1932

Abstract

Action is an important arbitrator as to whether an individual or a species will survive. Yet, action has not been well integrated into the study of psychology. Action or motor behavior is a field apart. This is traditional science with its need for specialization. The sequence in a typical laboratory experiment of see → decide → act provides the rationale for broad disciplinary categorizations. With renewed interest in action itself, surprising and exciting anomalous findings at odds with this simplified caricature have emerged. They reveal a much more intimate coupling of vision and action, which we describe. In turn, this prompts us to identify and dwell on three pertinent theories deserving of greater notice.

Keyword(s): actionattentionconsciousnessvision
Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-021422-043229
2023-01-18
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/psych/74/1/annurev-psych-021422-043229.html?itemId=/content/journals/10.1146/annurev-psych-021422-043229&mimeType=html&fmt=ahah

Literature Cited

  1. Allport A. 1987. Selection for action: some behavioral and neurophysiological considerations of attention and action. Perspect. Percept. Act. 15:395–419
    [Google Scholar]
  2. Altschuler EL, Wisdom SB, Stone L, Foster C, Galasko D et al. 1999. Rehabilitation of hemiparesis after stroke with a mirror. Lancet N. Am. Ed. 353:91692035–36
    [Google Scholar]
  3. Andersen RA, Aflalo T, Kellis S. 2019. From thought to action: the brain–machine interface in posterior parietal cortex. PNAS 116:5226274–79
    [Google Scholar]
  4. Andersen RA, Mountcastle VB. 1983. The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci. 3:3532–48
    [Google Scholar]
  5. Baars BJ. 1993. A Cognitive Theory of Consciousness Cambridge, UK: Cambridge Univ. Press
  6. Ballard DH, Hayhoe MM, Pook PK, Rao RP. 1997. Deictic codes for the embodiment of cognition. Behav. Brain Sci. 20:4723–42
    [Google Scholar]
  7. Barker AT, Jalinous R, Freeston IL. 1985. Non-invasive magnetic stimulation of human motor cortex. Lancet N. Am. Ed. 3258437:1106–7
    [Google Scholar]
  8. Barron AB, Klein C. 2016. What insects can tell us about the origins of consciousness. PNAS 113:184900–8
    [Google Scholar]
  9. Beardsworth T, Buckner T. 1981. The ability to recognize oneself from a video recording of one's movements without seeing one's body. Bull. Psychon. Soc. 18:119–22
    [Google Scholar]
  10. Bravo MJ, Nakayama K. 1992. The role of attention in different visual-search tasks. Percept. Psychophys. 51:5465–72
    [Google Scholar]
  11. Bridgeman B. 2007. Efference copy and its limitations. Comput. Biol. Med. 37:7924–29
    [Google Scholar]
  12. Broderick P, Horgan F, Blake C, Ehrensberger M, Simpson D, Monaghan K. 2018. Mirror therapy for improving lower limb motor function and mobility after stroke: a systematic review and meta-analysis. Gait Posture 63:208–20
    [Google Scholar]
  13. Burgess N. 2014. The 2014 Nobel Prize in Physiology or Medicine: a spatial model for cognitive neuroscience. Neuron 84:61120–25
    [Google Scholar]
  14. Butler AB, Hodos W. 2005. Comparative Vertebrate Neuroanatomy: Evolution and Adaptation Hoboken, NJ: Wiley
  15. Calvo-Merino B, Grezes J, Glaser DE, Passingham RE, Haggard P. 2006. Seeing or doing? Influence of visual and motor familiarity in action observation. Curr. Biol. 16:191905–10
    [Google Scholar]
  16. Casile A, Giese MA. 2006. Nonvisual motor training influences biological motion perception. Curr. Biol. 16:169–74
    [Google Scholar]
  17. Cisek P. 2007. Cortical mechanisms of action selection: the affordance competition hypothesis. Philos. Trans. R. Soc. B 362: 1485.1585–99
