pharmacol. 179:143651–74
    [Google Scholar]
  119. 119.
    Vandeputte MM, Cannaert A, Stove CP. 2020. In vitro functional characterization of a panel of non-fentanyl opioid new psychoactive substances. Arch. Toxicol. 94:3819–30
    [Google Scholar]
  120. 120.
    Cong X, Maurel D, Déméné H, Vasiliauskaité-Brooks I, Hagelberger J et al. 2021. Molecular insights into the biased signaling mechanism of the μ-opioid receptor. Mol. Cell 81:4165–75.e6
    [Google Scholar]
  121. 121.
    Schneider S, Provasi D, Filizola M. 2016. How oliceridine (TRV-130) binds and stabilizes a μ-opioid receptor conformational state that selectively triggers G protein signaling pathways. Biochemistry 55:6456–66
    [Google Scholar]
  122. 122.
    Pradhan AA, Befort K, Nozaki C, Gaveriaux-Ruff C, Kieffer BL. 2011. The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol. Sci. 32:581–90
    [Google Scholar]
  123. 123.
    Codd EE, Carson JR, Colburn RW, Stone DJ, Van Besien CR et al. 2009. JNJ-20788560 [9-(8-azabicyclo[3.2.1]oct-3-ylidene)-9H-xanthene-3-carboxylic acid diethylamide], a selective delta opioid receptor agonist, is a potent and efficacious antihyperalgesic agent that does not produce respiratory depression, pharmacologic tolerance, or physical dependence. J. Pharmacol. Exp. Ther. 329:241–51
    [Google Scholar]
  124. 124.
    Gallantine EL, Meert TF. 2005. A comparison of the antinociceptive and adverse effects of the μ-opioid agonist morphine and the δ-opioid agonist SNC80. Basic Clin. Pharmacol. Toxicol. 97:39–51
    [Google Scholar]
  125. 125.
    Comer SD, Hoenicke EM, Sable AI, McNutt RW, Chang KJ et al. 1993. Convulsive effects of systemic administration of the delta opioid agonist BW373U86 in mice. J. Pharmacol. Exp. Ther. 267:888–95
    [Google Scholar]
  126. 126.
    Pradhan AAA, Walwyn W, Nozaki C, Filliol D, Erbs E et al. 2010. Ligand-directed trafficking of the δ-opioid receptor in vivo: two paths toward analgesic tolerance. J. Neurosci. 30:16459–68
    [Google Scholar]
  127. 127.
    Conibear AE, Asghar J, Hill R, Henderson G, Borbely E et al. 2020. A novel G protein-biased agonist at the δ opioid receptor with analgesic efficacy in models of chronic pain. J. Pharmacol. Exp. Ther. 372:224–36
    [Google Scholar]
  128. 128.
    Fossler MJ, Schmith V, Greene SA, Lohmer L, Kramer MS et al. 2020. A Phase I, randomized, single-blind, placebo-controlled, single ascending dose study of the safety, tolerability, and pharmacokinetics of subcutaneous and oral TRV250, a G protein-selective delta receptor agonist, in healthy subjects. CNS Drugs 34:853–65
    [Google Scholar]
  129. 129.
    Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. 2016. Molecular pharmacology of δ-opioid receptors. Pharmacol. Rev. 68:631–700
    [Google Scholar]
  130. 130.
    Dripps IJ, Chen R, Shafer AM, Livingston KE, Disney A et al. 2020. Pharmacological properties of δ-opioid receptor-mediated behaviors: agonist efficacy and receptor reserve. J. Pharmacol. Exp. Ther. 374:319–30
    [Google Scholar]
  131. 131.
    Pradhan AA, Perroy J, Walwyn WM, Smith ML, Vicente-Sanchez A et al. 2016. Agonist-specific recruitment of arrestin isoforms differentially modify delta opioid receptor function. J. Neurosci. 36:3541–51
    [Google Scholar]
  132. 132.
    Aguila B, Coulbault L, Davis A, Marie N, Hasbi A et al. 2012. βarrestin1-biased agonism at human δ-opioid receptor by peptidic and alkaloid ligands. Cell. Signal. 24:699–707
    [Google Scholar]
  133. 133.
    Vicente-Sanchez A, Dripps IJ, Tipton AF, Akbari H, Akbari A et al. 2018. Tolerance to high-internalizing δ opioid receptor agonist is critically mediated by arrestin 2. Br. J. Pharmacol. 175:3050–59
    [Google Scholar]
  134. 134.
    Dripps IJ, Boyer BT, Neubig RR, Rice KC, Traynor JR, Jutkiewicz EM. 2018. Role of signalling molecules in behaviours mediated by the δ opioid receptor agonist SNC80. Br. J. Pharmacol. 175:891–901
    [Google Scholar]
  135. 135.
    Thompson GL, Kelly E, Christopoulos A, Canals M. 2015. Novel GPCR paradigms at the μ-opioid receptor. Br. J. Pharmacol. 172:287–96
    [Google Scholar]
  136. 136.
    Thompson GL, Lane JR, Coudrat T, Sexton PM, Christopoulos A, Canals M. 2016. Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor. Biochem. Pharmacol. 113:70–87
    [Google Scholar]
  137. 137.
