1932

Abstract

Cyclic guanosine monophosphate (cGMP), an important intracellular second messenger, mediates cellular functional responses in all vital organs. Phosphodiesterase 5 (PDE5) is one of the 11 members of the cyclic nucleotide phosphodiesterase (PDE) family that specifically targets cGMP generated by nitric oxide–driven activation of the soluble guanylyl cyclase. PDE5 inhibitors, including sildenafil and tadalafil, are widely used for the treatment of erectile dysfunction, pulmonary arterial hypertension, and certain urological disorders. Preclinical studies have shown promising effects of PDE5 inhibitors in the treatment of myocardial infarction, cardiac hypertrophy, heart failure, cancer and anticancer-drug-associated cardiotoxicity, diabetes, Duchenne muscular dystrophy, Alzheimer's disease, and other aging-related conditions. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular, anticancer, and neurological benefits. In this review, we provide an overview of the current state of knowledge on PDE5 inhibitors and their potential therapeutic indications for various clinical disorders beyond erectile dysfunction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-040122-034745
2023-01-20
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-040122-034745.html?itemId=/content/journals/10.1146/annurev-pharmtox-040122-034745&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Bender AT, Beavo JA. 2006. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev. 58:488–520
    [Google Scholar]
  2. 2.
    Francis SH, Blount MA, Corbin JD. 2011. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev. 91:651–90
    [Google Scholar]
  3. 3.
    Sonnenburg WK, Beavo JA. 1994. Cyclic GMP and regulation of cyclic nucleotide hydrolysis. Adv. Pharmacol. 26:87–114
    [Google Scholar]
  4. 4.
    Soderling SH, Beavo JA. 2000. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr. Opin. Cell Biol. 12:174–79
    [Google Scholar]
  5. 5.
    Heikaus CC, Stout JR, Sekharan MR, Eakin CM, Rajagopal P et al. 2008. Solution structure of the cGMP binding GAF domain from phosphodiesterase 5: insights into nucleotide specificity, dimerization, and cGMP-dependent conformational change. J. Biol. Chem. 283:22749–59
    [Google Scholar]
  6. 6.
    Huai Q, Liu Y, Francis SH, Corbin JD, Ke H. 2004. Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J. Biol. Chem. 279:13095–101
    [Google Scholar]
  7. 7.
    Biswas KH, Sopory S, Visweswariah SS. 2008. The GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase (PDE5) is a sensor and a sink for cGMP. Biochemistry 47:3534–43
    [Google Scholar]
  8. 8.
    Blount MA, Zoraghi R, Ke H, Bessay EP, Corbin JD, Francis SH. 2006. A 46-amino acid segment in phosphodiesterase-5 GAF-B domain provides for high vardenafil potency over sildenafil and tadalafil and is involved in phosphodiesterase-5 dimerization. Mol. Pharmacol. 70:1822–31
    [Google Scholar]
  9. 9.
    Yanaka N, Kotera J, Ohtsuka A, Akatsuka H, Imai Y et al. 1998. Expression, structure and chromosomal localization of the human cGMP-binding cGMP-specific phosphodiesterase PDE5A gene. Eur. J. Biochem. 255:391–99
    [Google Scholar]
  10. 10.
    Biswas KH, Visweswariah SS. 2011. Distinct allostery induced in the cyclic GMP-binding, cyclic GMP-specific phosphodiesterase (PDE5) by cyclic GMP, sildenafil, and metal ions. J. Biol. Chem. 286:8545–54
    [Google Scholar]
  11. 11.
    Andersson KE. 2018. PDE5 inhibitors – pharmacology and clinical applications 20 years after sildenafil discovery. Br. J. Pharmacol. 175:2554–65
    [Google Scholar]
  12. 12.
    Uckert S, Stief CG. 2011. Treatment of erectile dysfunction and lower urinary tract symptoms by phosphodiesterase inhibitors. Handb. Exp. Pharmacol. 204:307–22
    [Google Scholar]
  13. 13.
    Corbin JD, Beasley A, Blount MA, Francis SH. 2005. High lung PDE5: a strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem. Biophys. Res. Commun. 334:930–38
    [Google Scholar]
  14. 14.
    Degen CV, Bishu K, Zakeri R, Ogut O, Redfield MM, Brozovich FV. 2015. The emperor's new clothes: PDE5 and the heart. PLOS ONE 10:e0118664
    [Google Scholar]
  15. 15.
    Lu Z, Xu X, Hu X, Lee S, Traverse JH et al. 2010. Oxidative stress regulates left ventricular PDE5 expression in the failing heart. Circulation 121:1474–83
    [Google Scholar]
  16. 16.
    Pokreisz P, Vandenwijngaert S, Bito V, Van den Bergh A, Lenaerts I et al. 2009. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation 119:408–16
    [Google Scholar]
  17. 17.
    Rotella DP. 2002. Phosphodiesterase 5 inhibitors: current status and potential applications. Nat. Rev. Drug Discov. 1:674–82
    [Google Scholar]
  18. 18.
    Gaine SP, Rubin LJ. 1998. Primary pulmonary hypertension. Lancet 352:719–25
    [Google Scholar]
  19. 19.
    Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I et al. 2016. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Rev. Esp. Cardiol. 69:177
    [Google Scholar]
  20. 20.
    Hassoun PM. 2021. Pulmonary arterial hypertension. N. Engl. J. Med. 385:2361–76
    [Google Scholar]
  21. 21.
    Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R et al. 2007. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116:238–48
    [Google Scholar]
  22. 22.
    Ghofrani HA, Voswinckel R, Reichenberger F, Olschewski H, Haredza P et al. 2004. Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension: a randomized prospective study. J. Am. Coll. Cardiol. 44:1488–96
    [Google Scholar]
  23. 23.
    Michelakis E, Tymchak W, Lien D, Webster L, Hashimoto K, Archer S 2002. Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation 105:2398–403
    [Google Scholar]
  24. 24.
    Rubin LJ, Badesch DB, Fleming TR, Galiè N, Simonneau G et al. 2011. Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: the SUPER-2 study. Chest 140:1274–83
    [Google Scholar]
  25. 25.
    Dunkern TR, Hatzelmann A. 2005. The effect of sildenafil on human platelet secretory function is controlled by a complex interplay between phosphodiesterases 2, 3 and 5. Cell Signal. 17:331–39
    [Google Scholar]
  26. 26.
    Gudmundsdóttir IJ, McRobbie SJ, Robinson SD, Newby DE, Megson IL. 2005. Sildenafil potentiates nitric oxide mediated inhibition of human platelet aggregation. Biochem. Biophys. Res. Commun. 337:382–85
    [Google Scholar]
  27. 27.
    Hoeper MM, Al-Hiti H, Benza RL, Chang SA, Corris PA et al. 2021. Switching to riociguat versus maintenance therapy with phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension (REPLACE): a multicentre, open-label, randomised controlled trial. Lancet Respir. Med. 9:573–84
    [Google Scholar]
  28. 28.
    Mullershausen F, Russwurm M, Friebe A, Koesling D. 2004. Inhibition of phosphodiesterase type 5 by the activator of nitric oxide-sensitive guanylyl cyclase BAY 41-2272. Circulation 109:1711–13
    [Google Scholar]
  29. 29.
