1932

Abstract

The development of the use of transcranial magnetic stimulation (TMS) in the study of psychological functions has entered a new phase of sophistication. This is largely due to an increasing physiological knowledge of its effects and to its being used in combination with other experimental techniques. This review presents the current state of our understanding of the mechanisms of TMS in the context of designing and interpreting psychological experiments. We discuss the major conceptual advances in behavioral studies using TMS. There are meaningful physiological and technical achievements to review, as well as a wealth of new perceptual and cognitive experiments. In doing so we summarize the different uses and challenges of TMS in mental chronometry, perception, awareness, learning, and memory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-081120-013144
2021-01-04
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/psych/72/1/annurev-psych-081120-013144.html?itemId=/content/journals/10.1146/annurev-psych-081120-013144&mimeType=html&fmt=ahah

Literature Cited

  1. Abellaneda-Perez K, Vaque-Alcazar L, Vidal-Pineiro D, Jannati A, Solana E et al. 2019. Age-related differences in default-mode network connectivity in response to intermittent theta-burst stimulation and its relationships with maintained cognition and brain integrity in healthy aging. NeuroImage 188:794–806
    [Google Scholar]
  2. Aberra AS, Peterchev AV, Grill WM 2018. Biophysically realistic neuron models for simulation of cortical stimulation. J. Neural Eng. 15:6
    [Google Scholar]
  3. Aberra AS, Wang B, Grill WM, Peterchev AV 2020. Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimul 13:175–89
    [Google Scholar]
  4. Aggleton JP, Burton MJ, Passingham RE 1980. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 190:347–68
    [Google Scholar]
  5. Allen C, Dunkley BT, Muthukumaraswamy SD, Edden R, Evans CJ et al. 2014. Enhanced awareness followed reversible inhibition of human visual cortex: a combined TMS, MRS and MEG study. PLOS ONE 9:6e100350
    [Google Scholar]
  6. Allen C, Singh KD, Verbruggen F, Chambers CD 2018. Evidence for parallel activation of the pre-supplementary motor area and inferior frontal cortex during response inhibition: a combined MEG and TMS study. R. Soc. Open Sci. 5:171369
    [Google Scholar]
  7. Allen EA, Pasley BN, Duong T, Freeman RD 2007. Transcranial magnetic stimulation elicits coupled neural and haemodynamic responses. Science 317:1918–21
    [Google Scholar]
  8. Amemiya T, Beck B, Walsh V, Gomi H, Haggard P 2017. Visual area V5/hMT+ contributes to perception of tactile motion direction: a TMS study. Sci. Rep. 7:40937
    [Google Scholar]
  9. Antal A, Herrmann CS. 2016. Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast 2016:3616807
    [Google Scholar]
  10. Arai N, Muller-Dahlhaus F, Murakami T, Bliem B, Lu MK et al. 2011. State-dependent and timing-dependent bidirectional associative plasticity in the human SMA-M1 network. J. Neurosci. 31:4315376–83 (Abstr.)
