1932

Abstract

Motivational processes are complex and multifaceted, with both directional and activational aspects. Behavioral activation and exertion of effort are functions that enable organisms to overcome obstacles separating them from significant outcomes. In a complex environment, organisms make cost/benefit decisions, assessing work-related response costs and reinforcer preference. Animal studies have challenged the general idea that dopamine (DA) is best viewed as the reward transmitter and instead have illustrated the involvement of DA in activational and effort-related processes. Mesocorticolimbic DA is a key component of the effort-related motivational circuitry that includes multiple neurotransmitters and brain areas. Human studies have identified brain areas and transmitter systems involved in effort-based decision making and characterized the reduced selection of high-effort activities associated with motivational symptoms of depression and schizophrenia. Animal and human research on the neurochemistry of behavioral activation and effort-related processes makes an important conceptual contribution by illustrating the dissociable nature of distinct aspects of motivation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-020223-012208
2024-01-18
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/psych/75/1/annurev-psych-020223-012208.html?itemId=/content/journals/10.1146/annurev-psych-020223-012208&mimeType=html&fmt=ahah

Literature Cited

  1. Aberman JE, Salamone JD. 1999. Nucleus accumbens dopamine depletions make animals more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience 92:545–52. https://doi.org/10.1016/S0306-4522(99)00004-4
    [Google Scholar]
  2. Aberman JE, Ward SJ, Salamone JD. 1998. Effects of dopamine antagonists and accumbens dopamine depletions on time-constrained progressive ratio performance. Pharmacol. Biochem. Behav. 61:341–48. https://doi.org/10.1016/S0091-3057(98)00112-9
    [Google Scholar]
  3. Anderson GE, Sharp A, Pratt WE. 2023. Stimulation of nucleus accumbens 5-HT6 receptors increases both appetitive and consummatory motivation in an effort-based choice task. Neuroreport 34:2116–21. https://doi.org/10.1097/WNR.0000000000001868
    [Google Scholar]
  4. Anstrom KK, Miczek KA, Budygin EA. 2009. Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 161:13–12. https://doi.org/10.1016/j.neuroscience.2009.03.023
    [Crossref] [Google Scholar]
  5. Anstrom KK, Woodward DJ. 2005. Restraint increases dopaminergic burst firing in awake rats. Neuropsychopharmacology 30:101832–40. https://doi.org/10.1038/sj.npp.1300730
    [Crossref] [Google Scholar]
  6. Bailey MR, Chun E, Schipani E, Balsam PD, Simpson EH. 2020. Dissociating the effects of dopamine D2 receptors on effort-based versus value-based decision making using a novel behavioral approach. Behav. Neurosci. 134:2101–18. https://doi.org/10.1037/bne0000361
    [Google Scholar]
  7. Bailey MR, Williamson C, Mezias C, Winiger V, Silver R et al. 2016. The effects of pharmacological modulation of the serotonin 2C receptor on goal-directed behavior in mice. Psychopharmacology 233:4615–24. https://doi.org/10.1007/s00213-015-4135-3
    [Google Scholar]
  8. Baum WM, Rachlin HC. 1969. Choice as time allocation. J. Exp. Anal. Behav. 12:861–74. https://doi.org/10.1901/jeab.1969.12-861
    [Crossref] [Google Scholar]
  9. Berridge KC. 2007. The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology 191:3391–431. https://doi.org/10.1007/s00213-006-0578-x
    [Crossref] [Google Scholar]
  10. Berridge KC, Kringelbach ML. 2008. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology 199:457–80. https://doi.org/10.1007/s00213-008-1099-6
    [Google Scholar]
  11. Berridge KC, Robinson TE. 2003. Parsing reward. Trends Neurosci. 26:9507–13. https://doi.org/10.1016/S0166-2236(03)00233-9
    [Crossref] [Google Scholar]
  12. Boekhoudt L, Wijbrans EC, Man JHK, Luijendijk MCM, de Jong JW et al. 2018. Enhancing excitability of dopamine neurons promotes motivational behaviour through increased action initiation. Eur. Neuropsychopharmacol. 28:1171–84. https://doi.org/10.1016/j.euroneuro.2017.11.005
    [Google Scholar]
  13. Borderies N, Bornert P, Gilardeau S, Bouret S. 2020. Pharmacological evidence for the implication of noradrenaline in effort. PLOS Biol. 18:10e3000793 https://doi.org/10.1371/journal.pbio.3000793
    [Google Scholar]
  14. Brauer LH, De Wit H. 1997. High dose pimozide does not block amphetamine-induced euphoria in normal volunteers. Pharmacol. Biochem. Behav. 56:2265–72. https://doi.org/10.1016/s0091-3057(96)00240-7
    [Google Scholar]
  15. Brischoux F, Chakraborty S, Brierley DI, Ungless MA. 2009. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. PNAS 106:124894–99. https://doi.org/10.1073/pnas.0811507106
    [Google Scholar]
  16. Bryce CA, Floresco SB. 2016. Perturbations in effort-related decision-making driven by acute stress and corticotropin-releasing factor. Neuropsychopharmacology 41:82147–59. https://doi.org/10.1038/npp.2016.15
    [Crossref] [Google Scholar]
  17. Caroff SN, Aggarwal S, Yonan C. 2018. Treatment of tardive dyskinesia with tetrabenazine or valbenazine: a systematic review. J. Comp. Eff. Res. 7:2135–48. https://doi.org/10.2217/cer-2017-0065
    [Google Scholar]
  18. Carratalá-Ros C, López-Cruz L, Martínez-Verdú A, Olivares-García R, Salamone JD, Correa M. 2021a. Impact of fluoxetine on behavioral invigoration of appetitive and aversively motivated responses: interaction with dopamine depletion. Front. Behav. Neurosci. 15:700182 https://doi.org/10.3389/fnbeh.2021.700182
    [Crossref] [Google Scholar]
  19. Carratalá-Ros C, López-Cruz L, San Miguel N, Ibáñez-Marín P, Martínez-Verdú A et al. 2020. Preference for exercise versus more sedentary reinforcers: validation of an animal model of tetrabenazine-induced anergia. Front. Behav. Neurosci. 13:289 https://doi.org/10.3389/fnbeh.2019.00289
    [Google Scholar]
  20. Carratalá-Ros C, Olivares-García R, Martínez-Verdú A, Arias-Sandoval E, Salamone JD, Correa M. 2021b. Energizing effects of bupropion on effortful behaviors in mice under positive and negative test conditions: modulation of DARPP-32 phosphorylation patterns. Psychopharmacology 238:123357–73. https://doi.org/10.1007/s00213-021-05950-4
    [Crossref] [Google Scholar]
  21. Caul WF, Brindle NA. 2001. Schedule-dependent effects of haloperidol and amphetamine: Multiple-schedule task shows within-subject effects. Pharmacol. Biochem. Behav. 68:153–63. https://doi.org/10.1016/s0091-3057(00)00431-7
    [Crossref] [Google Scholar]
  22. Chen JJ, Ondo WG, Dashtipour K, Swope DM. 2012. Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin. Ther. 34:71487–504. https://doi.org/10.1016/j.clinthera.2012.06.010
    [Crossref] [Google Scholar]
  23. Chong TT, Bonnelle V, Manohar S, Veromann KR, Muhammed K et al. 2015. Dopamine enhances willingness to exert effort for reward in Parkinson's disease. Cortex 69:40–46. https://doi.org/10.1016/j.cortex.2015.04.003