    [Google Scholar]
  18. Cisek P. 2019. Resynthesizing behavior through phylogenetic refinement. Atten. Percept. Psychophys 81:72265–87
    [Google Scholar]
  19. Cohen MA, Cavanagh P, Chun MM, Nakayama K. 2012. The attentional requirements of consciousness. Trends Cogn. Sci. 16:8411–17
    [Google Scholar]
  20. Cohen YE, Andersen RA. 2002. A common reference frame for movement plans in the posterior parietal cortex. Nat. Rev. Neurosci. 3:7553–62
    [Google Scholar]
  21. Cumming J, Ramsey R 2009. Imagery interventions in sport. Advances in Applied Sport Psychology: A Review S Mellalieu, S Hanton 5–36 London: Routledge
    [Google Scholar]
  22. Cutting JE, Kozlowski LT. 1977. Recognizing friends by their walk: gait perception without familiarity cues. Bull. Psychon. Soc. 95:353–56
    [Google Scholar]
  23. de Bivort BL, van Swinderen B. 2016. Evidence for selective attention in the insect brain. Curr. Opin. Insect Sci. 15:9–15
    [Google Scholar]
  24. Dehaene S. 2014. Consciousness and the Brain: Deciphering How the Brain Codes Our Thoughts London: Penguin
  25. DeSimone K, Viviano JD, Schneider KA. 2015. Population receptive field estimation reveals new retinotopic maps in human subcortex. J. Neurosci. 35:279836–47
    [Google Scholar]
  26. Desmurget M, Reilly KT, Richard N, Szathmari A, Mottolese C, Sirigu A. 2009. Movement intention after parietal cortex stimulation in humans. Science 324:5928811–13
    [Google Scholar]
  27. Deubel H, Schneider WX, Paprotta I. 1998. Selective dorsal and ventral processing: evidence for a common attentional mechanism in reaching and perception. Vis. Cogn. 51:281–107
    [Google Scholar]
  28. Donders FC. 1868. Die Schnelligkeit psychischer Processe: erster Artikel. Arch. Anat. Physiol. Wiss. Med. 1868:657–81
    [Google Scholar]
  29. Dotan D, Pinheiro-Chagas P, Al Roumi F, Dehaene S 2019. Track it to crack it: dissecting processing stages with finger tracking. Trends Cogn. Sci. 23:121058–70
    [Google Scholar]
  30. Erb CD, Moher J, Song JH, Sobel DM. 2018. Numerical cognition in action: Reaching behavior reveals numerical distance effects in 5- to 6-year-olds. J. Numer. Cogn. 4:2286–96
    [Google Scholar]
  31. Eriksen CW, St. James JD 1986. Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. 40:4225–40
    [Google Scholar]
  32. Fadiga L, Buccino G, Craighero L, Fogassi L, Gallese V, Pavesi G. 1998. Corticospinal excitability is specifically modulated by motor imagery: a magnetic stimulation study. Neuropsychologia 37:2147–58
    [Google Scholar]
  33. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G. 1995. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol. 73:62608–11
    [Google Scholar]
  34. Finkbeiner M, Song JH, Nakayama K, Caramazza A. 2008. Engaging the motor system with masked orthographic primes: a kinematic analysis. Vis. Cogn. 16:111–22
    [Google Scholar]
  35. Fischer B. 1987. The preparation of visually guided saccades. Rev. Physiol. Biochem. Pharmacol. 106:1–35
    [Google Scholar]
  36. Fisher YE, Lu J, D'Alessandro I, Wilson RI 2019. Sensorimotor experience remaps visual input to a heading-direction network. Nature 576:7785121–25
    [Google Scholar]
  37. Gold JI, Shadlen MN. 2007. The neural basis of decision making. Annu. Rev. Neurosci. 30:535–74
    [Google Scholar]
  38. Greenwald AG. 2003. On doing two things at once: III. Confirmation of perfect timesharing when simultaneous tasks are ideomotor compatible. J. Exp. Psychol. Hum. Percept. Perform. 29:5859–68
    [Google Scholar]