    [Google Scholar]
  11. Baeken C, Duprat R, Wu GR, De Raedt R, van Heeringen K 2017. Subgenual anterior cingulate-medial orbitofrontal functional connectivity in medication-resistant major depression: a neurobiological marker for accelerated intermittent theta burst stimulation treatment. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2:7556–65
    [Google Scholar]
  12. Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR 2016. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. NeuroImage 140:154–19
    [Google Scholar]
  13. Bestmann S. 2008. The physiological basis of transcranial magnetic stimulation. Trends Cogn. Sci. 12:381–83
    [Google Scholar]
  14. Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J 2005. BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. NeuroImage 28:122–29
    [Google Scholar]
  15. Bestmann S, Duque J. 2016. Transcranial magnetic stimulation: decomposing the processes underlying action preparation. Neuroscientist 22:4392–405
    [Google Scholar]
  16. Bestmann S, Harrison LM, Blankenberg F, Mars RB, Haggard P et al. 2008a. Influence of uncertainty and surprise on human corticospinal excitability during preparation for action. Curr. Biol. 18:10775–80
    [Google Scholar]
  17. Bestmann S, Krakauer JW. 2015. The uses and interpretation of the motor-evoked potential for understanding behaviour. Exp. Brain Res. 233:679–89
    [Google Scholar]
  18. Bestmann S, Ruff CC, Blankenburg F, Weiskopf N, Driver J, Rothwell JC 2008b. Mapping of causal interregional influences with concurrent TMS-fMRI. Exp. Brain Res. 191:383–402
    [Google Scholar]
  19. Bestmann S, Swayne O, Blankenburg F, Ruff CC, Teo J et al. 2010. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J. Neurosci. 30:3611926–37
    [Google Scholar]
  20. Bjoertomt O, Cowey A, Walsh V 2002. Spatial neglect in near and far space investigated by repetitive transcranial magnetic stimulation. Brain 125:2012–22
    [Google Scholar]
  21. Blankenburg F, Ruff CC, Bestmann S, Bjoertomt O, Eshel N et al. 2008. Interhemispheric effect of parietal TMS on somatosensory response confirmed directly with concurrent TMS-fMRI. J. Neurosci. 28:4913202–8
    [Google Scholar]
  22. Bonini L, Serventi FU, Simone L, Rozzi S, Ferrari PF, Fogassi L 2011. Grasping neurons of monkey parietal and premotor cortices encode action goals at distinct levels of abstraction during complex action sequences. J. Neurosci. 31:155876–87
    [Google Scholar]
  23. Brown MJN, Goldenkoff ER, Chen R, Gunraj C, Vesia M 2019a. Using dual-site transcranial magnetic stimulation to probe connectivity between the dorsolateral prefrontal cortex and ipsilateral primary motor cortex in humans. Brain Sci 9:8177
    [Google Scholar]
  24. Brown MJN, Weissbach A, Pauly MG, Vesia M, Gunraj C et al. 2019b. Somatosensory-motor cortex interactions measured using dual-site transcranial magnetic stimulation. Brain Stimul 12:51229–43
    [Google Scholar]
  25. Buch ER, Johnen VM, Nelissen N, O'Shea J, Rushworth MF 2011. Noninvasive associative plasticity induction in a corticocortical pathway of the human brain. J. Neurosci. 31:4817669–79
    [Google Scholar]
  26. Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA et al. 2017. Effects of tDCS on motor learning and memory formation: a consensus and critical position paper. Clin. Neurphysiol. 128:4589–603
    [Google Scholar]
  27. Campana G, Cowey A, Walsh V 2006. Visual area V5/MT remembers “what” but not “where.”. Cereb. Cortex 16:121766–70
    [Google Scholar]
  28. Caporale N, Dan Y. 2008. Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31:125–46
    [Google Scholar]
  29. Casula EP, Pellicciari MC, Picazio S, Caltagirone C, Koch G 2016. Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex. NeuroImage 143:204–13