    Sharma M, Rana U, Joshi C, Michalkiewicz T, Afolayan A et al. 2021. Decreased cyclic guanosine monophosphate-protein kinase G signaling impairs angiogenesis in a lamb model of persistent pulmonary hypertension of the newborn. Am. J. Respir. Cell Mol. Biol. 65:555–67
    [Google Scholar]
  30. 30.
    Corrado PA, Barton GP, Francois CJ, Wieben O, Goss KN. 2021. Sildenafil administration improves right ventricular function on 4D flow MRI in young adults born premature. Am. J. Physiol. Heart Circ. Physiol. 320:H2295–304
    [Google Scholar]
  31. 31.
    Ockaili R, Salloum F, Hawkins J, Kukreja RC. 2002. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial KATP channels in rabbits. Am. J. Physiol. Heart Circ. Physiol. 283:H1263–69
    [Google Scholar]
  32. 32.
    Porst H, Rosen R, Padma-Nathan H, Goldstein I, Giuliano F et al. 2001. The efficacy and tolerability of vardenafil, a new, oral, selective phosphodiesterase type 5 inhibitor, in patients with erectile dysfunction: the first at-home clinical trial. Int. J. Impot. Res. 13:192–99
    [Google Scholar]
  33. 33.
    Salloum FN, Ockaili RA, Wittkamp M, Marwaha VR, Kukreja RC. 2006. Vardenafil: a novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/reperfusion injury via opening of mitochondrial KATP channels in rabbits. J. Mol. Cell. Cardiol. 40:405–11
    [Google Scholar]
  34. 34.
    Salloum FN, Takenoshita Y, Ockaili RA, Daoud VP, Chou E et al. 2007. Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial KATP channels when administered at reperfusion following ischemia in rabbits. J. Mol. Cell. Cardiol. 42:453–58
    [Google Scholar]
  35. 35.
    Taylor J, Baldo OB, Storey A, Cartledge J, Eardley I. 2009. Differences in side-effect duration and related bother levels between phosphodiesterase type 5 inhibitors. BJU Int. 103:1392–95
    [Google Scholar]
  36. 36.
    Salloum FN, Chau VQ, Hoke NN, Abbate A, Varma A et al. 2009. Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase G-dependent generation of hydrogen sulfide. Circulation 120:S31–36
    [Google Scholar]
  37. 37.
    Nagy O, Hajnal A, Parratt JR, Vegh A. 2004. Sildenafil (Viagra) reduces arrhythmia severity during ischaemia 24 h after oral administration in dogs. Br. J. Pharmacol. 141:549–51
    [Google Scholar]
  38. 38.
    Walker DK, Ackland MJ, James GC, Muirhead GJ, Rance DJ et al. 1999. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man. Xenobiotica 29:297–310
    [Google Scholar]
  39. 39.
    Loganathan S, Radovits T, Hirschberg K, Korkmaz S, Barnucz E et al. 2008. Effects of selective phosphodiesterase-5-inhibition on myocardial contractility and reperfusion injury after heart transplantation. Transplantation 86:1414–18
    [Google Scholar]
  40. 40.
    Szabo G, Radovits T, Veres G, Krieger N, Loganathan S et al. 2009. Vardenafil protects against myocardial and endothelial injuries after cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 36:657–64
    [Google Scholar]
  41. 41.
    Das A, Xi L, Kukreja RC. 2005. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J. Biol. Chem. 280:12944–55
    [Google Scholar]
  42. 42.
    Das A, Durrant D, Salloum FN, Xi L, Kukreja RC. 2015. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol. Ther. 147:12–21
    [Google Scholar]
  43. 43.
    Das A, Ockaili R, Salloum F, Kukreja RC. 2004. Protein kinase C plays an essential role in sildenafil-induced cardioprotection in rabbits. Am. J. Physiol. Heart Circ. Physiol. 286:H1455–60
    [Google Scholar]
  44. 44.
    Das A, Salloum FN, Xi L, Rao YJ, Kukreja RC. 2009. ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice. Am. J. Physiol. Heart Circ. Physiol. 296:H1236–43
    [Google Scholar]
  45. 45.
    Das A, Smolenski A, Lohmann SM, Kukreja RC. 2006. Cyclic GMP-dependent protein kinase Iα attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J. Biol. Chem. 281:38644–52
    [Google Scholar]
  46. 46.
    Das A, Xi L, Kukreja RC. 2008. Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3β. J. Biol. Chem. 283:29572–85
    [Google Scholar]
  47. 47.
    Salloum FN, Das A, Thomas CS, Yin C, Kukreja RC. 2007. Adenosine A1 receptor mediates delayed cardioprotective effect of sildenafil in mouse. J. Mol. Cell. Cardiol. 43:545–51
    [Google Scholar]
  48. 48.
    Han J, Kim N, Joo H, Kim E, Earm YE 2002. ATP-sensitive K+ channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 283:H1545–54
    [Google Scholar]
  49. 49.
    Qin Q, Yang XM, Cui L, Critz SD, Cohen MV et al. 2004. Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 287:H712–18
    [Google Scholar]
  50. 50.
    Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM et al. 2005. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ. Res. 97:329–36
    [Google Scholar]
  51. 51.
    Das A, Samidurai A, Hoke NN, Kukreja RC, Salloum FN. 2015. Hydrogen sulfide mediates the cardioprotective effects of gene therapy with PKG-Iα. Basic Res. Cardiol. 110:42
    [Google Scholar]
  52. 52.
    Koneru S, Varma Penumathsa S, Thirunavukkarasu M, Vidavalur R, Zhan L et al. 2008. Sildenafil-mediated neovascularization and protection against myocardial ischaemia reperfusion injury in rats: role of VEGF/angiopoietin-1. J. Cell. Mol. Med. 12:2651–64
    [Google Scholar]
  53. 53.
    Vidavalur R, Penumathsa SV, Zhan L, Thirunavukkarasu M, Maulik N. 2006. Sildenafil induces angiogenic response in human coronary arteriolar endothelial cells through the expression of thioredoxin, hemeoxygenase and vascular endothelial growth factor. Vasc. Pharmacol. 45:91–95
    [Google Scholar]
  54. 54.
    Sahara M, Sata M, Morita T, Nakajima T, Hirata Y, Nagai R. 2010. A phosphodiesterase-5 inhibitor vardenafil enhances angiogenesis through a protein kinase G-dependent hypoxia-inducible factor-1/vascular endothelial growth factor pathway. Arterioscler. Thromb. Vasc. Biol. 30:1315–24
    [Google Scholar]
  55. 55.
    Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ et al. 1999. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 19:4535–45
    [Google Scholar]
  56. 56.
    Sha Y, Rao L, Settembre C, Ballabio A, Eissa NT. 2017. STUB1 regulates TFEB-induced autophagy-lysosome pathway. EMBO J. 36:2544–52
    [Google Scholar]
  57. 57.
    Schisler JC, Rubel CE, Zhang C, Lockyer P, Cyr DM, Patterson C. 2013. CHIP protects against cardiac pressure overload through regulation of AMPK. J. Clin. Investig. 123:3588–99
    [Google Scholar]
  58. 58.
    Zhang C, Xu Z, He XR, Michael LH, Patterson C. 2005. CHIP, a cochaperone/ubiquitin ligase that regulates protein quality control, is required for maximal cardioprotection after myocardial infarction in mice. Am. J. Physiol. Heart Circ. Physiol. 288:H2836–42
    [Google Scholar]
  59. 59.