  39. Greenwald AG, Shulman HG. 1973. On doing two things at once: II. Elimination of the psychological refractory period effect. J. Exp. Psychol. 101:170–76
    [Google Scholar]
  40. Guillot A, Rienzo FD, Frank C, Debarnot U, MacIntyre TE. 2021. From simulation to motor execution: a review of the impact of dynamic motor imagery on performance. Int. Rev. Sport Exerc. Psychol. https://doi.org/10.1080/1750984X.2021.2007539
    [Crossref] [Google Scholar]
  41. Guo J, Song JH. 2019. Action fluency facilitates perceptual discrimination. Psychol. Sci. 30:101434–48
    [Google Scholar]
  42. Haggard P. 2019. The neurocognitive bases of human volition. Annu. Rev. Psychol. 70:9–28
    [Google Scholar]
  43. Hardwick RM, Caspers S, Eickhoff SB, Swinnen SP. 2018. Neural correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci. Biobehav. Rev. 94:31–44
    [Google Scholar]
  44. Harvey CD, Coen P, Tank DW. 2012. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484:739262–68
    [Google Scholar]
  45. Hatsopoulos NG, Suminski AJ. 2011. Sensing with the motor cortex. Neuron 72:3477–87
    [Google Scholar]
  46. Hayhoe M. 2000. Vision using routines: a functional account of vision. Vis. Cogn. 71:343–64
    [Google Scholar]
  47. Hecht S, Shlaer S, Pirenne MH. 1942. Energy, quanta, and vision. J. Gen. Physiol. 25:6819–40
    [Google Scholar]
  48. Helmholtz HV. 1896. Hundhuch der Physiologischen Optik Hamburg, Ger: Voss
  49. Heyes C, Catmur C. 2022. What happened to mirror neurons?. Perspect. Psychol. Sci. 17:1153–68
    [Google Scholar]
  50. Hikosaka O, Wurtz RH. 1983. Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. J. Neurophysiol. 49:51285–301
    [Google Scholar]
  51. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M et al. 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:7099164–71
    [Google Scholar]
  52. Hommel B, Müsseler J, Aschersleben G, Prinz W. 2001. The theory of event coding TEC: a framework for perception and action planning. Behav. Brain Sci. 24:5849–78
    [Google Scholar]
  53. Iriki A, Tanaka M, Iwamura Y. 1996. Coding of modified body schema during tool use by macaque postcentral neurons. Neuroreport 7:142325–30
    [Google Scholar]
  54. Itti L, Koch C. 2000. A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40:10–121489–506
    [Google Scholar]
  55. James W. 1890. Principles of Psychology New York: Henry Holt & Co.
  56. Jeannerod M. 2001. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 14:1S103–9
    [Google Scholar]
  57. Johansson G. 1973. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14:2201–11
    [Google Scholar]
  58. Jonides J. 1980. Towards a model of the mind's eye's movement. Can. J. Psychol./Rev. Can. Psychol. 34:2103–12
    [Google Scholar]
  59. Kim HF, Hikosaka O. 2013. Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron 79:51001–10
    [Google Scholar]
  60. Kim HF, Hikosaka O. 2015. Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain 138:71776–800
    [Google Scholar]
  61. Kowler E, Anderson E, Dosher B, Blaser E 1995. The role of attention in the programming of saccades. Vis. Res. 35:131897–916
    [Google Scholar]
  62. Kreilinger IL, Moeller K, Pixner S. 2021. Mental simulation and its influence on finger-based numerical representations. Trends Neurosci. Educ. 25:100167
    [Google Scholar]
  63. Land MF. 2012. The operation of the visual system in relation to action. Curr. Biol. 22:18R811–17
    [Google Scholar]
  64. Land MF, Furneaux S. 1997. The knowledge base of the oculomotor system. Philos. Trans. R. Soc. B 352: 1358.1231–39
    [Google Scholar]
  65. Land MF, Hayhoe M. 2001. In what ways do eye movements contribute to everyday activities?. Vis. Res. 41:25–263559–65