    [Google Scholar]
  30. Cattaneo L, Sandrini M, Schwarzback J 2010. State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. Cereb. Cortex 20:92252–58
    [Google Scholar]
  31. Cattaneo Z, Bona S, Silvanto J 2012. Cross-adaptation combined with TMS reveals a functional overlap between vision and imagery in the early visual cortex. NeuroImage 59:33015–20
    [Google Scholar]
  32. Cattaneo Z, Rota F, Vecchi T, Silvanto J 2008. Using state-dependency of transcranial magnetic stimulation (TMS) to investigate letter selectivity in the left posterior parietal cortex: a comparison of TMS-priming and TMS-adaptation paradigms. Eur. J. Neurosci. 28:91924–29
    [Google Scholar]
  33. Cattaneo Z, Rota F, Walsh V, Vecchi T, Silvanto J 2009. TMS-adaptation reveals abstract letter selectivity in the left posterior parietal cortex. Cereb. Cortex 19:102321–25
    [Google Scholar]
  34. Chao CC, Karabanov AN, Paine R, Carolina de Campos A, Kukke SN et al. 2015. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network. Cereb. Cortex 25:2365–73
    [Google Scholar]
  35. Chiappini E, Silvanto J, Hibbard PB, Avenanti A, Romei V 2018. Strengthening functionally specific neural pathways with transcranial brain stimulation. Curr. Biol. 28:13R735–36
    [Google Scholar]
  36. Chrysikou EG, Berryhill ME, Bikson M, Coslett HB 2017. Revisiting the effectiveness of transcranial direct current brain stimulation for cognition: evidence, challenges and open questions. Front. Hum. Neurosci. 11:448
    [Google Scholar]
  37. Cohen Kadosh R, Cohen Kadosh K, Schuhmann T, Kaas A, Goebel R et al. 2007. Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Curr. Biol. 17:689–93
    [Google Scholar]
  38. Crawford JD, Henriques DYP, Medendorp WP 2011. Three-dimensional transformations for goal-oriented action. Annu. Rev. Neurosci. 34:309–31
    [Google Scholar]
  39. Daskalakis ZJ, Christensen BK, Fitzgerald PB, Roshan L, Chen R 2002. The mechanisms of interhemispheric inhibition in the human motor cortex. J. Physiol. 543:1317–26
    [Google Scholar]
  40. Davare M, Rothwell JC, Lemon RN 2010. Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Curr. Biol. 20:2176–81
    [Google Scholar]
  41. Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG 2013. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat. Neurosci. 16:838–44
    [Google Scholar]
  42. de Graaf TA, Koivisto M, Jacobs C, Sack AT 2014. The chronometry of visual perception: review of occipital TMS masking studies. Neurosci. Biobehav. Rev. 45:295–304
    [Google Scholar]
  43. de Graaf TA, Sack AT 2011. Null results in TMS: from absence of evidence to evidence of absence. Neurosci. Biobehav. Rev. 35:3871–77
    [Google Scholar]
  44. de Labra C, Rivadulla C, Grieve K, Marino J, Espinosa N, Cudeiro J 2007. Changes in visual responses in the feline dLGN: selective thalamic suppression induced by transcranial magnetic stimulation of V1. Cereb. Cortex 17:61376–85
    [Google Scholar]
  45. D'Esposito M, Postle BR. 2015. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66:115–42
    [Google Scholar]
  46. Devlin JT, Watkins KE. 2007. Stimulating language: insights from TMS. Brain 130:3610–22
    [Google Scholar]
  47. Ellison A, Lane AR, Schenk T 2007. The interaction of brain regions during visual search processing as revealed by transcranial magnetic stimulation. Cereb. Cortex 17:2579–84
    [Google Scholar]
  48. Fecchio M, Pigorini A, Comanducci A, Sarasso S, Casarotto S 2017. The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials. PLOS ONE 12:9e0184910
    [Google Scholar]
  49. Fertonani A, Miniussi C. 2017. Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist 23:2109–23
    [Google Scholar]
  50. Frith U. 2020. Fast lane to slow science. Trends Cogn. Sci. 24:11–2