    [Crossref] [Google Scholar]
  24. Cocker PJ, Hosking JG, Benoit J, Winstanley CA. 2012. Sensitivity to cognitive effort mediates psychostimulant effects on a novel rodent cost/benefit decision-making task. Neuropsychopharmacology 37:81825–37. https://doi.org/10.1038/npp.2012.30
    [Google Scholar]
  25. Cofer CN, Appley MH. 1964. Motivation: Theory and Research New York: Wiley & Sons
  26. Cofer CN, Petri HL. 2023. Motivation. Encyclopedia Britannica. https://www.britannica.com/topic/motivation
    [Google Scholar]
  27. Cooper JA, Tucker VL, Papakostas GI. 2014. Resolution of sleepiness and fatigue: a comparison of bupropion and selective serotonin reuptake inhibitors in subjects with major depressive disorder achieving remission at doses approved in the European Union. J. Psychopharmacol. 28:118–24. https://doi.org/10.1177/0269881113514878
    [Crossref] [Google Scholar]
  28. Correa M, Carlson BB, Wisniecki A, Salamone JD. 2002. Nucleus accumbens dopamine and work requirements on interval schedules. Behav. Brain Res. 137:179–87. https://doi.org/10.1016/s0166-4328(02)00292-9
    [Crossref] [Google Scholar]
  29. Correa M, Pardo M, Bayarri P, López-Cruz L, San Miguel N et al. 2016. Choosing voluntary exercise over sucrose consumption depends upon dopamine transmission: effects of haloperidol in wild type and adenosine A2AKO mice. Psychopharmacology 233:3393–404. https://doi.org/10.1007/s00213-015-4127-3
    [Google Scholar]
  30. Correa M, Pardo M, Carratalá-Ros C, Martínez-Verdú A, Salamone JD. 2020. Preference for vigorous exercise versus sedentary sucrose drinking: an animal model of anergia induced by dopamine receptor antagonism. Behav. Pharmacol. 31:6553–64. https://doi.org/10.1097/FBP.0000000000000556
    [Google Scholar]
  31. Correa M, San Miguel N, López-Cruz L, Carratalá-Ros C, Olivares-García R, Salamone JD. 2018. Caffeine modulates food intake depending on the context that gives access to food: comparison with dopamine depletion. Front. Psychiatry 9:411 https://doi.org/10.3389/fpsyt.2018.00411
    [Google Scholar]
  32. Cousins MS, Atherton A, Turner L, Salamone JD. 1996. Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task. Behav. Brain Res. 74:1–2189–97. https://doi.org/10.1016/0166-4328(95)00151-4
    [Crossref] [Google Scholar]
  33. Cousins MS, Sokolowski JD, Salamone JD. 1993. Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacol. Biochem. Behav. 46:4943–51. https://doi.org/10.1016/0091-3057(93)90226-j
    [Google Scholar]
  34. Covey DP, Hernandez E, Luján , Cheer JF. 2021. Chronic augmentation of endocannabinoid levels persistently increases dopaminergic encoding of reward cost and motivation. J. Neurosci. 41:326946–53. https://doi.org/10.1523/JNEUROSCI.0285-21.2021
    [Google Scholar]
  35. Culbreth AJ, Moran EK, Kandala S, Westbrook A, Barch DM. 2020. Effort, avolition and motivational experience in schizophrenia: analysis of behavioral and neuroimaging data with relationships to daily motivational experience. Clin. Psychol. Sci. 8:3555–68. https://doi.org/10.1177/2167702620901558
    [Crossref] [Google Scholar]
  36. Dantzer R. 2009. Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. North Am. 29:2247–64. https://doi.org/10.1016/j.iac.2009.02.002
    [Google Scholar]
  37. Dashiell JF. 1928. Fundamentals of Objective Psychology Boston: Houghton Mifflin
  38. Denk F, Walton ME, Jennings KA, Sharp T, Rushworth MF, Bannerman DM. 2005. Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacology 179:3587–96. https://doi.org/10.1007/s00213-004-2059-4
    [Google Scholar]
  39. Devoto P, Flore G, Saba P, Scheggi S, Mulas G et al. 2019. Noradrenergic terminals are the primary source of α2-adrenoceptor mediated dopamine release in the medial prefrontal cortex. Prog. Neuropsychopharmacol. Biol. Psychiatry 90:97–103. https://doi.org/10.1016/j.pnpbp.2018.11.015
    [Google Scholar]
  40. Devoto P, Sagheddu C, Santoni M, Flore G, Saba P et al. 2020. Noradrenergic source of dopamine assessed by microdialysis in the medial prefrontal cortex. Front. Pharmacol. 11:588160 https://doi.org/10.3389/fphar.2020.588160
    [Crossref] [Google Scholar]
  41. Dieterich A, Liu T, Samuels BA. 2021. Chronic non-discriminatory social defeat stress reduces effort-related motivated behaviors in male and female mice. Transl. Psychiatry 11:1125 https://doi.org/10.1038/s41398-021-01250-9
    [Crossref] [Google Scholar]
  42. Dieterich A, Stech K, Srivastava P, Lee J, Sharif A, Samuels BA. 2020a. Chronic corticosterone shifts effort-related choice behavior in male mice. Psychopharmacology 237:72103–10. https://doi.org/10.1007/s00213-020-05521-z
    [Crossref] [Google Scholar]
  43. Dieterich A, Yohn CN, Samuels BA. 2020b. Chronic stress shifts effort-related choice behavior in a Y-maze barrier task in mice. J. Vis. Exp. 13:162e61548 https://doi.org/10.3791/61548
    [Google Scholar]
  44. Domingues AV, Coimbra B, Correia R, Deseyve C, Vieitas-Gaspar N et al. 2022. Prenatal dexamethasone exposure alters effort decision making and triggers nucleus accumbens and anterior cingulate cortex functional changes in male rats. Transl. Psychiatry 12:1338 https://doi.org/10.1038/s41398-022-02043-4
    [Google Scholar]
  45. Duffy E. 1963. Activation and Behavior New York: Wiley & Sons
  46. Ecevitoglu A, Edelstein GA, Presby RE, Rotolo RA, Yang JH et al. 2023. Effects of the atypical antipsychotic and D3/D2 dopamine partial agonist cariprazine on effort-based choice behavior: implications for modeling avolition. Psychopharmacology 240:81747–57. https://doi.org/10.1007/s00213-023-06405-8
    [Google Scholar]
  47. Ecevitoglu A, Meka N, Edelstein G, Srinath S, Beard K et al. 2022. Potential therapeutics for effort-related motivational dysfunction: assessing novel atypical dopamine transport inhibitors Poster presented at Neuroscience 2022, Meeting of the Society for Neuroscience San Diego:
  48. Farrar AM, Font L, Pereira M, Mingote S, Bunce JG et al. 2008. Forebrain circuitry involved in effort-related choice: Injections of the GABAA agonist muscimol into ventral pallidum alter response allocation in food-seeking behavior. Neuroscience 152:321–30. https://doi.org/10.1016/j.neuroscience.2007.12.034
    [Google Scholar]
  49. Farrar AM, Pereira M, Velasco F, Hockemeyer J, Muller CE, Salamone JD. 2007. Adenosine A2A receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing. Psychopharmacology 191:579–86. https://doi.org/10.1007/s00213-006-0554-5
    [Google Scholar]
  50. Farrar AM, Segovia KN, Randall PA, Nunes EJ, Collins LE et al. 2010. Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors. Neuroscience 166:41056–67. https://doi.org/10.1016/j.neuroscience.2009.12.056
    [Google Scholar]
  51. Fava M, Ball S, Nelson JC, Sparks J, Konechnik T et al. 2014. Clinical relevance of fatigue as a residual symptom in major depressive disorder. Depress. Anxiety 31:3250–57. https://doi.org/10.1002/da.22199
    [Google Scholar]