    [Google Scholar]
  66. Land MF, Lee DN. 1994. Where we look when we steer. Nature 369:6483742–44
    [Google Scholar]
  67. Land MF, Mennie N, Rusted J. 1999. The roles of vision and eye movements in the control of activities of daily living. Perception 28:111311–28
    [Google Scholar]
  68. Lashley KS. 1951. The problem of serial order in behavior. Cerebral Mechanisms in Behavior: The Hixon Symposium LA Jeffress 112–46 London: Chapman & Hall
    [Google Scholar]
  69. Latimer KW, Yates JL, Meister ML, Huk AC, Pillow JW. 2015. Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. Science 349:6244184–87
    [Google Scholar]
  70. Lehky SR, Sereno ME, Sereno AB. 2016. Characteristics of eye-position gain field populations determine geometry of visual space. Front. Integr. Neurosci. 9:72
    [Google Scholar]
  71. Loula F, Prasad S, Harber K, Shiffrar M. 2005. Recognizing people from their movement. J. Exp. Psychol. Hum. Percept. Perform. 31:1210–20
    [Google Scholar]
  72. Mack A, Rock I. 1998. Inattentional Blindness Cambridge, MA: MIT Press
  73. Maljkovic V, Nakayama K. 1994. Priming of pop-out: I. Role of features. Mem. Cogn. 22:6657–72
    [Google Scholar]
  74. McManus RR, Thomas LE. 2020. Vision is biased near handheld, but not remotely operated, tools. Atten. Percept. Psychophys 82:84038–57
    [Google Scholar]
  75. McPeek RM, Keller EL. 2002. Superior colliculus activity related to concurrent processing of saccade goals in a visual search task. J. Neurophysiol. 874:1805–15
    [Google Scholar]
  76. McPeek RM, Maljkovic V, Nakayama K. 1999. Saccades require focal attention and are facilitated by a short-term memory system. Vis. Res. 39:81555–66
    [Google Scholar]
  77. McPeek RM, Skavenski AA, Nakayama K. 2000. Concurrent processing of saccades in visual search. Vis. Res. 40:182499–516
    [Google Scholar]
  78. Merker B. 2005. The liabilities of mobility: a selection pressure for the transition to consciousness in animal evolution. Conscious. Cogn. 14:189–114
    [Google Scholar]
  79. Merker B. 2007. Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. Behav. Brain Sci. 30:163–81
    [Google Scholar]
  80. Moher J, Anderson BA, Song JH. 2015. Dissociable effects of salience on attention and goal-directed action. Curr. Biol. 25:152040–46
    [Google Scholar]
  81. Moher J, Song JH. 2014. Target selection bias transfers across different response actions. J. Exp. Psychol. Hum. Percept. Perform. 40:31117–30
    [Google Scholar]
  82. Moher J, Song JH. 2016. Target selection biases from recent experience transfer across effectors. Atten. Percept. Psychophys. 78:2415–26
    [Google Scholar]
  83. Moser EI, Kropff E, Moser MB. 2008. Place cells, grid cells, and the brain's spatial representation system. Annu. Rev. Neurosci. 31:69–89
    [Google Scholar]
  84. Nakayama K 1990. The iconic bottleneck and the tenuous link between early visual processing and perception. Vision: Coding and Efficiency C Blakemore 411–22 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  85. Nakayama K, Joseph JS 1998. Attention, pattern recognition and popout in visual search. The Attentive Brain R Parasuraman 279–98 Cambridge, MA: MIT press
    [Google Scholar]
  86. Nakayama K, Martini P. 2011. Situating visual search. Vis. Res. 51:131526–37
    [Google Scholar]
  87. Neisser U. 1967. Cognitive Psychology New York: Appleton-Century Crofts
  88. Neisser U. 1977. Cognition and Reality San Francisco: W.H. Freeman
  89. Newsome WT, Britten KH, Movshon JA. 1989. Neuronal correlates of a perceptual decision. Nature 341:623752–54
    [Google Scholar]