    [Google Scholar]
  51. Fu W, Cao L, Zhang Y, Huo S, Du J et al. 2017. Continuous theta-burst stimulation may improve visuospatial neglect via modulating the attention network: a randomized controlled study. Top. Stroke Rehab. 24:4236–41
    [Google Scholar]
  52. Gangitano M, Valero-Cabre A, Tormos JM, Mottaghy FM, Romero JR, Pascual-Leone A 2002. Modulation of input-output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin. Neurophysiol. 113:1249–57
    [Google Scholar]
  53. Göbel SM, Calabria M, Farne A, Rossetti Y 2006. Parietal rTMS distorts the mental number line: simulating “spatial” neglect in healthy subjects. Neuropsychologia 44:6860–68
    [Google Scholar]
  54. Gross CC. 1998. Brain, Vision, Memory: Tales in the History of Neuroscience Cambridge, MA: MIT Press
  55. Handwerker DA, Ianni G, Gutierrez B, Roopchangsing V, Gonzalez-Castillo J et al. 2020. Theta-burst TMS to the posterior superior temporal sulcus decreases resting-state fMRI connectivity across the face processing network. Netw. Neurosci. 4:74660
    [Google Scholar]
  56. Harris JA, Clifford CWG, Miniussi C 2008. The functional effect of transcranial magnetic stimulation: signal suppression or neural noise generation. J. Cogn. Neurosci. 20:4734–40
    [Google Scholar]
  57. Hartwigsen G, Bestmann S, Ward NS, Woerbel S, Mastroeni C, Granert O, Siebner H 2012. Left dorsal premotor cortex and supramarginal gyrus complement each other during rapid action reprogramming. J. Neurosci. 32:4616162–71
    [Google Scholar]
  58. Hartwigsen G, Weigel A, Schuschan P, Siebner H, Weise D et al. 2016. Dissociating parieto-frontal networks for phonological and semantic word decisions: a condition-and-perturb TMS study. Cereb. Cortex 26:2590–601
    [Google Scholar]
  59. Haxby JV, Hoffman EA, Gobbini MI 2000. The distributed human neural system for face perception. Trends Cogn. Sci. 4:6223–33
    [Google Scholar]
  60. Hebb DO. 1949. The Organization of Behavior: A Neuropsychological Theory New York: Wiley
  61. Herring JD, Thut G, Jensen O, Bergmann TO 2015. Attention modulates TMS-locked alpha oscillations in the visual cortex. J. Neurosci. 35:4314435–47
    [Google Scholar]
  62. Hilbert S, McAssey M, Buhner M, Schwaferts P, Gruber M et al. 2019. Right hemisphere occipital rTMS impairs working memory in visualizers but not in verbalizers. Sci. Rep. 9:6307
    [Google Scholar]
  63. Hoogendam JM, Ramakers GMJ, di Lazzaro V 2010. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 3:295–118
    [Google Scholar]
  64. Horvath JC, Forte JD, Carter O 2015. Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul 8:3535–50
    [Google Scholar]
  65. Huang Y, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC 2005. Theta burst stimulation of the human motor cortex. Neuron 45:2201–6
    [Google Scholar]
  66. Johnen VM, Neubert FX, Buch ER, Verhagen L, O'Reilly JX et al. 2015. Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest. Neuroscience 4:e04585
    [Google Scholar]
  67. Jolij J, Lamme VAF. 2010. Transcranial magnetic stimulation-induced “visual echoes” are generated in early visual cortex. Neurosci. Lett. 484:3178–81
    [Google Scholar]
  68. Kim S, Nilakantan AS, Hermiller MS, Palumbo RT, VanHaerents S, Voss JL 2018. Selective and coherent activity increases due to stimulation indicate functional distinctions between episodic memory networks. Sci. Adv. 4:8eaar2768
    [Google Scholar]
  69. Koch G, Ponzo V, di Lorenzo F, Caltagirone C, Veniero D 2013. Hebbian and anti-Hebbian spike-timing-dependent plasticity of human cortico-cortical connections. J. Neurosci. 33:239725–33
    [Google Scholar]
  70. Kohl S, Hannah R, Rocchi L, Nord CL, Rothwell J, Voon V 2019. Cortical paired associative stimulation influences response inhibition: cortico-cortical and cortico-subcortical networks. Biol. Psychiatry 85:4355–63