  52. Fischbach-Weiss S, Reese RM, Janak PH. 2018. Inhibiting mesolimbic dopamine neurons reduces the initiation and maintenance of instrumental responding. Neuroscience 372:306–15. https://doi.org/10.1016/j.neuroscience.2017.12.003
    [Crossref] [Google Scholar]
  53. Fitzpatrick CM, Runegaard AH, Christiansen SH, Hansen NW, Jørgensen SH et al. 2019. Differential effects of chemogenetic inhibition of dopamine and norepinephrine neurons in the mouse 5-choice serial reaction time task. Prog. Neuropsychopharmacol. Biol. Psychiatry 90:264–76. https://doi.org/10.1016/j.pnpbp.2018.12.004
    [Crossref] [Google Scholar]
  54. Floresco SB, Ghods-Sharifi S. 2007. Amygdala-prefrontal cortical circuitry regulates effort based decision making. Cereb. Cortex 17:2251–60. https://doi.org/10.1093/cercor/bhj143
    [Google Scholar]
  55. Floresco SB, Tse MT, Ghods-Sharifi S. 2008. Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology 33:81966–79. https://doi.org/10.1038/sj.npp.1301565
    [Crossref] [Google Scholar]
  56. Font L, Mingote S, Farrar AM, Pereira M, Worden L et al. 2008. Intra-accumbens injections of the adenosine A2A agonist CGS 21680 affect effort-related choice behavior in rats. Psychopharmacology 199:4515–26. https://doi.org/10.1007/s00213-008-1174-z
    [Crossref] [Google Scholar]
  57. Friedman JH, Brown RG, Comella C, Garber CE, Krupp LB et al. 2007. Fatigue in Parkinson's disease: a review. Mov. Disord. 22:3297–308. https://doi.org/10.1002/mds.21240
    [Google Scholar]
  58. Gawin FH. 1986. Neuroleptic reduction of cocaine-induced paranoia but not euphoria?. Psychopharmacology 90:1142–43. https://doi.org/10.1007/BF00172886
    [Google Scholar]
  59. Ghods-Sharifi S, Floresco SB. 2010. Differential effects on effort discounting induced by inactivations of the nucleus accumbens core or shell. Behav. Neurosci. 124:2179–91. https://doi.org/10.1037/a0018932
    [Google Scholar]
  60. Gold JM, Strauss GP, Waltz JA, Robinson BM, Brown JK, Frank MJ. 2013. Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biol. Psychiatry 74:130–36. https://doi.org/10.1016/j.biopsych.2012.12.022
    [Crossref] [Google Scholar]
  61. Griesius S, Mellor JR, Robinson ES. 2020. Comparison of acute treatment with delayed-onset versus rapid-acting antidepressants on effort-related choice behaviour. Psychopharmacology 237:82381–94. https://doi.org/10.1007/s00213-020-05541-9
    [Google Scholar]
  62. Guay DRP. 2010. Tetrabenazine, a monoamine-depleting drug used in the treatment of hyperkinectic movement disorders. Am. J. Geriatr. Pharmacother. 8:4331–73. https://doi.org/10.1016/j.amjopharm.2010.08.006
    [Crossref] [Google Scholar]
  63. Gullion CM, Rush AJ. 1998. Toward a generalizable model of symptoms in major depressive disorder. Biol. Psychiatry 44:10959–72. https://doi.org/10.1016/s0006-3223(98)00235-2
    [Google Scholar]
  64. Halbout B, Marshall AT, Azimi A, Liljeholm M, Mahler SV et al. 2019. Mesolimbic dopamine projections mediate cue-motivated reward seeking but not reward retrieval in rats. eLife 8:e43551 https://doi.org/10.7554/eLife.43551
    [Crossref] [Google Scholar]
  65. Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R et al. 2016. Mesolimbic dopamine signals the value of work. Nat. Neurosci. 19:1117–26. https://doi.org/10.1038/nn.4173
    [Google Scholar]
  66. Haney M, Ward AS, Foltin RW, Fischman MW. 2001. Effects of ecopipam, a selective dopamine D1 antagonist, on smoked cocaine self-administration by humans. Psychopharmacology 155:4330–37. https://doi.org/10.1007/s002130100725
    [Crossref] [Google Scholar]
  67. Hart EE, Blair GJ, O'Dell TJ, Blair HT, Izquierdo A. 2020. Chemogenetic modulation and single-photon calcium imaging in anterior cingulate cortex reveal a mechanism for effort-based decisions. J. Neurosci. 40:295628–43. https://doi.org/10.1523/JNEUROSCI.2548-19.2020
    [Google Scholar]
  68. Hart EE, Gerson JO, Zoken Y, Garcia M, Izquierdo A. 2017. Anterior cingulate cortex supports effort allocation towards a qualitatively preferred option. Eur. J. Neurosci. 46:11682–88. https://doi.org/10.1111/ejn.13608
    [Crossref] [Google Scholar]
  69. Hauber W, Sommer S. 2009. Prefrontostriatal circuitry regulates effort-related decision making. Cereb. Cortex 19:102240–47. https://doi.org/10.1093/cercor/bhn241
    [Google Scholar]
  70. Heyman GM. 2023. Overconsumption as a function of how individuals make choices: a paper in honor of Howard Rachlin's contributions to psychology. J. Exp. Anal. Behav. 119:191–103. https://doi.org/10.1002/jeab.821
    [Crossref] [Google Scholar]
  71. Hosking JG, Cocker PJ, Winstanley CA. 2014a. Dissociable contributions of anterior cingulate cortex and basolateral amygdala on a rodent cost/benefit decision-making task of cognitive effort. Neuropsychopharmacology 39:71558–67. https://doi.org/10.1038/npp.2014.27
    [Crossref] [Google Scholar]
  72. Hosking JG, Floresco SB, Winstanley CA. 2015. Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks. Neuropsychopharmacology 40:41005–15. https://doi.org/10.1038/npp.2014.285
    [Crossref] [Google Scholar]
  73. Hosking JG, Lam FC, Winstanley CA. 2014b. Nicotine increases impulsivity and decreases willingness to exert cognitive effort despite improving attention in “slacker” rats: insights into cholinergic regulation of cost/benefit decision making. PLOS ONE 9:10e111580 https://doi.org/10.1371/journal.pone.0111580
    [Crossref] [Google Scholar]
  74. Howe MW, Tierney PL, Sandberg SG, Phillips PE, Graybiel AM. 2013. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500:7464575–79. https://doi.org: 10.1038/nature12475
    [Google Scholar]
  75. Hughes RN, Bakhurin KI, Petter EA, Watson G, Kim N et al. 2020. Ventral tegmental dopamine neurons control the impulse vector during motivated behavior. Curr. Biol. 30:142681–94.e5. https://doi.org/10.1016/j.cub.2020.05.003
    [Crossref] [Google Scholar]
  76. Hupalo S, Bryce CA, Bangasser DA, Berridge CW, Valentino RJ, Floresco SB. 2019. Corticotropin-releasing factor (CRF) circuit modulation of cognition and motivation. Neurosci. Biobehav. Rev. 103:50–59. https://doi.org/10.1016/j.neubiorev.2019.06.010
    [Crossref] [Google Scholar]
  77. Hursh SR. 1990. Behavioral economics. J. Exp. Anal. Behav. 42:435–52. https://doi.org/10.1901/jeab.1984.42-435
    [Crossref] [Google Scholar]
  78. Ishiwari K, Weber SM, Mingote S, Correa M, Salamone JD. 2004. Accumbens dopamine and the regulation of effort in food-seeking behavior: modulation of work output by different ratio or force requirements. Behav. Brain Res. 151:83–91. https://doi.org/10.1016/j.bbr.2003.08.007
    [Google Scholar]
  79. Kaźmierczak M, Nicola SM. 2022. The arousal-motor hypothesis of dopamine function: evidence that dopamine facilitates reward seeking in part by maintaining arousal. Neuroscience 499:64–103. https://doi.org/10.1016/j.neuroscience.2022.07.008
    [Crossref] [Google Scholar]
  80. Killeen PR, Hanson SJ, Osborne SR. 1978. Arousal: its genesis and manifestation as response rate. Psychol. Rev. 85:571–81. https://doi.org/10.1037/0033-295X.85.6.571