    Ranek MJ, Oeing C, Sanchez-Hodge R, Kokkonen-Simon KM, Dillard D et al. 2020. CHIP phosphorylation by protein kinase G enhances protein quality control and attenuates cardiac ischemic injury. Nat. Commun. 11:5237
    [Google Scholar]
  60. 60.
    Sutton MG, Sharpe N. 2000. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–88
    [Google Scholar]
  61. 61.
    Schirone L, Forte M, Palmerio S, Yee D, Nocella C et al. 2017. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid. Med. Cell. Longev. 2017:3920195
    [Google Scholar]
  62. 62.
    Emdin M, Aimo A, Castiglione V, Vergaro G, Georgiopoulos G et al. 2020. Targeting cyclic guanosine monophosphate to treat heart failure: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 76:1795–807
    [Google Scholar]
  63. 63.
    Chau VQ, Salloum FN, Hoke NN, Abbate A, Kukreja RC. 2011. Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway. Am. J. Physiol. Heart Circ. Physiol. 300:H2272–79
    [Google Scholar]
  64. 64.
    Salloum FN, Abbate A, Das A, Houser JE, Mudrick CA et al. 2008. Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am. J. Physiol. Heart Circ. Physiol. 294:H1398–406
    [Google Scholar]
  65. 65.
    Takimoto E, Champion HC, Belardi D, Moslehi J, Mongillo M et al. 2005. cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ. Res. 96:100–9
    [Google Scholar]
  66. 66.
    Kim KH, Kim YJ, Ohn JH, Yang J, Lee SE et al. 2012. Long-term effects of sildenafil in a rat model of chronic mitral regurgitation: benefits of ventricular remodeling and exercise capacity. Circulation 125:1390–401
    [Google Scholar]
  67. 67.
    Zhang M, Kass DA 2011. Phosphodiesterases and cardiac cGMP: evolving roles and controversies. Trends Pharmacol. Sci. 32:360–65
    [Google Scholar]
  68. 68.
    Zhu G, Ueda K, Hashimoto M, Zhang M, Sasaki M et al. 2022. The mitochondrial regulator PGC1α is induced by cGMP-PKG signaling and mediates the protective effects of phosphodiesterase 5 inhibition in heart failure. FEBS Lett. 596:17–28
    [Google Scholar]
  69. 69.
    Patten IS, Arany Z. 2012. PGC-1 coactivators in the cardiovascular system. Trends Endocrinol. Metab. 23:90–97
    [Google Scholar]
  70. 70.
    Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C et al. 2003. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–99
    [Google Scholar]
  71. 71.
    Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L et al. 2004. Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. PNAS 101:16507–12
    [Google Scholar]
  72. 72.
    Lukowski R, Rybalkin SD, Loga F, Leiss V, Beavo JA, Hofmann F. 2010. Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. PNAS 107:5646–51
    [Google Scholar]
  73. 73.
    Patrucco E, Domes K, Sbroggio M, Blaich A, Schlossmann J et al. 2014. Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. PNAS 111:12925–29
    [Google Scholar]
  74. 74.
    Guazzi M, Vicenzi M, Arena R, Guazzi MD. 2011. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ. Heart Fail. 4:8–17
    [Google Scholar]
  75. 75.
    Kim K-H, Kim H-K, Hwang I-C, Cho H-J, Je N et al. 2015. PDE 5 inhibition with udenafil improves left ventricular systolic/diastolic functions and exercise capacity in patients with chronic heart failure with reduced ejection fraction; a 12-week, randomized, double-blind, placebo-controlled trial. Am. Heart J. 169:813–22.e3
    [Google Scholar]
  76. 76.
    Lewis GD, Shah R, Shahzad K, Camuso JM, Pappagianopoulos PP et al. 2007. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 116:1555–62
    [Google Scholar]
  77. 77.
    Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL et al. 2013. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309:1268–77
    [Google Scholar]
  78. 78.
    Belyavskiy E, Ovchinnikov A, Potekhina A, Ageev F, Edelmann F. 2020. Phosphodiesterase 5 inhibitor sildenafil in patients with heart failure with preserved ejection fraction and combined pre- and postcapillary pulmonary hypertension: a randomized open-label pilot study. BMC Cardiovasc. Disord. 20:408
    [Google Scholar]
  79. 79.
    Finsterer J, Stöllberger C. 2003. The heart in human dystrophinopathies. Cardiology 99:1–19
    [Google Scholar]
  80. 80.
    Ricotti V, Mandy WP, Scoto M, Pane M, Deconinck N et al. 2016. Neurodevelopmental, emotional, and behavioural problems in Duchenne muscular dystrophy in relation to underlying dystrophin gene mutations. Dev. Med. Child Neurol. 58:77–84
    [Google Scholar]
  81. 81.
    Wehling M, Spencer MJ, Tidball JG. 2001. A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J. Cell Biol. 155:123–31
    [Google Scholar]
  82. 82.
    Wehling-Henricks M, Jordan MC, Roos KP, Deng B, Tidball JG. 2005. Cardiomyopathy in dystrophin-deficient hearts is prevented by expression of a neuronal nitric oxide synthase transgene in the myocardium. Hum. Mol. Genet. 14:1921–33
    [Google Scholar]
  83. 83.
    Asai A, Sahani N, Kaneki M, Ouchi Y, Martyn JA, Yasuhara SE. 2007. Primary role of functional ischemia, quantitative evidence for the two-hit mechanism, and phosphodiesterase-5 inhibitor therapy in mouse muscular dystrophy. PLOS ONE 2:e806
    [Google Scholar]
  84. 84.
    Adamo CM, Dai DF, Percival JM, Minami E, Willis MS et al. 2010. Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. PNAS 107:19079–83
    [Google Scholar]
  85. 85.
    Hammers DW, Sleeper MM, Forbes SC, Shima A, Walter GA, Sweeney HL. 2016. Tadalafil treatment delays the onset of cardiomyopathy in dystrophin-deficient hearts. J. Am. Heart Assoc. 5:8e003911
    [Google Scholar]
  86. 86.
    Percival JM, Whitehead NP, Adams ME, Adamo CM, Beavo JA, Froehner SC. 2012. Sildenafil reduces respiratory muscle weakness and fibrosis in the mdx mouse model of Duchenne muscular dystrophy. J. Pathol. 228:77–87
    [Google Scholar]
  87. 87.
    Martin EA, Barresi R, Byrne BJ, Tsimerinov EI, Scott BL et al. 2012. Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy. Sci. Transl. Med. 4:162ra55
    [Google Scholar]
  88. 88.
    Victor RG, Sweeney HL, Finkel R, McDonald CM, Byrne B et al. 2017. A phase 3 randomized placebo-controlled trial of tadalafil for Duchenne muscular dystrophy. Neurology 89:1811–20
    [Google Scholar]
  89. 89.
    Dombernowsky NW, Olmestig JNE, Witting N, Kruuse C. 2018. Role of neuronal nitric oxide synthase (nNOS) in Duchenne and Becker muscular dystrophies – still a possible treatment modality?. Neuromuscul. Disord. 28:914–26
    [Google Scholar]
  90. 90.
    Huang PL. 2009. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2:231–37
    [Google Scholar]
  91. 91.