    [Google Scholar]
  71. Lee TG, D'Esposito M 2012. The dynamic nature of top-down signals originating from prefrontal cortex: a combined fMRI-TMS study. J. Neurosci. 32:4415458–66
    [Google Scholar]
  72. Lewandowsky S, Oberauer K. 2020. Low replicability can support robust and efficient science. Nat. Commun. 11:358
    [Google Scholar]
  73. Mahayana IT, Tcheang L, Chen CY, Juan CH, Muggleton NG 2014. The precuneus and visuospatial attention in near and far space: a transcranial magnetic stimulation study. Brain Stimul 7:5673–79
    [Google Scholar]
  74. Manohar SG, Zokaei N, Fallon SJ, Vogels TP, Husain M 2019. Neural mechanisms of attending to items in working memory. Neurosci. Biobehav. Rev. 101:1–12
    [Google Scholar]
  75. Mazzoni N, Jacobs C, Venuti P, Silvanto J, Cattaneo L 2017. State-dependent TMS reveals representation of affective body movements in the anterior intraparietal cortex. J. Neurosci. 37:307231–39
    [Google Scholar]
  76. Medawar PB. 1967. The Art of the Soluble London: Methuen
  77. Miniussi C, Harris JA, Ruzzoli M 2013. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci. Biobehav. Rev. 37:1702–12
    [Google Scholar]
  78. Moliadze V, Giannikopoulos D, Eysel UT, Funke K 2005. Paired-pulse transcranial magnetic stimulation protocol applied to visual cortex of anaesthetized cat: effects on visually evoked single-unit activity. J. Physiol. 566:3955–65
    [Google Scholar]
  79. Moliadze V, Zhao Y, Eysel U, Funke K 2003. Effect of transcranial magnetic stimulation on single-unit activity in the cat primary visual cortex. J. Physiol. 553:2665–79
    [Google Scholar]
  80. Momi D, Neri F, Coiro G, Smeralda C, Veniero D et al. 2020. Cognitive enhancement via nework-targeted cortico-cortical associative brain stimulation. Cereb. Cortex 30:31516–27
    [Google Scholar]
  81. Mueller JK, Grigsby EM, Prevosto V, Petraglia FW, Rao H et al. 2014. Simultaneous transcranial magnetic stimulation and single neuron recording in alert non-human primates. Nat. Neurosci. 17:81130–36
    [Google Scholar]
  82. Müller-Dahlhaus F, Ziemann U, Classen J 2010. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex. Front. Synaptic Neurosci. 2:34
    [Google Scholar]
  83. Mullin CR, Steeves JKE. 2013. Consecutive TMS-fMRI reveals an inverse relationship in BOLD signal between object and scene processing. J. Neurosci. 33:4919243–49
    [Google Scholar]
  84. Nelissen K, Vanduffel W. 2011. Grasping-related functional magnetic resonance imaging brain responses in the macaque monkey. J. Neurosci. 31:228220–29
    [Google Scholar]
  85. Nichols TE, Das S, Eickhoff SB, Evans AC, Glatard T et al. 2017. Best practices in data analysis and sharing in neuroimaging using MRI. Nat. Neurosci. 20:299–303
    [Google Scholar]
  86. Nilakantan AS, Bridge DJ, Gagnon EP, VanHaerents SA, Voss JL 2017. Stimulation of the posterior cortical-hippocampal network enhances precision of memory recollection. Curr. Biol. 27:3465–70
    [Google Scholar]
  87. Nord CL, Popa T, Smith E, Hannah R, Doñamayor N 2019. The effect of frontoparietal paired associative stimulation on decision-making and working memory. Cortex 117:266–76
    [Google Scholar]
  88. Nosek BA, Ebersole CR, DeHaven AC, Mellor DT 2018. The preregistration revolution. PNAS 115:112600–6
    [Google Scholar]
  89. Olk B, Peschke C, Hilgetag CC 2015. Attention and control of manual responses in cognitive conflict: findings from TMS perturbation studies. Neuropsychologia 74:7–20
    [Google Scholar]
  90. Ortuno T, Grieve KL, Cao R, Cudeiro J, Rivadulla C 2014. Bursting thalamic responses in awake monkey contribute to visual detection and are modulated by corticofugal feedback. Front. Behav. Neurosci. 8:198