    [Google Scholar]
  81. Kleinginna PR, Kleinginna AM. 1981. A categorized list of motivation definitions, with a suggestion for a consensual definition. Motiv. Emot. 5:3263–91. https://doi.org/10.1007/BF00993889
    [Google Scholar]
  82. Ko D, Wanat MJ. 2016. Phasic dopamine transmission reflects initiation vigor and exerted effort in an action- and region-specific manner. J. Neurosci. 36:2202–11. https://doi.org/10.1523/JNEUROSCI.1279-15.2016
    [Google Scholar]
  83. Korb S, Massaccesi C, Gartus A, Lundström JN, Rumiati R et al. 2020. Facial responses of adult humans during the anticipation and consumption of touch and food rewards. Cognition 194:104044 https://doi.org/10.1016/j.cognition.2019.104044
    [Crossref] [Google Scholar]
  84. Kouhnavardi S, Ecevitoglu A, Dragačević V, Sanna F, Arias-Sandoval E et al. 2022. A novel and selective dopamine transporter inhibitor, (S)-MK-26, promotes hippocampal synaptic plasticity and restores effort-related motivational dysfunctions. Biomolecules 12:7881 https://doi.org/10.3390/biom12070881
    [Crossref] [Google Scholar]
  85. Krebs JR. 1977. Optimal foraging: theory and experiment. Nature 268:583–84. https://doi.org/10.1038/268583a0
    [Crossref] [Google Scholar]
  86. Laplante F, Dufresne MM, Ouboudinar J, Ochoa-Sanchez R, Sullivan RM. 2013. Reduction in cholinergic interneuron density in the nucleus accumbens attenuates local extracellular dopamine release in response to stress or amphetamine. Synapse 67:121–29. https://doi.org/10.1002/syn.21612
    [Google Scholar]
  87. Lea SEG. 1978. The psychology and economics of demand. Psychol. Bull. 85:441–66. https://doi.org/10.1037/0033-2909.85.3.441
    [Crossref] [Google Scholar]
  88. Li Y, Zuo Y, Yu P, Ping X, Cui C. 2015. Role of basolateral amygdala dopamine D2 receptors in impulsive choice in acute cocaine-treated rats. Behav. Brain Res. 287:187–95. https://doi.org/10.1016/j.bbr.2015.03.039
    [Crossref] [Google Scholar]
  89. Lindenbach D, Vacca G, Ahn S, Seamans JK, Phillips AG. 2022. Optogenetic modulation of glutamatergic afferents from the ventral subiculum to the nucleus accumbens: effects on dopamine function, response vigor and locomotor activity. Behav. Brain Res. 434:114028 https://doi.org:10.1016/j.bbr.2022.114028
    [Google Scholar]
  90. López-Cruz L, San Miguel N, Carratalá-Ros C, Monferrer L, Salamone JD, Correa M. 2018. Dopamine depletion shifts behavior from activity-based reinforcers to more sedentary ones and adenosine receptor antagonism reverses that shift: relation to ventral striatum DARPP32 phosphorylation patterns. Neuropharmacology 138:349–59. https://doi.org/10.1016/j.neuropharm.2018.01.034
    [Google Scholar]
  91. Lopez-Gamundi P, Wardle MC. 2018. The cognitive effort expenditure for rewards task (C-EEfRT): a novel measure of willingness to expend cognitive effort. Psychol. Assess. 30:91237–48. https://doi.org/10.1037/pas0000563
    [Crossref] [Google Scholar]
  92. Mai B, Sommer S, Hauber W. 2012. Motivational states influence effort-based decision making in rats: the role of dopamine in the nucleus accumbens. Cogn. Affect. Behav. Neurosci. 12:174–84. https://doi.org/10.3758/s13415-011-0068-4
    [Crossref] [Google Scholar]
  93. Marinelli M, McCutcheon JE. 2014. Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 282:176–97. https://doi.org/10.1016/j.neuroscience.2014.07.034
    [Google Scholar]
  94. McCullough LD, Cousins MS, Salamone JD. 1993a. The role of nucleus accumbens dopamine in responding on a continuous reinforcement operant schedule: a neurochemical and behavioral study. Pharmacol. Biochem. Behav. 46:3581–86. https://doi.org/10.1016/0091-3057(93)90547-7
    [Google Scholar]
  95. McCullough LD, Salamone JD. 1992. Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: microdialysis and behavioral study. Brain Res 592:29–36. https://doi.org/10.1016/0006-8993(92)91654-W
    [Google Scholar]
  96. McCullough LD, Sokolowski JD, Salamone JD. 1993b. A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance. Neuroscience 52:4919–25. https://doi.org/10.1016/0306-4522(93)90538-q
    [Google Scholar]
  97. Mingote S, Font L, Farrar AM, Vontell R, Worden LT et al. 2008. Nucleus accumbens adenosine A2A receptors regulate exertion of effort by acting on the ventral striatopallidal pathway. J. Neurosci. 28:369037–46. https://doi.org/10.1523/JNEUROSCI.1525-08.2008
    [Google Scholar]
  98. Mingote S, Weber SM, Ishiwari K, Correa M, Salamone JD. 2005. Ratio and time requirements on operant schedules: effort-related effects of nucleus accumbens dopamine depletions. Eur. J. Neurosci. 21:61749–57. https://doi.org/10.1111/j.1460-9568.2005.03972.x
    [Google Scholar]
  99. Mogenson GJ, Jones DL, Yim CY. 1980. From motivation to action: functional interface between the limbic system and the motor system. Prog. Neurobiol. 14:2–369–97. https://doi.org/10.1016/0301-0082(80)90018-0
    [Google Scholar]
  100. Mott AM, Nunes EJ, Collins LE, Port RG, Sink KS et al. 2009. The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology 204:1103–12. https://doi.org/10.1007/s00213-008-1441-z
    [Crossref] [Google Scholar]
  101. Münster A, Sommer S, Hauber W. 2018. Dopamine D1 receptors in the medial orbitofrontal cortex support effort-related responding in rats. Eur. Neuropsychopharmacol. 32:136–41. https://doi.org/10.1016/j.euroneuro.2020.01.008
    [Crossref] [Google Scholar]
  102. Münster A, Votteler A, Sommer S, Hauber W. 2020. Role of the medial orbitofrontal cortex and ventral tegmental area in effort-related responding. Cereb. Cortex Commun. 1:1tgaa086 https://doi.org/10.1093/texcom/tgaa086
    [Crossref] [Google Scholar]
  103. Nann-Vernotica E, Donny EC, Bigelow GE, Walsh SL. 2001. Repeated administration of the D1/5 antagonist ecopipam fails to attenuate the subjective effects of cocaine. Psychopharmacology 155:4338–47. https://doi.org/10.1007/s002130100724
    [Crossref] [Google Scholar]
  104. Nasrollahi S, Karimi S, Hamidi G, Naderitehrani M, Abed A. 2021. Blockade of the orexin 1 receptors in the nucleus accumbens' shell reversed the reduction effect of olanzapine on motivation for positive reinforcers. Neurosci. Lett. 762:136137 https://doi.org/10.1016/j.neulet.2021.136137
    [Google Scholar]
  105. Newman AH, Ku T, Jordan CJ, Bonifazi A, Xi ZX. 2021. New drugs, old targets: tweaking the dopamine system to treat psychostimulant use disorders. Annu. Rev. Pharmacol. Toxicol. 61:609–28. https://doi.org/10.1146/annurev-pharmtox-030220-124205
    [Crossref] [Google Scholar]
  106. Nowend KL, Arizzi M, Carlson BB, Salamone JD. 2001. D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol. Biochem. Behav. 69:3–4373–82. https://doi.org/10.1016/s0091-3057(01)00524-x
    [Google Scholar]
  107. Nunes EJ, Kebede N, Bagdas D, Addy NA. 2022. Cholinergic and dopaminergic-mediated motivated behavior in healthy states and in substance use and mood disorders. J. Exp. Anal. Behav. 117:3404–19. https://doi.org/10.1002/jeab.747