    Lakka H-M, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E et al. 2002. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288:2709–16
    [Google Scholar]
  92. 92.
    Hallajzadeh J, Safiri S, Mansournia MA, Khoramdad M, Izadi N et al. 2017. Metabolic syndrome and its components among rheumatoid arthritis patients: a comprehensive updated systematic review and meta-analysis. PLOS ONE 12:e0170361
    [Google Scholar]
  93. 93.
    Stocks T, Bjorge T, Ulmer H, Manjer J, Haggstrom C et al. 2015. Metabolic risk score and cancer risk: pooled analysis of seven cohorts. Int. J. Epidemiol. 44:1353–63
    [Google Scholar]
  94. 94.
    Deyoung L, Chung E, Kovac JR, Romano W, Brock GB. 2012. Daily use of sildenafil improves endothelial function in men with type 2 diabetes. J. Androl. 33:176–80
    [Google Scholar]
  95. 95.
    Ayala JE, Bracy DP, Julien BM, Rottman JN, Fueger PT, Wasserman DH. 2007. Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes 56:1025–33
    [Google Scholar]
  96. 96.
    Herz CT, Kiefer FW. 2019. Adipose tissue browning in mice and humans. J. Endocrinol. 241:R97–109
    [Google Scholar]
  97. 97.
    Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P et al. 2014. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63:4089–99
    [Google Scholar]
  98. 98.
    Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB et al. 2013. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J. Clin. Investig. 123:215–23
    [Google Scholar]
  99. 99.
    Mitschke MM, Hoffmann LS, Gnad T, Scholz D, Kruithoff K et al. 2013. Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J. 27:1621–30
    [Google Scholar]
  100. 100.
    Haas B, Mayer P, Jennissen K, Scholz D, Berriel Diaz M et al. 2009. Protein kinase G controls brown fat cell differentiation and mitochondrial biogenesis. Sci. Signal 2:ra78
    [Google Scholar]
  101. 101.
    Miyashita K, Itoh H, Tsujimoto H, Tamura N, Fukunaga Y et al. 2009. Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 58:2880–92
    [Google Scholar]
  102. 102.
    Maneschi E, Cellai I, Aversa A, Mello T, Filippi S et al. 2016. Tadalafil reduces visceral adipose tissue accumulation by promoting preadipocytes differentiation towards a metabolically healthy phenotype: studies in rabbits. Mol. Cell. Endocrinol. 424:50–70
    [Google Scholar]
  103. 103.
    Ryu SY, Choi YJ, Park SY, Kim JY, Kim YD, Kim YW. 2018. Udenafil, a phosphodiesterase 5 inhibitor, reduces body weight in high-fat-fed mice. World J. Mens Health 36:41–49
    [Google Scholar]
  104. 104.
    Miki T, Itoh T, Sunaga D, Miura T. 2012. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc. Diabetol. 11:67
    [Google Scholar]
  105. 105.
    Van der Mieren G, Nevelsteen I, Vanderper A, Oosterlinck W, Flameng W, Herijgers P. 2012. Angiotensin-converting enzyme inhibition and food restriction in diabetic mice do not correct the increased sensitivity for ischemia-reperfusion injury. Cardiovasc. Diabetol. 11:89
    [Google Scholar]
  106. 106.
    Downey JM, Cohen MV. 2009. Why do we still not have cardioprotective drugs?. Circ. J. 73:1171–77
    [Google Scholar]
  107. 107.
    Anderson SG, Hutchings DC, Woodward M, Rahimi K, Rutter MK et al. 2016. Phosphodiesterase type-5 inhibitor use in type 2 diabetes is associated with a reduction in all-cause mortality. Heart 102:1750–56
    [Google Scholar]
  108. 108.
    Giannetta E, Isidori AM, Galea N, Carbone I, Mandosi E et al. 2012. Chronic inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation 125:2323–33
    [Google Scholar]
  109. 109.
    Santi D, Granata AR, Guidi A, Pignatti E, Trenti T et al. 2016. Six months of daily treatment with vardenafil improves parameters of endothelial inflammation and of hypogonadism in male patients with type 2 diabetes and erectile dysfunction: a randomized, double-blind, prospective trial. Eur. J. Endocrinol. 174:513–22
    [Google Scholar]
  110. 110.
    Koka S, Das A, Salloum FN, Kukreja RC. 2013. Phosphodiesterase-5 inhibitor tadalafil attenuates oxidative stress and protects against myocardial ischemia/reperfusion injury in type 2 diabetic mice. Free Radic. . Biol. Med. 60:80–88
    [Google Scholar]
  111. 111.
    Varma A, Das A, Hoke NN, Durrant DE, Salloum FN, Kukreja RC. 2012. Anti-inflammatory and cardioprotective effects of tadalafil in diabetic mice. PLOS ONE 7:e45243
    [Google Scholar]
  112. 112.
    Zhu S-G, Xi L, Kukreja RC. 2012. Type 2 diabetic obese db/db mice are refractory to myocardial ischaemic post-conditioning in vivo: potential role for Hsp20, F1-ATPase δ and Echs1. J. Cell. Mol. Med. 16:950–58
    [Google Scholar]
  113. 113.
    Koka S, Aluri HS, Xi L, Lesnefsky EJ, Kukreja RC. 2014. Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: potential role of NO/SIRT1/PGC-1α signaling. Am. J. Physiol. Heart Circ. Physiol. 306:H1558–68
    [Google Scholar]
  114. 114.
    Matyas C, Nemeth BT, Olah A, Torok M, Ruppert M et al. 2017. Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes. Eur. J. Heart Fail. 19:326–36
    [Google Scholar]
  115. 115.
    Radovits T, Bomicke T, Kokeny G, Arif R, Loganathan S et al. 2009. The phosphodiesterase-5 inhibitor vardenafil improves cardiovascular dysfunction in experimental diabetes mellitus. Br. J. Pharmacol. 156:909–19
    [Google Scholar]
  116. 116.
    Corum DG, Jenkins DP, Heslop JA, Tallent LM, Beeson GC et al. 2020. PDE5 inhibition rescues mitochondrial dysfunction and angiogenic responses induced by Akt3 inhibition by promotion of PRC expression. J. Biol. Chem. 295:18091–104
    [Google Scholar]
  117. 117.
    Corum DG, Tsichlis PN, Muise-Helmericks RC. 2014. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1. FASEB J. 28:395–407
    [Google Scholar]
  118. 118.
    Dhayade S, Kaesler S, Sinnberg T, Dobrowinski H, Peters S et al. 2016. Sildenafil potentiates a cGMP-dependent pathway to promote melanoma growth. Cell Rep. 14:2599–610
    [Google Scholar]
  119. 119.
    Catalano S, Campana A, Giordano C, Gyorffy B, Tarallo R et al. 2016. Expression and function of phosphodiesterase type 5 in human breast cancer cell lines and tissues: implications for targeted therapy. Clin. Cancer Res. 22:2271–82
    [Google Scholar]
  120. 120.
    Hou Y, Gupta N, Schoenlein P, Wong E, Martindale R et al. 2006. An anti-tumor role for cGMP-dependent protein kinase. Cancer Lett. 240:60–68
    [Google Scholar]
  121. 121.
    Karami-Tehrani F, Fallahian F, Atri M. 2012. Expression of cGMP-dependent protein kinase, PKGIα, PKGIβ, and PKGII in malignant and benign breast tumors. Tumour Biol. 33:1927–32
    [Google Scholar]
  122. 122.