    [Google Scholar]
  91. O'Shea J, Johansen-Berg H, Trief D, Göbel S, Rushworth M 2007. Functionally specific reorganization in human premotor cortex. Neuron 54:479–90
    [Google Scholar]
  92. Parkin B, Ekhtiari H, Walsh V 2015. Non-invasive human brain stimulation in cognitive neuroscience: a primer. Neuron 87:5932–45
    [Google Scholar]
  93. Pasley BN, Allen EA, Freeman RD 2009. State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron 62:2291–303
    [Google Scholar]
  94. Peterchev AV, Wagner TA, Miranda PC, Nitsche MA, Paulus W et al. 2012. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul 5:4435–53
    [Google Scholar]
  95. Pitcher D, Duchaine B, Walsh V 2014. Combined TMS and fMRI reveal dissociable cortical pathways for dynamic and static face perception. Curr. Biol. 24:172066–70
    [Google Scholar]
  96. Pitcher D, Japee S, Rauth L, Ungerleider LG 2017. The superior temporal sulcus is causally connected to the amygdala: a combined TBS-fMRI study. J. Neurosci. 37:51156–61
    [Google Scholar]
  97. Pitcher D, Walsh V, Yovel G, Duchaine B 2007. TMS evidence for the involvement of the right occipital face area in early face processing. Curr. Biol. 17:181568–73
    [Google Scholar]
  98. Polanía R, Nitsche MA, Ruff CC 2018. Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 21:174–87
    [Google Scholar]
  99. Rahnev D, Kok P, Mukkeke M, Bahdo L, de Lange FP, Lau H 2013. Continuous theta burst transcranial magnetic stimulation reduces resting state connectivity between visual areas. J. Neurophysiol. 110:81811–21
    [Google Scholar]
  100. Raichle ME. 2015. The brain's default mode network. Annu. Rev. Neurosci. 38:433–47
    [Google Scholar]
  101. Rangelov D, Muller HJ, Taylor PCJ 2015. Occipital TMS at phosphene detection threshold captures attention automatically. NeuroImage 109:199–205
    [Google Scholar]
  102. Rastogi A, Cash R, Dunlop K, Vesia M, Kucyi A et al. 2017. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation. NeuroImage 158:48–57
    [Google Scholar]
  103. Reed T, Cohen Kadosh RC 2018. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J. Inherit. Metab. Dis. 41:61123–30
    [Google Scholar]
  104. Rizzo V, Siebner HS, Morgante F, Mastroeni C, Girlanda P, Quartarone A 2009. Paired associative stimulation of left and right human motor cortex shapes interhemispheric motor inhibition based on a Hebbian mechanism. Cereb. Cortex 19:4907–15
    [Google Scholar]
  105. Rogasch NC, Daskalakis ZJ, Fitzgerald PB 2015. Cortical inhibition of distinct mechanisms in the dorsolateral prefrontal cortex is related to working memory performance: a TMS-EEG study. Cortex 64:68–77
    [Google Scholar]
  106. Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G 2008. Spontaneous fluctuations in posterior α-band EEG activity reflect variability in excitability of human visual areas. Cereb. Cortex 18:92010–18
    [Google Scholar]
  107. Romei V, Chiappini E, Hibbard PB, Avenanti A 2016a. Empowering reentrant projections from V5 to V1 boosts sensitivity to motion. Curr. Biol. 26:2155–60
    [Google Scholar]
  108. Romei V, Thut G, Silvanto J 2016b. Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci 39:11782–95
    [Google Scholar]
  109. Romero M, Davare M, Armendariz M, Janssen P 2019a. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat. Commun. 10:2642
    [Google Scholar]
  110. Romero M, Davare M, Janssen P 2017. Spatial and temporal effects of single-pulse TMS on single-cell activity in alert macaque monkeys. Brain Stimul 10:2507 (Abstr.)
    [Google Scholar]
  111. Romero M, Janssen P, Davare M 2019b. Neural effects of continuous theta-burst stimulation on single neurons in macaque parietal cortex. Brain Stimul 12:2485–86 (Abstr.)