    [Google Scholar]
  108. Nunes EJ, Randall PA, Estrada A, Epling B, Hart EE et al. 2014. Effort-related motivational effects of the pro-inflammatory cytokine interleukin 1-beta: studies with the concurrent fixed ratio 5/chow feeding choice task. Psychopharmacology 231:4727–36. https://doi.org/10.1007/s00213-013-3285-4
    [Google Scholar]
  109. Nunes EJ, Randall PA, Hart EE, Freeland C, Yohn SE et al. 2013a. Effort-related motivational effects of the VMAT-2 inhibitor tetrabenazine: implications for animal models of the motivational symptoms of depression. J. Neurosci. 33:4919120–30. https://doi.org/10.1523/JNEUROSCI.2730-13.2013
    [Google Scholar]
  110. Nunes EJ, Randall PA, Podurgiel S, Correa M, Salamone JD. 2013b. Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors. Neurosci. Biobehav. Rev. 37:9, Part A2015–25. https://doi.org/10.1016/j.neubiorev.2013.04.002
    [Google Scholar]
  111. Oliva I, Wanat MJ. 2019. Operant costs modulate dopamine release to self-administered cocaine. J. Neurosci. 39:71249–60. https://doi.org/10.1523/JNEUROSCI.1721-18.2018
    [Google Scholar]
  112. Ostlund SB, Wassum KM, Murphy NP, Balleine BW, Maidment NT. 2011. Extracellular dopamine levels in striatal subregions track shifts in motivation and response cost during instrumental conditioning. J. Neurosci. 31:1200–7. https://doi.org:10.1523/JNEUROSCI.4759-10.2011
    [Google Scholar]
  113. Padala PR, Padala KP, Monga V, Ramirez DA, Sullivan DH. 2012. Reversal of SSRI associated apathy syndrome by discontinuation of therapy. Ann. Pharmacother. 46:3e8 https://doi.org/10.1345/aph.1Q656
    [Google Scholar]
  114. Pae CU, Lim HK, Han C, Patkar AA, Steffens DC et al. 2007. Fatigue as a core symptom in major depressive disorder: overview and the role of bupropion. Expert. Rev. Neurother. 7:1251–63. https://doi.org/10.1586/14737175.7.10.1251
    [Crossref] [Google Scholar]
  115. Panksepp J. 2016. The cross-mammalian neurophenomenology of primal emotional affects: from animal feelings to human therapeutics. J. Comp. Neurol. 524:81624–35. https://doi.org/10.1002/cne.23969
    [Google Scholar]
  116. Papakostas GI, Nutt DJ, Hallett LA, Tucker VL, Krishen A, Fava M. 2006. Resolution of sleepiness and fatigue in major depressive disorder: a comparison of bupropion and the selective serotonin reuptake inhibitors. Biol. Psychiatry 60:121350–55. https://doi.org/10.1016/j.biopsych.2006.06.015
    [Google Scholar]
  117. Pardo M, López-Cruz L, San Miguel N, Salamone JD, Correa M. 2015. Selection of sucrose concentration depends on the effort required to obtain it: studies using tetrabenazine, D1, D2, and D3 receptor antagonists. Psychopharmacology 232:132377–91. https://doi.org/10.1007/s00213-015-3872-7
    [Google Scholar]
  118. Pardo M, López-Cruz L, Valverde O, Ledent C, Baqi Y et al. 2012. Adenosine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-based decision making in mice. Neuropharmacology 62:5–62068–77. https://doi.org/10.1016/j.neuropharm.2011.12.033
    [Google Scholar]
  119. Pettibone DJ, Totaro JA, Pflueger AB. 1984. Tetrabenazine-induced depletion of brain monoamines: characterization and interaction with selected antidepressants. Eur. J. Pharmacol. 102:425–30. https://doi.org/10.1016/0014-2999(84)90562-4
    [Crossref] [Google Scholar]
  120. Posner J, Russell JA, Peterson BS. 2005. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17:3715–34. https://doi.org/10.1017/S0954579405050340
    [Google Scholar]
  121. Presby RE, Rotolo RA, Hurley EM, Ferrigno SM, Murphy CE et al. 2021. Sex differences in lever pressing and running wheel tasks of effort-based choice behavior in rats: suppression of high effort activity by the serotonin transport inhibitor fluoxetine. Pharmacol. Biochem. Behav. 202:173115 https://doi.org/10.1016/j.pbb.2021.173115
    [Crossref] [Google Scholar]
  122. Randall PA, Lee CA, Nunes EJ, Yohn SE, Nowak V et al. 2014. The VMAT-2 inhibitor tetrabenazine affects effort-related decision making in a progressive ratio/chow feeding choice task: reversal with antidepressant drugs. PLOS ONE 9:6e99320 https://doi.org/10.1371/journal.pone.0099320
    [Google Scholar]
  123. Randall PA, Lee CA, Podurgiel SJ, Hart E, Yohn SE et al. 2015. Bupropion increases selection of high effort activity in rats tested on a progressive ratio/chow feeding choice procedure: implications for treatment of effort-related motivational symptoms. Int. J. Neuropsychopharmacol. 18:2pyu017 https://doi.org/10.1093/ijnp/pyu017
    [Crossref] [Google Scholar]
  124. Randall PA, Pardo M, Nunes EJ, López Cruz L, Vemuri VK et al. 2012. Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio chow feeding choice task: pharmacological studies and the role of individual differences. PLOS ONE 7:10e47934 https://doi.org/10.1371/journal.pone.0047934
    [Crossref] [Google Scholar]
  125. Ren N, Carratalá-Ros C, Ecevitoglu A, Rotolo RA, Edelstein GA et al. 2022. Effects of the dopamine depleting agent tetrabenazine on detailed temporal parameters of effort-related choice responding. J. Exp. Anal. Behav. 117:3331–45. https://doi.org/10.1002/jeab.754
    [Google Scholar]
  126. Rick JH, Horvitz JC, Balsam PD. 2006. Dopamine receptor blockade and extinction differentially affect behavioral variability. Behav. Neurosci. 120:2488–92. https://doi.org/10.1037/0735-7044.120.2.488
    [Google Scholar]
  127. Robbins TW, Koob GF. 1980. Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285:5764409–12. https://doi.org/10.1038/285409a0
    [Google Scholar]
  128. Robbins TW, Roberts DC, Koob GF. 1983. Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens. J. Pharmacol. Exp. Ther. 224:3662–73
    [Google Scholar]
  129. Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM. 2004. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci. 24:61265–71. https://doi.org/10.1523/JNEUROSCI.3823-03.2004
    [Google Scholar]
  130. Rothschild AJ, Raskin J, Wang CN, Marangell LB, Fava M. 2014. The relationship between change in apathy and changes in cognition and functional outcomes in currently non-depressed SSRI-treated patients with major depressive disorder. Compr. Psychiatry 55:11–10. https://doi.org/10.1016/j.comppsych.2013.08.008
    [Crossref] [Google Scholar]
  131. Rotolo RA, Dragacevic V, Kalaba P, Urban E, Zehl M et al. 2019. The novel atypical dopamine uptake inhibitor (S)-CE-123 partially reverses the effort-related effects of the dopamine depleting agent tetrabenazine and increases progressive ratio responding. Front. Pharmacol. 10:682 https://doi.org/10.3389/fphar.2019.00682
    [Crossref] [Google Scholar]
  132. Rotolo RA, Kalaba P, Dragacevic V, Presby RE, Neri J et al. 2020. Behavioral and dopamine transporter binding properties of the modafinil analog (S, S)-CE-158: reversal of the motivational effects of tetrabenazine and enhancement of progressive ratio responding. Psychopharmacology 237:113459–70. https://doi.org/10.1007/s00213-020-05625-6