    Muniyan S, Rachagani S, Parte S, Halder S, Seshacharyulu P et al. 2020. Sildenafil potentiates the therapeutic efficacy of docetaxel in advanced prostate cancer by stimulating NO-cGMP signaling. Clin. Cancer Res. 26:5720–34
    [Google Scholar]
  123. 123.
    Piazza GA, Thompson WJ, Pamukcu R, Alila HW, Whitehead CM et al. 2001. Exisulind, a novel proapoptotic drug, inhibits rat urinary bladder tumorigenesis. Cancer Res. 61:3961–68
    [Google Scholar]
  124. 124.
    Sarfati M, Mateo V, Baudet S, Rubio M, Fernandez C et al. 2003. Sildenafil and vardenafil, types 5 and 6 phosphodiesterase inhibitors, induce caspase-dependent apoptosis of B-chronic lymphocytic leukemia cells. Blood 101:265–69
    [Google Scholar]
  125. 125.
    Tinsley HN, Gary BD, Keeton AB, Zhang W, Abadi AH et al. 2009. Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G. Mol. Cancer Ther. 8:3331–40
    [Google Scholar]
  126. 126.
    Whitehead CM, Earle KA, Fetter J, Xu S, Hartman T et al. 2003. Exisulind-induced apoptosis in a non-small cell lung cancer orthotopic lung tumor model augments docetaxel treatment and contributes to increased survival. Mol. Cancer Ther. 2:479–88
    [Google Scholar]
  127. 127.
    Thompson WJ, Piazza GA, Li H, Liu L, Fetter J et al. 2000. Exisulind induction of apoptosis involves guanosine 3′,5′-cyclic monophosphate phosphodiesterase inhibition, protein kinase G activation, and attenuated β-catenin. Cancer Res. 60:3338–42
    [Google Scholar]
  128. 128.
    Zhu B, Vemavarapu L, Thompson WJ, Strada SJ. 2005. Suppression of cyclic GMP-specific phosphodiesterase 5 promotes apoptosis and inhibits growth in HT29 cells. J. Cell. Biochem. 94:336–50
    [Google Scholar]
  129. 129.
    Pusztai L, Zhen JH, Arun B, Rivera E, Whitehead C et al. 2003. Phase I and II study of exisulind in combination with capecitabine in patients with metastatic breast cancer. J. Clin. Oncol. 21:3454–61
    [Google Scholar]
  130. 130.
    Lin S, Wang J, Wang L, Wen J, Guo Y et al. 2017. Phosphodiesterase-5 inhibition suppresses colonic inflammation-induced tumorigenesis via blocking the recruitment of MDSC. Am. J. Cancer Res. 7:41–52
    [Google Scholar]
  131. 131.
    Islam BN, Sharman SK, Hou Y, Bridges AE, Singh N et al. 2017. Sildenafil suppresses inflammation-driven colorectal cancer in mice. Cancer Prev. Res. 10:377–88
    [Google Scholar]
  132. 132.
    Karakhanova S, Link J, Heinrich M, Shevchenko I, Yang Y et al. 2015. Characterization of myeloid leukocytes and soluble mediators in pancreatic cancer: importance of myeloid-derived suppressor cells. Oncoimmunology 4:e998519
    [Google Scholar]
  133. 133.
    Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS et al. 2011. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. PNAS 108:17111–16
    [Google Scholar]
  134. 134.
    Tuttle TR, Mierzwa ML, Wells SI, Fox SR, Ben-Jonathan N. 2016. The cyclic GMP/protein kinase G pathway as a therapeutic target in head and neck squamous cell carcinoma. Cancer Lett. 370:279–85
    [Google Scholar]
  135. 135.
    Califano JA, Khan Z, Noonan KA, Rudraraju L, Zhang Z et al. 2015. Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 21:30–38
    [Google Scholar]
  136. 136.
    Weed DT, Vella JL, Reis IM, De la Fuente AC, Gomez C et al. 2015. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 21:39–48
    [Google Scholar]
  137. 137.
    Arozarena I, Sanchez-Laorden B, Packer L, Hidalgo-Carcedo C, Hayward R et al. 2011. Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. Cancer Cell 19:45–57
    [Google Scholar]
  138. 138.
    Packer LM, East P, Reis-Filho JS, Marais R. 2009. Identification of direct transcriptional targets of V600EBRAF/MEK signalling in melanoma. Pigment Cell Melanoma Res. 22:785–98
    [Google Scholar]
  139. 139.
    Li WQ, Qureshi AA, Robinson KC, Han J. 2014. Sildenafil use and increased risk of incident melanoma in US men: a prospective cohort study. JAMA Intern. Med. 174:964–70
    [Google Scholar]
  140. 140.
    Matthews A, Langan SM, Douglas IJ, Smeeth L, Bhaskaran K. 2016. Phosphodiesterase type 5 inhibitors and risk of malignant melanoma: matched cohort study using primary care data from the UK clinical practice research datalink. PLOS Med. 13:e1002037
    [Google Scholar]
  141. 141.
    Pottegard A, Schmidt SA, Olesen AB, Achacoso N, Van Den Eeden SK et al. 2016. Use of sildenafil or other phosphodiesterase inhibitors and risk of melanoma. Br. J. Cancer 115:895–900
    [Google Scholar]
  142. 142.
    Tang H, Wu W, Fu S, Zhai S, Song Y, Han J. 2017. Phosphodiesterase type 5 inhibitors and risk of melanoma: a meta-analysis. J. Am. Acad. Dermatol. 77:480–88.e9
    [Google Scholar]
  143. 143.
    Michl U, Molfenter F, Graefen M, Tennstedt P, Ahyai S et al. 2015. Use of phosphodiesterase type 5 inhibitors may adversely impact biochemical recurrence after radical prostatectomy. J. Urol. 193:479–83
    [Google Scholar]
  144. 144.
    Danley KT, Tan A, Catalona WJ, Leikin R, Helenowski I et al. 2022. The association of phosphodiesterase-5 inhibitors with the biochemical recurrence-free and overall survival of patients with prostate cancer following radical prostatectomy. Urol. Oncol. 40:57.e1–57.e7
    [Google Scholar]
  145. 145.
    Gallina A, Bianchi M, Gandaglia G, Cucchiara V, Suardi N et al. 2015. A detailed analysis of the association between postoperative phosphodiesterase type 5 inhibitor use and the risk of biochemical recurrence after radical prostatectomy. Eur. Urol. 68:750–53
    [Google Scholar]
  146. 146.
    Jamnagerwalla J, Howard LE, Vidal AC, Moreira DM, Castro-Santamaria R et al. 2016. The association between phosphodiesterase type 5 inhibitors and prostate cancer: results from the REDUCE Study. J. Urol. 196:715–20
    [Google Scholar]
  147. 147.
    Huang W, Sundquist J, Sundquist K, Ji J 2020. Phosphodiesterase-5 inhibitors use and risk for mortality and metastases among male patients with colorectal cancer. Nat. Commun. 11:3191
    [Google Scholar]
  148. 148.