    [Google Scholar]
  112. Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M 2009. Natural frequencies of human corticothalamic circuits. J. Neurosci. 29:247679–85
    [Google Scholar]
  113. Rose NS, LaRocque JJ, Riggall AC, Gosseries O, Starrett MJ et al. 2016. Reactivation of latent working memories with transcranial magnetic stimulation. Science 354:63161136–39
    [Google Scholar]
  114. Rounis E, Maniscalco B, Rothwell JC, Passingham RE, Lau H 2010. Theta-burst transcranial magnetic stimulation to the prefrontal cortex impairs metacognitive visual awareness. Cogn. Neurosci. 1:3165–75
    [Google Scholar]
  115. Rozzi S, Ferrari PF, Bonini L, Rizzolatti G, Fogassi L 2008. Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. Eur. J. Neurosci. 28:1569–88
    [Google Scholar]
  116. Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S 2009. Hemispheric differences in frontal and parietal influences on human occipital cortex: direct confirmation with concurrent TMS-fMRI. J. Cogn. Neurosci. 21:61146–61
    [Google Scholar]
  117. Ruff CC, Blankenburg F, Bjoertomt O, Bestmann S, Freeman E et al. 2006. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex. Curr. Biol. 16:151479–88
    [Google Scholar]
  118. Ruzzoli M, Soto-Faraco S. 2014. Alpha stimulation of the human parietal cortex attunes tactile perception to external space. Curr. Biol. 24:3329–32
    [Google Scholar]
  119. Santarnecchi E, Momi D, Sprugnoli G, Neri F, Pascual-Leone A et al. 2018. Modulation of network-to-network connectivity via spike-timing-dependent noninvasive brain stimulation. Hum. Brain Mapp. 39:124870–83
    [Google Scholar]
  120. Schroeder PA, Dresler T, Bahnmueller J, Artemenko C, Kadosh RC, Nuerk HC 2017. Cognitive enhancement of numerical and arithmetic capabilities: a mini-review of available transcranial electric stimulation studies. J. Cogn. Enhanc. 1:39–47
    [Google Scholar]
  121. Schwarzkopf DS, Silvanto J, Rees G 2011. Stochastic resonance effects reveal the neural mechanisms of transcranial magnetic stimulation. J. Neurosci. 31:93143–47
    [Google Scholar]
  122. Siebner HR, Bergmann TO, Bestmann S, Massimini M, Johansen-Berg H et al. 2009a. Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimul 2:258–80
    [Google Scholar]
  123. Siebner HR, Hartwigsen G, Kassuba T, Rothwell JC 2009b. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex 45:91035–42
    [Google Scholar]
  124. Silvanto J, Lavie N, Walsh V 2006. Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. J. Neurophysiol. 96:2941–45
    [Google Scholar]
  125. Silvanto J, Muggleton NG, Cowey A, Walsh V 2007. Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. Eur. J. Neurosci. 25:61874–81
    [Google Scholar]
  126. Silvanto J, Muggleton NG, Walsh V 2008. State dependency in brain stimulation studies of perception and cognition. Trends Cogn. Neurosci. 12:12447–54
    [Google Scholar]
  127. Soto D, Llewelyn D, Silvanto J 2012. Distinct causal mechanisms of attentional guidance by working memory and repetition priming in early visual cortex. J. Neurosci. 32:103447–52
    [Google Scholar]
  128. Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J 2002. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J. Physiol. 543:2699–708
    [Google Scholar]
  129. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J 2000. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:3572–84
    [Google Scholar]
  130. Tadin D, Silvanto J, Pascual-Leone A, Battelli L 2011. Improved motion perception and impaired spatial suppression following disruption of cortical area MT/V5. J. Neurosci. 31:1279–83
    [Google Scholar]
  131. Taylor PCJ. 2018. Combining NIBS with EEG: What can it tell us about normal cognition. Curr. Behav. Neurosci. Rep. 5:2165–69
    [Google Scholar]