    [Google Scholar]
  133. Rotolo RA, Presby RE, Tracy O, Asar S, Yang JH et al. 2021. The novel atypical dopamine transport inhibitor CT-005404 has pro-motivational effects in neurochemical and inflammatory models of effort-based dysfunctions related to psychopathology. Neuropharmacology 183:108325 https://doi.org/10.1016/j.neuropharm.2020.108325
    [Crossref] [Google Scholar]
  134. Saddoris MP, Cacciapaglia F, Wightman RM, Carelli RM. 2015. Differential dopamine release dynamics in the nucleus accumbens core and shell reveal complementary signals for error prediction and incentive motivation. J. Neurosci. 35:3311572–82. https://doi.org/10.1523/JNEUROSCI.2344-15.2015
    [Google Scholar]
  135. Salamone JD. 1986. Different effects of haloperidol and extinction on instrumental behaviours. Psychopharmacology 88:118–23. https://doi.org/10.1007/BF00310507
    [Google Scholar]
  136. Salamone JD. 1988. Dopaminergic involvement in activational aspects of motivation: effects of haloperidol on schedule induced activity, feeding and foraging in rats. Psychobiology 16:196–206. https://doi.org/10.3758/BF03327307
    [Crossref] [Google Scholar]
  137. Salamone JD, Arizzi M, Sandoval MD, Cervone KM, Aberman JE. 2002. Dopamine antagonists alter response allocation but do not suppress appetite for food in rats: contrast between the effects of SKF 83566, raclopride and fenfluramine on a concurrent choice task. Psychopharmacology 160:371–80. https://doi.org/10.1007/s00213-001-0994-x
    [Google Scholar]
  138. Salamone JD, Correa M. 2002. Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav. Brain Res. 137:3–25. https://doi.org/10.1016/s0166-4328(02)00282-6
    [Crossref] [Google Scholar]
  139. Salamone JD, Correa M. 2012. The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–85. https://doi.org/10.1016/j.neuron.2012.10.021
    [Google Scholar]
  140. Salamone JD, Correa M. 2017. Motor function and motivation. Encyclopedia of Behavioral Neuroscience S Della Sala 558–62. Amsterdam: Elsevier https://doi.org/10.1016/B978-0-12-809324-5.00365-5
    [Google Scholar]
  141. Salamone JD, Correa M. 2022. Critical review of RDoC approaches to the study of motivation with animal models: effort valuation/willingness to work. Emerg. Top. Life Sci. 6:5515–28. https://doi.org/10.1042/ETLS20220008
    [Crossref] [Google Scholar]
  142. Salamone JD, Correa M, Farrar AM, Mingote SM. 2007. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacol. 191:461–82. https://doi.org/10.1007/s00213-006-0668-9
    [Crossref] [Google Scholar]
  143. Salamone JD, Correa M, Farrar AM, Nunes EJ, Collins LE. 2010. Role of dopamine–adenosine interactions in the brain circuitry regulating effort-related decision making: insights into pathological aspects of motivation. Future Neurol. 5:377–92. https://doi.org/10.2217/fnl.10.19
    [Google Scholar]
  144. Salamone JD, Correa M, Farrar AM, Nunes EJ, Pardo M. 2009a. Dopamine, behavioral economics, and effort. Front. Behav. Neurosci. 3:13 https://doi.org/10.3389/neuro.08.013.2009
    [Google Scholar]
  145. Salamone JD, Correa M, Ferrigno S, Yang JH, Rotolo RA, Presby RE. 2018. The psychopharmacology of effort-related decision making: dopamine, adenosine, and insights into the neurochemistry of motivation. Pharmacol. Rev. 70:4747–62. https://doi.org/10.1124/pr.117.015107
    [Google Scholar]
  146. Salamone JD, Correa M, Yohn S, López-Cruz L, San Miguel N, Alatorre L. 2016a. The pharmacology of effort-related choice behavior: dopamine, depression, and individual differences. Behav. Process. 127:3–17. https://doi.org/10.1016/j.beproc.2016.02.008
    [Google Scholar]
  147. Salamone JD, Correa M, Yohn SE, Yang JH, Somerville M et al. 2017. Behavioral activation, effort-based choice, and elasticity of demand for motivational stimuli: basic and translational neuroscience approaches. Motiv. Sci. 3:3208–29. https://doi.org/10.1037/mot0000070
    [Google Scholar]
  148. Salamone JD, Cousins MS, Bucher S. 1994. Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav. Brain Res. 65:221–29. https://doi.org/10.1016/0166-4328(94)90108-2
    [Google Scholar]
  149. Salamone JD, Ecevitoglu A, Carratalá-Ros C, Presby RE, Edelstein GA et al. 2022. Complexities and paradoxes in understanding the role of dopamine in incentive motivation and instrumental action: exertion of effort versus anhedonia. Brain Res. Bull. 182:57–66. https://doi.org/10.1016/j.brainresbull.2022.01.019
    [Crossref] [Google Scholar]
  150. Salamone JD, Farrar AM, Font L, Patel V, Schlar DE et al. 2009b. Differential actions of adenosine A1 and A2A antagonists on the effort-related effects of dopamine D2 antagonism. Behav. Brain Res. 201:1216–22. https://doi.org/10.1016/j.bbr.2009.02.021
    [Google Scholar]
  151. Salamone JD, Koychev I, Correa M, McGuire P. 2015. Neurobiological basis of motivational deficits in psychopathology. Eur. Neuropsychopharmacol. 25:81225–38. https://doi.org/10.1016/j.euroneuro.2014.08.014
    [Crossref] [Google Scholar]
  152. Salamone JD, Kurth P, McCullough LD, Sokolowski JD. 1995. The effects of nucleus accumbens dopamine depletions on continuously reinforced operant responding: contrasts with the effects of extinction. Pharmacol. Biochem. Behav. 50:3437–43. https://doi.org/10.1016/0091-3057(94)00294-s
    [Google Scholar]
  153. Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K. 1991. Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology 104:4515–21. https://doi.org/10.1007/BF02245659
    [Google Scholar]
  154. Salamone JD, Wisniecki A, Carlson BB, Correa M. 2001. Nucleus accumbens dopamine depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary food reinforcement. Neuroscience 105:863–70. https://doi.org/10.1016/s0306-4522(01)00249-4
    [Google Scholar]
  155. Salamone JD, Yohn SE, López-Cruz L, San Miguel N, Correa M. 2016b. Activational aspects of motivation: neural mechanisms and implications for psychopathology. Brain 139:1325–47. https://doi.org/10.1093/brain/aww050
    [Crossref] [Google Scholar]
  156. Schopenhauer A. 1999. Prize Essay on the Freedom of the Will G Zöller, transl. EFJ Payne Cambridge, UK: Cambridge Univ. Press
  157. Schweimer J, Hauber W. 2005. Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy. Learn. Mem. 12:3334–42. https://doi.org/10.1101/lm.90605
    [Google Scholar]
  158. Segovia KN, Correa M, Lennington JB, Conover JC, Salamone JD. 2012. Changes in nucleus accumbens and neostriatal c-Fos and DARPP-32 immunoreactivity during different stages of food-reinforced instrumental training. Eur. J. Neurosci. 35:81354–67. https://doi.org/10.1111/j.1460-9568.2012.08036.x
    [Google Scholar]
  159. Segovia KN, Correa M, Salamone JD. 2011. Slow phasic changes in nucleus accumbens dopamine release during fixed ratio acquisition: a microdialysis study. Neuroscience 196:178–88. https://doi.org/10.1016/j.neuroscience.2011.07.078
    [Crossref] [Google Scholar]
