1932

Abstract

Much evidence has shown that perception is biased towards previously presented similar stimuli, an effect recently termed serial dependence. Serial dependence affects nearly every aspect of perception, often causing gross perceptual distortions, especially for weak and ambiguous stimuli. Despite unwanted side-effects, empirical evidence and Bayesian modeling show that serial dependence acts to improve efficiency and is generally beneficial to the system. Consistent with models of predictive coding, the Bayesian priors of serial dependence are generated at high levels of cortical analysis, incorporating much perceptual experience, but feed back to lower sensory areas. These feedback loops may drive oscillations in the alpha range, linked strongly with serial dependence. The discovery of top-down predictive perceptual processes is not new, but the new, more quantitative approach characterizing serial dependence promises to lead to a deeper understanding of predictive perceptual processes and their underlying neural mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-psych-021523-104939
2024-01-18
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/psych/75/1/annurev-psych-021523-104939.html?itemId=/content/journals/10.1146/annurev-psych-021523-104939&mimeType=html&fmt=ahah

Literature Cited

  1. Ahumada AJ Jr. 1996. Perceptual classification images from Vernier acuity masked by noise. Perception 25:1 Suppl. https://doi.org/10.1068/v96l0501
    [Google Scholar]
  2. Alamia A, VanRullen R. 2019. Alpha oscillations and traveling waves: signatures of predictive coding?. PLOS Biol. 17:10e3000487
    [Google Scholar]
  3. Alexi J, Cleary D, Dommisse K, Palermo R, Kloth N, Burr D, Bell J 2018. Past visual experiences weigh in on body size estimation. Sci. Rep. 8:215
    [Google Scholar]
  4. Appelle S. 1972. Perception and discrimination as a function of stimulus orientation: the “oblique effect” in man and animals. Psychol. Bull. 78:4266–78
    [Google Scholar]
  5. Arrighi R, Togoli I, Burr DC. 2014. A generalized sense of number. Proc. R. Soc. B 281:179720141791
    [Google Scholar]
  6. Bae GY, Luck SJ. 2019. Decoding motion direction using the topography of sustained ERPs and alpha oscillations. NeuroImage 184:242–55
    [Google Scholar]
  7. Barbosa J, Compte A. 2020. Build-up of serial dependence in color working memory. Sci. Rep. 10:10959
    [Google Scholar]
  8. Bell J, Burr DC, Crookes K, Morrone MC. 2020. Perceptual oscillations in gender classification of faces, contingent on stimulus history. iScience 23:10101573
    [Google Scholar]
  9. Bliss DP, Sun JJ, D'Esposito M. 2017. Serial dependence is absent at the time of perception but increases in visual working memory. Sci. Rep. 7:14739
    [Google Scholar]
  10. Braddick O. 1993. Segmentation versus integration in visual motion processing. Trends Neurosci. 16:7263–68
    [Google Scholar]
  11. Burr D, Cicchini GM. 2014. Vision: efficient adaptive coding. Curr. Biol. 24:22 https://doi.org/10.1016/j.cub.2014.10.002
    [Crossref] [Google Scholar]
  12. Busse L, Ayaz A, Dhruv NT, Katzner S, Saleem AB et al. 2011. The detection of visual contrast in the behaving mouse. J. Neurosci. 31:3111351–61
    [Google Scholar]
  13. Cavanaugh JR, Bair W, Movshon JA. 2002. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. J. Neurophysiol. 88:52547–56
    [Google Scholar]
  14. Ceylan G, Herzog MH, Pascucci D. 2021. Serial dependence does not originate from low-level visual processing. Cognition 212:104709
    [Google Scholar]
  15. Chopin A, Mamassian P. 2012. Predictive properties of visual adaptation. Curr. Biol. 22:7622–26
    [Google Scholar]
  16. Cicchini GM, Anobile G, Burr DC. 2014. Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform. PNAS 111:217867–72
    [Google Scholar]
  17. Cicchini GM, Anobile G, Chelli E, Arrighi R, Burr DC. 2022a. Uncertainty and prior assumptions, rather than innate logarithmic encoding, explain nonlinear number-to-space mapping. Psychol. Sci. 33:1121–34
    [Google Scholar]
  18. Cicchini GM, Arrighi R, Cecchetti L, Giusti M, Burr DC. 2012. Optimal encoding of interval timing in expert percussionists. J. Neurosci. 32:31056–60