  90. Newsome WT, Pare EB. 1988. A selective impairment of motion perception following lesions of the middle temporal visual area (MT). J. Neurosci. 8:62201–11
    [Google Scholar]
  91. O'Keefe J, Dostrovsky J. 1971. The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34:171–75
    [Google Scholar]
  92. O'Regan JK. 1990. Eye movements and reading. Rev. Oculomot. Res. 4:395–453
    [Google Scholar]
  93. Panksepp J. 2007. Emotional feelings originate below the neocortex: toward a neurobiology of the soul. Behav. Brain Sci. 30:1101–3
    [Google Scholar]
  94. Pashler H. 1984. Processing stages in overlapping tasks: evidence for a central bottleneck. J. Exp. Psychol. Hum. Percept. Perform. 10:3358–77
    [Google Scholar]
  95. Perry CJ, Amarasooriya P, Fallah M. 2016. An eye in the palm of your hand: alterations in visual processing near the hand, a mini-review. Front. Comput. Neurosci 10:37
    [Google Scholar]
  96. Perry CJ, Sergio LE, Crawford JD, Fallah M. 2015. Hand placement near the visual stimulus improves orientation selectivity in V2 neurons. J. Neurophysiol. 113:72859–70
    [Google Scholar]
  97. Prasad B. 1996. Concurrent Engineering Fundamentals, Vol. 1 Hoboken, NJ: Prentice Hall
  98. Ramachandran VS, Altschuler EL. 2009. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 132:71693–710
    [Google Scholar]
  99. Ratcliff R. 1978. A theory of memory retrieval. Psychol. Rev. 85:259–108
    [Google Scholar]
  100. Rayner K 1995. Eye movements and cognitive processes in reading, visual search, and scene perception. Studies in Visual Information Processing, Vol. 6 JM Findlay, R Walker, RW Kentridge 3–22 Amsterdam: North-Holland
    [Google Scholar]
  101. Reed CL, Betz R, Garza JP, Roberts RJ. 2010. Grab it! Biased attention in functional hand and tool space. Atten. Percept. Psychophys 72:1236–45
    [Google Scholar]
  102. Reed CL, Grubb JD, Steele C. 2006. Hands up: attentional prioritization of space near the hand. J. Exp. Psychol. Hum. Percept. Perform. 32:1166–77
    [Google Scholar]
  103. Resulaj A, Kiani R, Wolpert DM, Shadlen MN. 2009. Changes of mind in decision-making. Nature 461:7261263–66
    [Google Scholar]
  104. Rizzolatti G, Fogassi L, Gallese V. 2001. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2:9661–70
    [Google Scholar]
  105. Rosenbaum DA. 2005. The Cinderella of psychology: the neglect of motor control in the science of mental life and behavior. Am. Psychol. 60:4308–17
    [Google Scholar]
  106. Sagi D, Julesz B. 1985.. “ Where” and “what” in vision. Science 228:47041217–19
    [Google Scholar]
  107. Salzman CD, Britten KH, Newsome WT. 1990. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:6280174–77
    [Google Scholar]
  108. Saygin AP, Wilson SM, Hagler DJ, Bates E, Sereno MI. 2004. Point-light biological motion perception activates human premotor cortex. J. Neurosci. 24:276181–88
    [Google Scholar]
  109. Searle JR. 1992. The Rediscovery of the Mind Cambridge, MA: MIT press
  110. Seelig JD, Jayaraman V. 2015. Neural dynamics for landmark orientation and angular path integration. Nature 521:7551186–91
    [Google Scholar]
  111. Shadlen MN, Newsome WT. 2001. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86:41916–36
    [Google Scholar]
  112. Simons DJ, Levin DT. 1997. Change blindness. Trends Cogn. Sci. 1:7261–67
    [Google Scholar]
  113. Snyder LH. 2000. Coordinate transformations for eye and arm movements in the brain. Curr. Opin. Neurobiol. 10:6747–54
    [Google Scholar]
  114. Song JH. 2017. Abandoning and modifying one action plan for alternatives. Philos. Trans. R. Soc. B 72: 1718.20160195