  132. Thut G, Bergmann TO, Frohlich F, Soekadar SR, Brittain JS et al. 2017. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin. Neurophysiol. 128:5843–57
    [Google Scholar]
  133. van de Ven V, Sack AT 2013. Transcranial magnetic stimulation of visual cortex in memory: cortical state, interference and reactivation of visual content in memory. Behav. Brain Res. 236:67–77
    [Google Scholar]
  134. van Lamsweerde AE, Johnson JS 2017. Assessing the effect of early visual cortex transcranial magnetic stimulation on working memory consolidation. J. Cogn. Neurosci. 29:71226–38
    [Google Scholar]
  135. Veniero D, Ponzo V, Koch G 2013. Paired associative stimulation enforces the communication between interconnected areas. J. Neurosci. 33:3413773–83
    [Google Scholar]
  136. Vesia M, Crawford JD. 2012. Specialization of reach function in human posterior parietal cortex. Exp. Brain Res. 221:11–18
    [Google Scholar]
  137. Vesia M, Culham JC, Jegatheeswaran G, Reina I, Le A et al. 2018. Functional interaction between human dorsal premotor cortex and the ipsilateral primary motor cortex for grasp plans. Clin. Neurosci. 29:161355–59
    [Google Scholar]
  138. Vesia M, Pellicciari R, Cash RFH, Isayama R, Kunaratnam N et al. 2019. Learning from goal and action based observations differentially modulates functional motor cortical plasticity. Neuroscience 404:387–95
    [Google Scholar]
  139. Vesia M, Prime SL, Yan X, Sergio LE, Crawford JD 2010. Specificity of human parietal saccade and reach regions during transcranial magnetic stimulation. J. Neurosci. 30:3913053–65
    [Google Scholar]
  140. Walsh V, Cowey A. 2000. Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 1:73–80
    [Google Scholar]
  141. Walsh V, Pascual-Leone A. 2003. Transcranial Magnetic Stimulation: Neurochronometrics of Mind Cambridge, MA: MIT Press
  142. Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME et al. 2014. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 345:62001054–57
    [Google Scholar]
  143. Warren KN, Hermiller MS, Nilakantan AS, Voss JL 2019. Stimulating the hippocampal posterior-medial network enhances task-dependent connectivity and memory. eLife 8:e49458
    [Google Scholar]
  144. Wasserman EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH 2008. The Oxford Handbook of Transcranial Stimulation Oxford, UK: Oxford Univ. Press
  145. Weise D, Mann J, Ridding M, Eskandar K, Huss M et al. 2013. Microcircuit mechanisms involved in paired associative stimulation-induced depression of corticospinal excitability. J. Physiol. 591:194903–20
    [Google Scholar]
  146. Willacker L, Dowsett J, Dieterich M, Taylor PCJ 2019. Ecocentric processing in the roll plane and dorsal parietal cortex: a TMS-ERP study of the subjective visual vertical. Neuropsychologia 127:113–22
    [Google Scholar]
  147. Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K et al. 2003. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J. Neurophysiol. 89:52339–45
    [Google Scholar]
  148. Wolters A, Schmidt A, Schramm A, Zeller D, Naumann M et al. 2005. Timing-dependent plasticity in human primary somatosensory cortex. J. Physiol. 565:31039–52
    [Google Scholar]
  149. Ziemann U 2008. Section II: TMS measures of motor cortical and corticospinal excitability: physiology, function, and plasticity. The Oxford Handbook of Transcranial Stimulation CM Epstein, EM Wasserman, U Ziemann 75–234 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  150. Zokaei N, Manohar S, Husain M, Feredoes E 2014. Causal evidence for a privileged working memory state in early visual cortex. J. Neurosci. 34:1158–62
    [Google Scholar]
/content/journals/10.1146/annurev-psych-081120-013144
Loading
/content/journals/10.1146/annurev-psych-081120-013144
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error