  160. Shafiei N, Gray M, Viau V, Floresco SB. 2012. Acute stress induces selective alterations in cost/benefit decision-making. Neuropsychopharmacology 37:102194–209. https://doi.org/10.1038/npp.2012.69
    [Google Scholar]
  161. Sias AC, Morse AK, Wang S, Greenfield VY, Goodpaster CM et al. 2021. A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories. eLife 10:e68617 https://doi.org/10.7554/eLife.68617
    [Crossref] [Google Scholar]
  162. Silveira MM, Adams WK, Morena M, Hill MN, Winstanley CA. 2017. Δ9-Tetrahydrocannabinol decreases willingness to exert cognitive effort in male rats. J. Psychiatry Neurosci. 42:2131–38. https://doi.org/10.1503/jpn.150363
    [Crossref] [Google Scholar]
  163. Silveira MM, Tremblay M, Winstanley CA. 2018. Dissociable contributions of dorsal and ventral striatal regions on a rodent cost/benefit decision-making task requiring cognitive effort. Neuropharmacology 137:322–31. https://doi.org/10.1016/j.neuropharm.2018.04.025
    [Google Scholar]
  164. Silveira MM, Wittekindt SN, Mortazavi L, Hathaway BA, Winstanley CA. 2020. Investigating serotonergic contributions to cognitive effort allocation, attention, and impulsive action in female rats. J. Psychopharmacol. 34:4452–66. https://doi.org/10.1177/0269881119896043
    [Google Scholar]
  165. Simpson EH, Kellendonk C, Ward RD, Richards V, Lipatova O et al. 2011. Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia. Biol. Psychiatry 69:10928–35. https://doi.org/10.1016/j.biopsych.2011.01.012
    [Google Scholar]
  166. Simpson EH, Waltz JA, Kellendonk C, Balsam PD. 2012. Schizophrenia in translation: dissecting motivation in schizophrenia and rodents. Schizophr. Bull. 38:61111–17. https://doi.org/10.1093/schbul/sbs114
    [Google Scholar]
  167. Sink KS, Vemuri VK, Olszewska T, Makriyannis A, Salamone JD. 2008. Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology 196:4565–74. https://doi.org/10.1007/s00213-007-0988-4
    [Google Scholar]
  168. Soder HE, Cooper JA, Lopez-Gamundi P, Hoots JK, Nunez C et al. 2021. Dose-response effects of d-amphetamine on effort-based decision-making and reinforcement learning. Neuropsychopharmacology 46:61078–85. https://doi.org/10.1038/s41386-020-0779-8
    [Google Scholar]
  169. Sokolowski JD, Salamone JD. 1998. The role of accumbens dopamine in lever pressing and response allocation: effects of 6-OHDA injected into core and dorsomedial shell. Pharmacol. Biochem. Behav. 59:3557–66. https://doi.org/10.1016/s0091-3057(97)00544-3
    [Google Scholar]
  170. Sommer S, Danysz W, Russ H, Valastro B, Flik G, Hauber W. 2014. The dopamine reuptake inhibitor MRZ-9547 increases progressive ratio responding in rats. Int. J. Neuropsychopharmacol. 17:2045–56. https://doi.org/10.1017/S1461145714000996
    [Crossref] [Google Scholar]
  171. Soto PL, Hiranita T, Xu M, Hursh SR, Grandy DK, Katz JL. 2016. Dopamine D₂-like receptors and behavioral economics of food reinforcement. Neuropsychopharmacology 41:4971–78. https://doi.org/10.1038/npp.2015.223
    [Crossref] [Google Scholar]
  172. Stahl SM. 2002. The psychopharmacology of energy and fatigue. J. Clin. Psychiatry 63:17–8. https://doi.org/10.4088/jcp.v63n0102
    [Crossref] [Google Scholar]
  173. Stauffer WR, Lak A, Kobayashi S, Schultz W. 2016. Components and characteristics of the dopamine reward utility signal. J. Comp. Neurol. 524:81699–711. https://doi.org/10.1002/cne.23880
    [Google Scholar]
  174. Strauss GP, Bartolomeo LA, Harvey PD. 2021. Avolition as the core negative symptom in schizophrenia: relevance to pharmacological treatment development. NPJ Schizophr. 7:116 https://doi.org/10.1038/s41537-021-00145-4
    [Crossref] [Google Scholar]
  175. Suzuki S, Lawlor VM, Cooper JA, Arulpragasam AR, Treadway MT. 2021. Distinct regions of the striatum underlying effort, movement initiation and effort discounting. Nat. Hum. Behav. 5:3378–88. https://doi.org/10.1038/s41562-020-00972-y
    [Crossref] [Google Scholar]
  176. Tanra AJ, Kagaya A, Okamoto Y, Muraoka M, Motohashi N, Yamawaki S. 1995. TJS-010, a new prescription of oriental medicine, antagonizes tetrabenazine-induced suppression of spontaneous locomotor activity in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 19:5963–71. https://doi.org/10.1016/0278-5846(95)00124-e
    [Google Scholar]
  177. Tellez N, Alonso J, Rio M, Tintore M, Nos C et al. 2008. The basal ganglia: a substrate for fatigue in multiple sclerosis. Neuroradiology 50:17–23. https://doi.org/10.1007/s00234-007-0304-3
    [Google Scholar]
  178. Timberlake WD, Allison J. 1974. Response deprivation: an empirical approach to instrumental performance. Psychol. Rev. 81:2146–64. https://doi.org/10.1037/h0036101
    [Google Scholar]
  179. Todder D, Caliskan S, Baune BT. 2009. Longitudinal changes of day-time and night-time gross motor activity in clinical responders and non-responders of major depression. World J. Biol. Psychiatry 10:4276–84. https://doi.org/10.3109/15622970701403081
    [Google Scholar]
  180. Tombaugh TN, Anisman H, Tombaugh J. 1980. Extinction and dopamine receptor blockade after intermittent reinforcement training: failure to observe functional equivalence. Psychopharmacology 70:19–28. https://doi.org/10.1007/BF00432365
    [Google Scholar]
  181. Treadway MT, Bossaller NA, Shelton RC, Zald DH. 2012. Effort-based decision-making in major depressive disorder: a translational model of motivational anhedonia. J. Abnorm. Psychol. 121:3553–58. https://doi.org/10.1037/a0028813
    [Google Scholar]
  182. Treadway MT, Cooper JA, Miller AH. 2019. Can't or won't? Immunometabolic constraints on dopaminergic drive. Trends Cogn. Sci. 23:5435–48. https://doi.org/10.1016/j.tics.2019.03.003
    [Google Scholar]
  183. Treadway MT, Salamone JD. 2022. Vigor, effort-related aspects of motivation and anhedonia. Curr. Top. Behav. Neurosci. 58:325–53. https://doi.org/10.1007/7854_2022_355
    [Google Scholar]
  184. Treadway MT, Zald DH. 2011. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci. Biobehav. Rev. 35:3537–55. https://doi.org/10.1016/j.neubiorev.2010.06.006
    [Google Scholar]
  185. Trifilieff P, Feng B, Urizar E, Winiger V, Ward RD et al. 2013. Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol. Psychiatry 18:91025–33. https://doi.org/10.1038/mp.2013.57
    [Crossref] [Google Scholar]
  186. Tversky A, Kahneman D. 1992. Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5:297–323. https://doi.org/10.1007/BF00122574
    [Google Scholar]
  187. Tylee A, Gastpar M, Lépine JP, Mendlewicz J. 1999. DEPRES II (Depression Research in European Society II): a patient survey of the symptoms, disability and current management of depression in the community. Int. Clin. Psychopharmacol. 14:3139–51. https://doi.org/10.1097/00004850-199905002-00001
    [Google Scholar]
  188. Vancraeyenest P, Arsenault JT, Li X, Zhu Q, Kobayashi K et al. 2020. Selective mesoaccumbal pathway inactivation affects motivation but not reinforcement-based learning in macaques. Neuron 108:3568–81.e6. https://doi.org/10.1016/j.neuron.2020.07.013