    Chang JF, Hsu JL, Sheng YH, Leu WJ, Yu CC et al. 2018. Phosphodiesterase type 5 (PDE5) inhibitors sensitize topoisomerase II inhibitors in killing prostate cancer through PDE5-independent impairment of HR and NHEJ DNA repair systems. Front. Oncol. 8:681
    [Google Scholar]
  149. 149.
    Domvri K, Zarogoulidis K, Zogas N, Zarogoulidis P, Petanidis S et al. 2017. Potential synergistic effect of phosphodiesterase inhibitors with chemotherapy in lung cancer. J. Cancer 8:3648–56
    [Google Scholar]
  150. 150.
    Greish K, Fateel M, Abdelghany S, Rachel N, Alimoradi H et al. 2018. Sildenafil citrate improves the delivery and anticancer activity of doxorubicin formulations in a mouse model of breast cancer. J. Drug Target 26:610–15
    [Google Scholar]
  151. 151.
    Das A, Durrant D, Mitchell C, Mayton E, Hoke NN et al. 2010. Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. PNAS 107:18202–7
    [Google Scholar]
  152. 152.
    Booth L, Roberts JL, Cruickshanks N, Conley A, Durrant DE et al. 2014. Phosphodiesterase 5 inhibitors enhance chemotherapy killing in gastrointestinal/genitourinary cancer cells. Mol. Pharmacol. 85:408–19
    [Google Scholar]
  153. 153.
    Booth L, Roberts JL, Cruickshanks N, Tavallai S, Webb T et al. 2015. PDE5 inhibitors enhance celecoxib killing in multiple tumor types. J. Cell. Physiol. 230:1115–27
    [Google Scholar]
  154. 154.
    Das A, Durrant D, Mitchell C, Dent P, Batra SK, Kukreja RC. 2016. Sildenafil (Viagra) sensitizes prostate cancer cells to doxorubicin-mediated apoptosis through CD95. Oncotarget 7:4399–413
    [Google Scholar]
  155. 155.
    Roberts JL, Booth L, Conley A, Cruickshanks N, Malkin M et al. 2014. PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biol. Ther. 15:758–67
    [Google Scholar]
  156. 156.
    Li Q, Shu Y. 2014. Pharmacological modulation of cytotoxicity and cellular uptake of anti-cancer drugs by PDE5 inhibitors in lung cancer cells. Pharm. Res. 31:86–96
    [Google Scholar]
  157. 157.
    Poklepovic A, Qu Y, Dickinson M, Kontos MC, Kmieciak M et al. 2018. Randomized study of doxorubicin-based chemotherapy regimens, with and without sildenafil, with analysis of intermediate cardiac markers. Cardiooncology 4:7
    [Google Scholar]
  158. 158.
    Al-Batran SE, Van Cutsem E, Oh SC, Bodoky G, Shimada Y et al. 2016. Quality-of-life and performance status results from the phase III RAINBOW study of ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated gastric or gastroesophageal junction adenocarcinoma. Ann. Oncol. 27:673–79
    [Google Scholar]
  159. 159.
    de Morree E, van Soest R, Aghai A, de Ridder C, de Bruijn P et al. 2016. Understanding taxanes in prostate cancer; importance of intratumoral drug accumulation. Prostate 76:927–36
    [Google Scholar]
  160. 160.
    Bimonte VM, Marampon F, Antonioni A, Fittipaldi S, Ferretti E et al. 2021. Phosphodiesterase type-5 inhibitor tadalafil modulates steroid hormones signaling in a prostate cancer cell line. Int. J. Mol. Sci. 22:754
    [Google Scholar]
  161. 161.
    Black KL, Yin D, Ong JM, Hu J, Konda BM et al. 2008. PDE5 inhibitors enhance tumor permeability and efficacy of chemotherapy in a rat brain tumor model. Brain Res. 1230:290–302
    [Google Scholar]
  162. 162.
    Chen JJ, Sun YL, Tiwari AK, Xiao ZJ, Sodani K et al. 2012. PDE5 inhibitors, sildenafil and vardenafil, reverse multidrug resistance by inhibiting the efflux function of multidrug resistance protein 7 (ATP-binding cassette C10) transporter. Cancer Sci. 103:1531–37
    [Google Scholar]
  163. 163.
    Ding PR, Tiwari AK, Ohnuma S, Lee JW, An X et al. 2011. The phosphodiesterase-5 inhibitor vardenafil is a potent inhibitor of ABCB1/P-glycoprotein transporter. PLOS ONE 6:e19329
    [Google Scholar]
  164. 164.
    Kashgari FK, Ravna A, Sager G, Lysa R, Enyedy I, Dietrichs ES. 2020. Identification and experimental confirmation of novel cGMP efflux inhibitors by virtual ligand screening of vardenafil-analogues. Biomed. Pharmacother. 126:110109
    [Google Scholar]
  165. 165.
    Shi Z, Tiwari AK, Shukla S, Robey RW, Singh S et al. 2011. Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Cancer Res. 71:3029–41
    [Google Scholar]
  166. 166.
    Hu J, Ljubimova JY, Inoue S, Konda B, Patil R et al. 2010. Phosphodiesterase type 5 inhibitors increase herceptin transport and treatment efficacy in mouse metastatic brain tumor models. PLOS ONE 5:e10108
    [Google Scholar]
  167. 167.
    Wang R, Chen W, Zhang Q, Liu Y, Qiao X et al. 2015. Phosphodiesterase type 5 inhibitor tadalafil increases rituximab treatment efficacy in a mouse brain lymphoma model. J. Neurooncol. 122:35–42
    [Google Scholar]
  168. 168.
    Frajese GV, Pozzi F. 2005. New achievement and novel therapeutic applications of PDE5 inhibithors in older males. J. Endocrinol. Investig. 28:45–50
    [Google Scholar]
  169. 169.
    Sokanovic SJ, Capo I, Medar MM, Andric SA, Kostic TS. 2018. Long-term inhibition of PDE5 ameliorates aging-induced changes in rat testis. Exp. Gerontol. 108:139–48
    [Google Scholar]
  170. 170.
    Sokanovic SJ, Baburski AZ, Kojic Z, Medar MLJ, Andric SA, Kostic TS. 2021. Aging-related increase of cGMP disrupts mitochondrial homeostasis in Leydig cells. J. Gerontol. A Biol. Sci. Med. Sci. 76:177–86
    [Google Scholar]
  171. 171.
    Chang P, Zhang X, Zhang M, Li G, Hu L et al. 2020. Swimming exercise inhibits myocardial ER stress in the hearts of aged mice by enhancing cGMPPKG signaling. Mol. Med. Rep. 21:549–56
    [Google Scholar]
  172. 172.
    Kim SM, Taneja C, Perez-Pena H, Ryu V, Gumerova A et al. 2020. Repurposing erectile dysfunction drugs tadalafil and vardenafil to increase bone mass. PNAS 117:14386–94
    [Google Scholar]
  173. 173.
    Choi HI, Kang BM, Jang J, Hwang ST, Kwon O. 2018. Novel effect of sildenafil on hair growth. Biochem. Biophys. Res. Commun. 505:685–91
    [Google Scholar]
  174. 174.
    Zhong C, Xu M, Boral S, Summer H, Lichtenberger F-B et al. 2021. Age impairs soluble guanylyl cyclase function in mouse mesenteric arteries. Int. J. Mol. Sci. 22:11412
    [Google Scholar]
  175. 175.