    Broom DC, Guo L, Coop A, Husbands SM, Lewis JW et al. 2000. BU48: a novel buprenorphine analog that exhibits δ-opioid-mediated convulsions but not δ-opioid-mediated antinociception in mice. J. Pharmacol. Exp. Ther. 294:1195–200
    [Google Scholar]
  138. 138.
    Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM. 2020. Strategies for developing κ opioid receptor agonists for the treatment of pain with fewer side effects. J. Pharmacol. Exp. Ther. 375:332–48
    [Google Scholar]
  139. 139.
    Kumagai H, Ebata T, Takamori K, Muramatsu T, Nakamoto H, Suzuki H. 2010. Effect of a novel kappa-receptor agonist, nalfurafine hydrochloride, on severe itch in 337 haemodialysis patients: a Phase III, randomized, double-blind, placebo-controlled study. Nephrol. Dial. Transplant. 25:1251–57
    [Google Scholar]
  140. 140.
    Endoh T, Matsuura H, Tajima A, Izumimoto N, Tajima C et al. 1999. Potent antinociceptive effects of TRK-820, a novel κ-opioid receptor agonist. Life Sci. 65:1685–94
    [Google Scholar]
  141. 141.
    Endoh T, Tajima A, Suzuki T, Kamei J, Narita M et al. 2000. Characterization of the antinociceptive effects of TRK-820 in the rat. Eur. J. Pharmacol. 387:133–40
    [Google Scholar]
  142. 142.
    Liu JJ, Chiu Y-T, DiMattio KM, Chen C, Huang P et al. 2019. Phosphoproteomic approach for agonist-specific signaling in mouse brains: mTOR pathway is involved in κ opioid aversion. Neuropsychopharmacology 44:939–49
    [Google Scholar]
  143. 143.
    Kozono H, Yoshitani H, Nakano R. 2018. Post-marketing surveillance study of the safety and efficacy of nalfurafine hydrochloride (Remitch® capsules 2.5 mug) in 3,762 hemodialysis patients with intractable pruritus. Int. J. Nephrol. Renovasc. Dis. 11:9–24
    [Google Scholar]
  144. 144.
    Morgenweck J, Frankowski KJ, Prisinzano TE, Aube J, Bohn LM 2015. Investigation of the role of βarrestin2 in kappa opioid receptor modulation in a mouse model of pruritus. Neuropharmacology 99:600–9
    [Google Scholar]
  145. 145.
    White KL, Robinson JE, Zhu H, DiBerto JF, Polepally PR et al. 2015. The G protein-biased κ-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo. J. Pharmacol. Exp. Ther. 352:98–109
    [Google Scholar]
  146. 146.
    Bruchas MR, Land BB, Aita M, Xu M, Barot SK et al. 2007. Stress-induced p38 mitogen-activated protein kinase activation mediates κ-opioid-dependent dysphoria. J. Neurosci. 27:11614–23
    [Google Scholar]
  147. 147.
    Bruchas MR, Chavkin C. 2010. Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology 210:137–47
    [Google Scholar]
  148. 148.
    Ehrich JM, Messinger DI, Knakal CR, Kuhar JR, Schattauer SS et al. 2015. Kappa opioid receptor-induced aversion requires p38 MAPK activation in VTA dopamine neurons. J. Neurosci. 35:12917–31
    [Google Scholar]
  149. 149.
    Toll L, Bruchas MR, Calò G, Cox BM, Zaveri NT. 2016. Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol. Rev. 68:419–57
    [Google Scholar]
  150. 150.
    Mann A, Moulédous L, Froment C, O'Neill PR, Dasgupta P et al. 2019. Agonist-selective NOP receptor phosphorylation correlates in vitro and in vivo and reveals differential post-activation signaling by chemically diverse agonists. Sci. Signal. 12:eaau8072
    [Google Scholar]
  151. 151.
    Asth L, Ruzza C, Malfacini D, Medeiros I, Guerrini R et al. 2016. Beta-arrestin 2 rather than G protein efficacy determines the anxiolytic-versus antidepressant-like effects of nociceptin/orphanin FQ receptor ligands. Neuropharmacology 105:434–42
    [Google Scholar]
  152. 152.
    Kruegel AC, Gassaway MM, Kapoor A, Váradi A, Majumdar S et al. 2016. Synthetic and receptor signaling explorations of the Mitragyna alkaloids: mitragynine as an atypical molecular framework for opioid receptor modulators. J. Am. Chem. Soc. 138:6754–64
    [Google Scholar]
  153. 153.
    Kenakin T. 2017. A scale of agonism and allosteric modulation for assessment of selectivity, bias, and receptor mutation. Mol. Pharmacol. 92:414–24
    [Google Scholar]
  154. 154.
    Bychkov E, Zurkovsky L, Garret MB, Ahmed MR, Gurevich EV. 2012. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum. PLOS ONE 7:e48912
    [Google Scholar]
  155. 155.
    Araldi D, Ferrari LF, Levine JD. 2018. Mu-opioid receptor (MOR) biased agonists induce biphasic dose-dependent hyperalgesia and analgesia, and hyperalgesic priming in the rat. Neuroscience 394:60–71
    [Google Scholar]
  156. 156.
    Roth BL, Chuang DM. 1987. Multiple mechanisms of serotonergic signal transduction. Life Sci. 41:1051–64
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052120-091058
Loading
/content/journals/10.1146/annurev-pharmtox-052120-091058
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error