    [Google Scholar]
  189. Varazzani C, San-Galli A, Gilardeau S, Bouret S. 2015. Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys. J. Neurosci. 35:207866–77. https://doi.org/10.1523/JNEUROSCI.0454-15.2015
    [Crossref] [Google Scholar]
  190. Verharen JPH, Zhu Y, Lammel S. 2020. Aversion hot spots in the dopamine system. Curr. Opin. Neurobiol. 64:46–52. https://doi.org/10.1016/j.conb.2020.02.002
    [Google Scholar]
  191. Wachtel SR, Ortengren A, De Wit H. 2002. The effects of acute haloperidol or risperidone on subjective responses to methamphetamine in healthy volunteers. Drug Alcohol Depend 68:123–33. https://doi.org/10.1016/s0376-8716(02)00104-7
    [Crossref] [Google Scholar]
  192. Wakabayashi KT, Fields HL, Nicola SM. 2004. Dissociation of the role of nucleus accumbens dopamine in responding to reward-predictive cues and waiting for reward. Behav. Brain Res. 154:119–30. https://doi.org/10.1016/j.bbr.2004.01.013
    [Google Scholar]
  193. Wallace M, Singer G, Finlay J, Gibson S. 1983. The effect of 6-OHDA lesions of the nucleus accumbens septum on schedule-induced drinking, wheelrunning and corticosterone levels in the rat. Pharmacol. Biochem. Behav. 18:129–36. https://doi.org/10.1016/0091-3057(83)90262-9
    [Google Scholar]
  194. Walton ME, Bannerman DM, Alterescu K, Rushworth MFS. 2003. Functional specialization within medial frontal cortex of the anterior cingulated for evaluating effort-related decisions. J. Neurosci. 23:6475–79. https://doi.org/10.1523/JNEUROSCI.23-16-06475.2003
    [Google Scholar]
  195. Walton ME, Kennerley SW, Bannerman DM, Phillips PE, Rushworth MF. 2006. Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Net. 19:1302–14. https://doi.org/10.1016/j.neunet.2006.03.005
    [Google Scholar]
  196. Ward RD, Simpson EH, Richards VL, Deo G, Taylor K et al. 2012. Dissociation of hedonic reaction to reward and incentive motivation in an animal model of the negative symptoms of schizophrenia. Neuropsychopharmacology 37:71699–707. https://doi.org/10.1038/npp.2012.15
    [Google Scholar]
  197. Wardle MC, Treadway MT, Mayo LM, Zald DH, De Wit H. 2011. Amping up effort: effects of d-amphetamine on human effort-based decision-making. J. Neurosci. 31:4616597–602. https://doi.org/10.1523/JNEUROSCI.4387-11.2011
    [Crossref] [Google Scholar]
  198. Wassum KM, Ostlund SB, Maidment NT. 2012. Phasic mesolimbic dopamine signaling precedes and predicts performance of a self-initiated action sequence task. Biol. Psychiatry 71:10846–54. https://doi.org/10.1016/j.biopsych.2011.12.019
    [Crossref] [Google Scholar]
  199. Winstanley CA, Floresco SB. 2016. Deciphering decision making: Variation in animal models of effort- and uncertainty-based choice reveals distinct neural circuitries underlying core cognitive processes. J. Neurosci. 36:4812069–79. https://doi.org/10.1523/JNEUROSCI.1713-16.2016
    [Google Scholar]
  200. Winstanley CA, Theobald DE, Dalley JW, Robbins TW. 2005. Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacology 30:4669–82. https://doi.org/10.1038/sj.npp.1300610
    [Google Scholar]
  201. Wise RA, Spindler J, De Wit H, Gerberg GJ. 1978. Neuroleptic-induced “anhedonia” in rats: Pimozide blocks reward quality of food. Science 201:4352262–64. https://doi.org/10.1126/science.566469
    [Google Scholar]
  202. Woodworth RS, Schlosberg H, eds. 1954. Experimental Psychology New York: Holt, Rinehart, and Winston
  203. Yang JH, Presby RE, Jarvie AA, Rotolo RA, Fitch RH et al. 2020a. Pharmacological studies of effort-related decision making using mouse touchscreen procedures: Effects of dopamine antagonism do not resemble reinforcer devaluation by removal of food restriction. Psychopharmacology 237:133–43. https://doi.org/10.1007/s00213-019-05343-8
    [Google Scholar]
  204. Yang JH, Presby RE, Rotolo RA, Quiles T, Okifo K et al. 2020b. The dopamine depleting agent tetrabenazine alters effort-related decision making as assessed by mouse touchscreen procedures. Psychopharmacology 237:92845–54. https://doi.org/10.1007/s00213-020-05578-w
    [Crossref] [Google Scholar]
  205. Yohn SE, Arif Y, Haley A, Tripodi G, Baqi Y et al. 2016a. Effort-related motivational effects of the pro-inflammatory cytokine interleukin-6: pharmacological and neurochemical characterization. Psychopharmacology 233:19–203575–86. https://doi.org/10.1007/s00213-016-4392-9
    [Crossref] [Google Scholar]
  206. Yohn SE, Collins SL, Contreras-Mora HM, Errante EL, Rowland MA et al. 2016b. Not all antidepressants are created equal: differential effects of monoamine uptake inhibitors on effort-related choice behavior. Neuropsychopharmacology 41:3686–94. https://doi.org/10.1038/npp.2015.188
    [Google Scholar]
  207. Yohn SE, Errante EE, Rosenbloom-Snow A, Somerville M, Rowland M et al. 2016c. Blockade of uptake for dopamine, but not norepinephrine or 5-HT, increases selection of high effort instrumental activity: implications for treatment of effort-related motivational symptoms in psychopathology. Neuropharmacology 109:270–80. https://doi.org/10.1016/j.neuropharm.2016.06.018
    [Google Scholar]
  208. Yohn SE, Gogoj A, Haque A, López-Cruz L, Haley A et al. 2016d. Evaluation of the effort-related motivational effects of the novel dopamine uptake inhibitor PRX-14040. Pharmacol. Biochem. Behav. 148:84–91. https://doi.org/10.1016/j.pbb.2016.06.004
    [Google Scholar]
  209. Yohn SE, López-Cruz L, Hutson PH, Correa M, Salamone JD. 2016e. Effects of lisdexamfetamine and s-citalopram, alone and in combination, on effort-related choice behavior in the rat. Psychopharmacology 233:6949–60. https://doi.org/10.1007/s00213-015-4176-7
    [Google Scholar]
  210. Yohn SE, Santerre JL, Nunes EJ, Kozak R, Podurgiel SJ et al. 2015a. The role of dopamine D1 receptor transmission in effort-related choice behavior: effects of D1 agonists. Pharmacol. Biochem. Behav. 135:217–26. https://doi.org/10.1016/j.pbb.2015.05.003
    [Google Scholar]
  211. Yohn SE, Thompson C, Randall PA, Lee CA, Müller CE et al. 2015b. The VMAT-2 inhibitor tetrabenazine alters effort-related decision making as measured by the T-maze barrier choice task: reversal with the adenosine A2A antagonist MSX-3 and the catecholamine uptake blocker bupropion. Psychopharmacology 232:71313–23. https://doi.org/10.1007/s00213-014-3766-0
    [Google Scholar]
  212. Zalachoras I, Ramos-Fernández E, Hollis F, Trovo L, Rodrigues J et al. 2022. Glutathione in the nucleus accumbens regulates motivation to exert reward-incentivized effort. eLife 11:e77791 https://doi.org/10.7554/eLife.77791
    [Crossref] [Google Scholar]
  213. Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ et al. 2009. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. PNAS 106:187281–88. https://doi.org/10.1073/pnas.0813415106
    [Google Scholar]
/content/journals/10.1146/annurev-psych-020223-012208
Loading
/content/journals/10.1146/annurev-psych-020223-012208
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error