    [Google Scholar]
  19. Cicchini GM, Benedetto A, Burr DC. 2021. Perceptual history propagates down to early levels of sensory analysis. Curr. Biol. 31:61245–50.e2
    [Google Scholar]
  20. Cicchini GM, D'Errico G, Burr DC 2022b. Crowding results from optimal integration of visual targets with contextual information. Nat. Commun. 13:5741
    [Google Scholar]
  21. Cicchini GM, Mikellidou K, Burr D. 2017. Serial dependencies act directly on perception. J. Vis. 17:146
    [Google Scholar]
  22. Cicchini GM, Mikellidou K, Burr DC. 2018. The functional role of serial dependence. Proc. R. Soc. B 285:189020181722
    [Google Scholar]
  23. Clifford CWG. 2014. The tilt illusion: phenomenology and functional implications. Vis. Res. 104:3–11
    [Google Scholar]
  24. Collins T. 2019. The perceptual continuity field is retinotopic. Sci. Rep. 9:18841
    [Google Scholar]
  25. Collins T. 2020. Serial dependence alters perceived object appearance. J. Vis. 20:139
    [Google Scholar]
  26. Daelli V, van Rijsbergen NJ, Treves A. 2010. How recent experience affects the perception of ambiguous objects. Brain Res. 1322:81–91
    [Google Scholar]
  27. Dehaene S. 1997. The Number Sense: How the Mind Creates Mathematics Oxford, UK: Oxford Univ. Press
  28. Firestone C, Scholl BJ. 2015. Cognition does not affect perception: evaluating the evidence for “top-down” effects. Behav. Brain Sci. 39:e229
    [Google Scholar]
  29. Fischer C, Czoschke S, Peters B, Rahm B, Kaiser J, Bledowski C. 2020. Context information supports serial dependence of multiple visual objects across memory episodes. Nat. Commun. 11:1932
    [Google Scholar]
  30. Fischer J, Whitney D. 2014. Serial dependence in visual perception. Nat. Neurosci. 17:5738–43
    [Google Scholar]
  31. Fornaciai M, Park J. 2019a. Neural dynamics of serial dependence in numerosity perception. J. Cogn. Neurosci. 32:1141–54
    [Google Scholar]
  32. Fornaciai M, Park J. 2019b. Serial dependence generalizes across different stimulus formats, but not different sensory modalities. Vis. Res. 160:108–15
    [Google Scholar]
  33. Friston KJ. 2019. Waves of prediction. PLOS Biol. 17:10 https://doi.org/10.1371/journal.pbio.3000426
    [Google Scholar]
  34. Friston KJ, Bastos AM, Pinotsis D, Litvak V. 2015. LFP and oscillations—What do they tell us?. Curr. Opin. Neurobiol. 31: https://doi.org/10.1016/j.conb.2014.05.004
    [Crossref] [Google Scholar]
  35. Fritsche M, de Lange FP. 2019. The role of feature-based attention in visual serial dependence. J. Vis. 19:1321
    [Google Scholar]
  36. Fritsche M, Mostert P, de Lange FP. 2017. Opposite effects of recent history on perception and decision. Curr. Biol. 27:4590–95
    [Google Scholar]
  37. Fründ I, Wichmann FA, Macke JH. 2014. Quantifying the effect of intertrial dependence on perceptual decisions. J. Vis. 14:79
    [Google Scholar]
  38. Galluzzi F, Benedetto A, Cicchini GM, Burr DC. 2022. Visual priming and serial dependence are mediated by separate mechanisms. J. Vis. 22:101
    [Google Scholar]
  39. Gekas N, McDermott KC, Mamassian P. 2019. Disambiguating serial effects of multiple timescales. J. Vis. 19:624
    [Google Scholar]
  40. Gibson JJ, Radner M. 1937. Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies. J. Exp. Psychol. 20:5453–67
    [Google Scholar]
  41. Gilbert CD, Wiesel TN. 1990. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vis. Res. 30:111689–701
    [Google Scholar]
  42. Gregory R. 1970. The Intelligent Eye London: Weidenfeld & Nicolson
  43. Gregory RL. 1980. Perceptions as hypotheses. Philos. Trans. R. Soc. B 290:1038181–97
    [Google Scholar]
  44. Ho TH, Burr DC, Alais D, Morrone MC. 2019. Auditory perceptual history is propagated through alpha oscillations. Curr. Biol. 29:4208–17
    [Google Scholar]
  45. Hollingworth HL. 1910. The central tendency of judgment. J. Philos. Psychol. Sci. Methods 7:17461–69
    [Google Scholar]
  46. Jazayeri M, Shadlen MN. 2010. Temporal context calibrates interval timing. Nat. Neurosci. 13:81020–26
    [Google Scholar]
  47. Jevons WS. 1871. The power of numerical discrimination. Nature 3:67281–82