    [Google Scholar]
  115. Song JH, Nakayama K. 2006. Role of focal attention on latencies and trajectories of visually guided manual pointing. J. Vis. 6:91–11
    [Google Scholar]
  116. Song JH, Nakayama K. 2008a. Numeric comparison in a visually-guided manual reaching task. Cognition 106:2994–1003
    [Google Scholar]
  117. Song JH, Nakayama K. 2008b. Target selection in visual search as revealed by movement trajectories. Vis. Res. 48:7853–61
    [Google Scholar]
  118. Song JH, Nakayama K. 2009. Hidden cognitive states revealed in choice reaching tasks. Trends Cogn. Sci. 13:8360–66
    [Google Scholar]
  119. Song JH, Takahashi N, McPeek RM. 2008. Target selection for visually guided reaching in macaque. J. Neurophysiol. 99:114–24
    [Google Scholar]
  120. Sperling G, Melchner MJ. 1978. The attention operating characteristic: examples from visual search. Science 202:4365315–18
    [Google Scholar]
  121. Sperry RW. 1952. Neurology and the mind-brain problem. Am. Sci 40:2291–312
    [Google Scholar]
  122. Spivey MJ, Dale R. 2006. Continuous dynamics in real-time cognition. Curr. Dir. Psychol. Sci. 15:5207–11
    [Google Scholar]
  123. Sternberg S. 1969. The discovery of processing stages: extensions of Donders' method. Acta Psychol. 30:276–315
    [Google Scholar]
  124. Taube JS, Muller RU, Ranck JB. 1990. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10:2420–35
    [Google Scholar]
  125. Thomas LE. 2015. Grasp posture alters visual processing biases near the hands. Psychol. Sci. 26:5625–32
    [Google Scholar]
  126. Thomas LE. 2017. Action experience drives visual-processing biases near the hands. Psychol. Sci. 28:1124–31
    [Google Scholar]
  127. Thorndike EL 1913. Ideo-motor action. Psychol. Rev. 202:91–106
    [Google Scholar]
  128. Todorov E. 2004. Optimality principles in sensorimotor control. Nat. Neurosci. 7:9907–15
    [Google Scholar]
  129. Tononi G. 2008. Consciousness as integrated information: a provisional manifesto. Biol. Bull. 215:3216–42
    [Google Scholar]
  130. Treisman A. 1985. Preattentive processing in vision. Comput. Vis. Graph. Image Process. 31:2156–77
    [Google Scholar]
  131. Tseng P, Bridgeman B, Juan CH. 2012. Take the matter into your own hands: a brief review of the effect of nearby-hands on visual processing. Vis. Res. 72:74–77
    [Google Scholar]
  132. Umiltà MA, Intskirveli I, Grammont F, Rochat M, Caruana F et al. 2008. When pliers become fingers in the monkey motor system. PNAS 105:62209–13
    [Google Scholar]
  133. Weaver HE. 1943. Studies of ocular behavior in music reading. Psychol. Monogr. 55:1i–50
    [Google Scholar]
  134. Witt JK. 2018. Perception and action. Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience, Vol. 2: Sensation, Perception, and Attention Hoboken, NJ: Wiley https://doi.org/10.1002/9781119170174.epcn211
    [Crossref] [Google Scholar]
  135. Wolfe JM. 1994. Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev. 1:2202–38
    [Google Scholar]
  136. Wolff W. 1932. Selbstberteilung und Freundberteilung in Wissentlichen und Unwissentlichen Versuch. Psychol. Forsch. 16:251–328
    [Google Scholar]
  137. Zeng W, Guo Y, Wu G, Liu X, Fang Q. 2018. Mirror therapy for motor function of the upper extremity in patients with stroke: a meta-analysis. J. Rehabil. Med. 50:8–15
    [Google Scholar]
  138. Zipser D, Andersen RA. 1988. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:6158679–84
    [Google Scholar]
/content/journals/10.1146/annurev-psych-021422-043229
Loading
/content/journals/10.1146/annurev-psych-021422-043229
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error