    Bautista Nino PK, Durik M, Danser AH, de Vries R, Musterd-Bhaggoe UM et al. 2015. Phosphodiesterase 1 regulation is a key mechanism in vascular aging. Clin. Sci. 129:1061–75
    [Google Scholar]
  176. 176.
    Yiu G, Vuong VS, Tran S, Migacz J, Cunefare D et al. 2019. Vascular response to sildenafil citrate in aging and age-related macular degeneration. Sci. Rep. 9:5049
    [Google Scholar]
  177. 177.
    Nyberg M, Piil P, Egelund J, Sprague RS, Mortensen SP, Hellsten Y. 2015. Potentiation of cGMP signaling increases oxygen delivery and oxidative metabolism in contracting skeletal muscle of older but not young humans. Physiol. Rep. 3:e12508
    [Google Scholar]
  178. 178.
    Nyberg M, Piil P, Egelund J, Sprague RS, Mortensen SP, Hellsten Y. 2015. Effect of PDE5 inhibition on the modulation of sympathetic α-adrenergic vasoconstriction in contracting skeletal muscle of young and older recreationally active humans. Am. J. Physiol. Heart Circ. Physiol. 309:H1867–75
    [Google Scholar]
  179. 179.
    Maccioni RB, Munoz JP, Barbeito L. 2001. The molecular bases of Alzheimer's disease and other neurodegenerative disorders. Arch. Med. Res. 32:367–81
    [Google Scholar]
  180. 180.
    Devan BD, Sierra-Mercado D Jr., Jimenez M, Bowker JL, Duffy KB et al. 2004. Phosphodiesterase inhibition by sildenafil citrate attenuates the learning impairment induced by blockade of cholinergic muscarinic receptors in rats. Pharmacol. Biochem. Behav. 79:691–99
    [Google Scholar]
  181. 181.
    Puzzo D, Staniszewski A, Deng SX, Privitera L, Leznik E et al. 2009. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-β load in an Alzheimer's disease mouse model. J. Neurosci. 29:8075–86
    [Google Scholar]
  182. 182.
    Zuccarello E, Acquarone E, Calcagno E, Argyrousi EK, Deng SX et al. 2020. Development of novel phosphodiesterase 5 inhibitors for the therapy of Alzheimer's disease. Biochem. Pharmacol. 176:113818
    [Google Scholar]
  183. 183.
    Zhang L, Zhang RL, Wang Y, Zhang C, Zhang ZG et al. 2005. Functional recovery in aged and young rats after embolic stroke: treatment with a phosphodiesterase type 5 inhibitor. Stroke 36:847–52
    [Google Scholar]
  184. 184.
    Zhang RL, Zhang Z, Zhang L, Wang Y, Zhang C, Chopp M. 2006. Delayed treatment with sildenafil enhances neurogenesis and improves functional recovery in aged rats after focal cerebral ischemia. J. Neurosci. Res. 83:1213–19
    [Google Scholar]
  185. 185.
    Teich AF, Sakurai M, Patel M, Holman C, Saeed F et al. 2016. PDE5 exists in human neurons and is a viable therapeutic target for neurologic disease. J. Alzheimer's Dis. 52:295–302
    [Google Scholar]
  186. 186.
    Devan BD, Pistell PJ, Duffy KB, Kelley-Bell B, Spangler EL, Ingram DK. 2014. Phosphodiesterase inhibition facilitates cognitive restoration in rodent models of age-related memory decline. NeuroRehabilitation 34:101–11
    [Google Scholar]
  187. 187.
    Puzzo D, Loreto C, Giunta S, Musumeci G, Frasca G et al. 2014. Effect of phosphodiesterase-5 inhibition on apoptosis and beta amyloid load in aged mice. Neurobiol. Aging 35:520–31
    [Google Scholar]
  188. 188.
    Domek-Lopacinska K, Strosznajder JB. 2008. The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res. 1216:68–77
    [Google Scholar]
  189. 189.
    Son Y, Kim K, Cho H-R. 2018. Sildenafil protects neuronal cells from mitochondrial toxicity induced by β-amyloid peptide via ATP-sensitive K+ channels. Biochem. Biophys. Res. Commun. 500:504–10
    [Google Scholar]
  190. 190.
    Acquarone E, Argyrousi EK, van den Berg M, Gulisano W, M et al. 2019. Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Mol. Neurodegener. 14:26
    [Google Scholar]
  191. 191.
    Fang J, Zhang P, Zhou Y, Chiang C-W, Tan J et al. 2021. Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer's disease. Nat. Aging 1:1175–88
    [Google Scholar]
  192. 192.
    Samudra N, Motes M, Lu H, Sheng M, Diaz-Arrastia R et al. 2019. A pilot study of changes in medial temporal lobe fractional amplitude of low frequency fluctuations after sildenafil administration in patients with Alzheimer's disease. J. Alzheimer's Dis. 70:163–70
    [Google Scholar]
  193. 193.
    Sheng M, Lu H, Liu P, Li Y, Ravi H et al. 2017. Sildenafil improves vascular and metabolic function in patients with Alzheimer's disease. J. Alzheimer's Dis. 60:1351–64
    [Google Scholar]
  194. 194.
    Fiorito J, Saeed F, Zhang H, Staniszewski A, Feng Y et al. 2013. Synthesis of quinoline derivatives: discovery of a potent and selective phosphodiesterase 5 inhibitor for the treatment of Alzheimer's disease. Eur. J. Med. Chem. 60:285–94
    [Google Scholar]
  195. 195.
    Fiorito J, Vendome J, Saeed F, Staniszewski A, Zhang H et al. 2017. Identification of a novel 1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine analogue as a potent phosphodiesterase 5 inhibitor with improved aqueous solubility for the treatment of Alzheimer's disease. J. Med. Chem. 60:8858–75
    [Google Scholar]
  196. 196.
    Sung B-J, Hwang KY, Jeon YH, Lee JI, Heo Y-S et al. 2003. Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature 425:98–102
    [Google Scholar]
  197. 197.
    Filippi S, Morelli A, Sandner P, Fibbi B, Mancina R et al. 2007. Characterization and functional role of androgen-dependent PDE5 activity in the bladder. Endocrinology 148:1019–29
    [Google Scholar]
  198. 198.
    Cuadrado-Tejedor M, Pérez-González M, García-Muñoz C, Muruzabal D, García-Barroso C et al. 2019. Taking advantage of the selectivity of histone deacetylases and phosphodiesterase inhibitors to design better therapeutic strategies to treat Alzheimer's disease. Front. Aging Neurosci. 11:149
    [Google Scholar]
  199. 199.
    Cuadrado-Tejedor M, García-Barroso C, Sánchez-Arias JA, Rabal O, Pérez-González M et al. 2017. A first-in-class small-molecule that acts as a dual inhibitor of HDAC and PDE5 and that rescues hippocampal synaptic impairment in Alzheimer's disease mice. Neuropsychopharmacology 42:524–39
    [Google Scholar]
  200. 200.
    Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M et al. 2018. Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer's disease. Eur. J. Med. Chem. 150:506–24
    [Google Scholar]
  201. 201.
    Mao F, Wang H, Ni W, Zheng X, Wang M et al. 2018. Design, synthesis, and biological evaluation of orally available first-generation dual-target selective inhibitors of acetylcholinesterase (AChE) and phosphodiesterase 5 (PDE5) for the treatment of Alzheimer's disease. ACS Chem. Neurosci. 9:328–45
    [Google Scholar]
  202. 202.
    Ni W, Wang H, Li X, Zheng X, Wang M et al. 2018. Novel tadalafil derivatives ameliorates scopolamine-induced cognitive impairment in mice via inhibition of acetylcholinesterase (AChE) and phosphodiesterase 5 (PDE5). ACS Chem. Neurosci. 9:1625–36
    [Google Scholar]
  203. 203.
    Martin S, Lange K, Haren MT, Taylor AW, Wittert G, Members of the Florey Adelaide Male Ageing Study. 2014. Risk factors for progression or improvement of lower urinary tract symptoms in a prospective cohort of men. J. Urol. 191:130–37
    [Google Scholar]
  204. 204.
    Fitzpatrick JM. 2006. The natural history of benign prostatic hyperplasia. BJU Int. 97:Suppl. 23–6
    [Google Scholar]
  205. 205.
    Zhang W, Zang N, Jiang Y, Chen P, Wang X, Zhang X 2015. Upregulation of phosphodiesterase type 5 in the hyperplastic prostate. Sci. Rep. 5:17888
    [Google Scholar]
  206. 206.
    Zenzmaier C, Sampson N, Pernkopf D, Plas E, Untergasser G, Berger P. 2010. Attenuated proliferation and trans-differentiation of prostatic stromal cells indicate suitability of phosphodiesterase type 5 inhibitors for prevention and treatment of benign prostatic hyperplasia. Endocrinology 151:3975–84
    [Google Scholar]
  207. 207.
    Porst H, Roehrborn CG, Secrest RJ, Esler A, Viktrup L. 2013. Effects of tadalafil on lower urinary tract symptoms secondary to benign prostatic hyperplasia and on erectile dysfunction in sexually active men with both conditions: analyses of pooled data from four randomized, placebo-controlled tadalafil clinical studies. J. Sex Med. 10:2044–52
    [Google Scholar]
  208. 208.
    Monica FZ, De Nucci G. 2019. Tadalafil for the treatment of benign prostatic hyperplasia. Expert Opin. Pharmacother. 20:929–37
    [Google Scholar]
  209. 209.
    Yan H, Zong H, Cui Y, Li N, Zhang Y. 2014. The efficacy of PDE5 inhibitors alone or in combination with alpha-blockers for the treatment of erectile dysfunction and lower urinary tract symptoms due to benign prostatic hyperplasia: a systematic review and meta-analysis. J. Sex Med. 11:1539–45
    [Google Scholar]
  210. 210.
    Habashi NM, Camporota L, Gatto LA, Nieman G. 2021. Functional pathophysiology of SARS-CoV-2-induced acute lung injury and clinical implications. J. Appl. Physiol. 130:877–91
    [Google Scholar]
  211. 211.
    Santamarina MG, Boisier D, Contreras R, Baque M, Volpacchio M, Beddings I. 2020. COVID-19: a hypothesis regarding the ventilation-perfusion mismatch. Crit. Care 24:395
    [Google Scholar]
  212. 212.
    Lanza K, Perez LG, Costa LB, Cordeiro TM, Palmeira VA et al. 2020. Covid-19: the renin-angiotensin system imbalance hypothesis. Clin. Sci. 134:1259–64
    [Google Scholar]
  213. 213.
    Ciceri F, Beretta L, Scandroglio AM, Colombo S, Landoni G et al. 2020. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 22:95–97
    [Google Scholar]
  214. 214.
    Cameron MJ, Bermejo-Martin JF, Danesh A, Muller MP, Kelvin DJ. 2008. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 133:13–19
    [Google Scholar]
  215. 215.
    Rothan HA, Byrareddy SN. 2020. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 109:102433
    [Google Scholar]
  216. 216.
    Griendling KK, Lassegue B, Murphy TJ, Alexander RW. 1994. Angiotensin II receptor pharmacology. Adv. Pharmacol. 28:269–306
    [Google Scholar]
  217. 217.
    Isidori AM, Giannetta E, Pofi R, Venneri MA, Gianfrilli D et al. 2021. Targeting the NO-cGMP-PDE5 pathway in COVID-19 infection. The DEDALO project. Andrology 9:33–38
    [Google Scholar]
  218. 218.
    Nunes AK, Rapôso C, Santos Rocha SW, de Sousa Barbosa KP, de Almeida Luna RL et al. 2015. Involvement of AMPK, IKβα-NFκB and eNOS in the sildenafil anti-inflammatory mechanism in a demyelination model. Brain Res. 1627:119–33
    [Google Scholar]
  219. 219.
    Mario L, Roberto M, Marta L, Teresa CM, Laura M 2020. Hypothesis of COVID-19 therapy with sildenafil. Int. J. Prev. Med. 11:76
    [Google Scholar]
  220. 220.
    Mostafa T. 2021. Could oral phosphodiesterase 5 inhibitors have a potential adjuvant role in combating COVID-19 infection?. Sex Med. Rev. 9:15–22
    [Google Scholar]
  221. 221.
    Puk O, Nowacka A, Smulewicz K, Mocna K, Bursiewicz W et al. 2022. Pulmonary artery targeted therapy in treatment of COVID-19 related ARDS. Literature review. Biomed. Pharmacother. 146:112592
    [Google Scholar]
  222. 222.
    Kloner RA, Goggin P, Goldstein I, Hackett G, Kirby MG et al. 2018. A new perspective on the nitrate-phosphodiesterase type 5 inhibitor interaction. J. Cardiovasc. Pharmacol. Ther. 23:375–86
    [Google Scholar]
  223. 223.
    Nunes AP, Seeger JD, Stewart A, Gupta A, McGraw T. 2021. Cardiovascular outcome risks in patients with erectile dysfunction co-prescribed a phosphodiesterase type 5 inhibitor (PDE5i) and a nitrate: a retrospective observational study using electronic health record data in the United States. J. Sex Med. 18:1511–23
    [Google Scholar]
  224. 224.
    Kloner RA, Kostis JB, McGraw TP, Qiu C, Gupta A. 2022. Analysis of integrated clinical safety data of tadalafil in patients receiving concomitant antihypertensive medications. J. Clin. Hypertens. 24:167–78
    [Google Scholar]
  225. 225.
    Kerr NM, Danesh-Meyer HV. 2009. Phosphodiesterase inhibitors and the eye. Clin. Exp. Ophthalmol. 37:514–23
    [Google Scholar]
  226. 226.
    Barroso F, Ribeiro JC, Miranda EP. 2021. Phosphodiesterase type 5 inhibitors and visual side effects: a narrative review. J. Ophthalmic Vis. Res. 16:248–59
    [Google Scholar]
  227. 227.
    Jagle H, Jagle C, Serey L, Yu A, Rilk A et al. 2004. Visual short-term effects of Viagra: double-blind study in healthy young subjects. Am. J. Ophthalmol. 137:842–49
    [Google Scholar]
  228. 228.
    Penedones A, Alves C, Batel Marques F. 2020. Risk of nonarteritic ischaemic optic neuropathy with phosphodiesterase type 5 inhibitors: a systematic review and meta-analysis. Acta Ophthalmol. 98:22–31
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-040122-034745
Loading
/content/journals/10.1146/annurev-pharmtox-040122-034745
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error