    [Google Scholar]
  48. Kanai R, Verstraten FAJ. 2005. Perceptual manifestations of fast neural plasticity: motion priming, rapid motion aftereffect and perceptual sensitization. Vis. Res. 45:25–263109–16
    [Google Scholar]
  49. Kersten D, Mamassian P, Yuille A. 2004. Object perception as Bayesian inference. Annu. Rev. Psychol. 55:271–304
    [Google Scholar]
  50. Kim S, Burr D, Alais D. 2019. Attraction to the recent past in aesthetic judgments: a positive serial dependence for rating artwork. J. Vis. 19:1219
    [Google Scholar]
  51. Kim S, Burr D, Cicchini GM, Alais D. 2020. Serial dependence in perception requires conscious awareness. Curr. Biol. 30:6R257–58
    [Google Scholar]
  52. Kiyonaga A, Scimeca JM, Bliss DP, Whitney D. 2017. Serial dependence across perception, attention, and memory. Trends Cogn. Sci. 21:7492–97
    [Google Scholar]
  53. Kristjánsson Á, Ásgeirsson ÁG. 2019. Attentional priming: recent insights and current controversies. Curr. Opin. Psychol. 29:71–75
    [Google Scholar]
  54. Lashley KS. 1951. The problem of serial order in behavior. Cerebral Mechanisms in Behavior: the Hixon Symposium KS Lashley 112–46. New York: Wiley
    [Google Scholar]
  55. Levi DM. 2008. Crowding—an essential bottleneck for object recognition: a mini-review. Vis. Res. 48:5635–54
    [Google Scholar]
  56. Liberman A, Fischer J, Whitney D. 2014. Serial dependence in the perception of faces. Curr. Biol. 24:212569–74
    [Google Scholar]
  57. Loftus EF. 1996. Eyewitness Testimony Cambridge, MA: Harvard Univ. Press
  58. Loftus EF, Pickrell JE. 1995. The formation of false memories. Psychiatr. Ann. 25:12720–25
    [Google Scholar]
  59. Maljkovic V, Nakayama K. 1994. Priming of pop-out: I. Role of features. Mem. Cogn. 22:6657–72
    [Google Scholar]
  60. Manassi M, Liberman A, Kosovicheva A, Zhang K, Whitney D. 2018. Serial dependence in position occurs at the time of perception. Psychon. Bull. Rev. 25:62245–53
    [Google Scholar]
  61. Manassi M, Whitney D. 2022. Illusion of visual stability through active perceptual serial dependence. Sci. Adv. 8:2eabk2480
    [Google Scholar]
  62. Melcher D, Colby CL. 2008. Trans-saccadic perception. Trends Cogn. Sci. 12:12466–73
    [Google Scholar]
  63. Mikellidou K, Cicchini GM, Burr DC. 2021. Perceptual history acts in world-centred coordinates. i-Perception 12:5 https://doi.org/10.1177/20416695211029301
    [Crossref] [Google Scholar]
  64. Mikellidou K, Cicchini GM, Thompson PG, Burr DC. 2015. The oblique effect is both allocentric and egocentric. J. Vis. 15:824
    [Google Scholar]
  65. Motala A, Zhang H, Alais D. 2020. Auditory rate perception displays a positive serial dependence. I-Perception 11:6 https://doi.org/10.1177/2041669520982311
    [Crossref] [Google Scholar]
  66. Murai Y, Whitney D. 2021. Serial dependence revealed in history-dependent perceptual templates. Curr. Biol. 31:143185–91.e3
    [Google Scholar]
  67. Neri P, Parker AJ, Blakemore C. 1999. Probing the human stereoscopic system with reverse correlation. Nature 401:695–98
    [Google Scholar]
  68. Niemeier M, Crawford JD, Tweed DB. 2003. Optimal transsaccadic integration explains distorted spatial perception. Nature 422:692776–80
    [Google Scholar]
  69. Pantle AJ, Gallogly DP, Piehler OC. 2000. Direction biasing by brief apparent motion stimuli. Vis. Res. 40:151979–91
    [Google Scholar]
  70. Pomè A, Thompson D, Burr DC, Halberda J 2021. Location- and object-based attention enhance number estimation. Attent. Percept. Psychophys. 83:7–17
    [Google Scholar]
  71. Ranieri G, Benedetto A, Ho HT, Burr DC, Morrone MC. 2022. Evidence of serial dependence from decoding of visual evoked potentials. J. Neurosci. 42:478817–25
    [Google Scholar]
  72. Rao RPN, Ballard DH. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2:179–87
    [Google Scholar]
  73. Ross J, Morrone MC, Goldberg ME, Burr DC. 2001. Changes in visual perception at the time of saccades. Trends Neurosci. 24:2113–21
    [Google Scholar]
  74. Samaha J, Switzky M, Postle BR. 2019. Confidence boosts serial dependence in orientation estimation. J. Vis. 19:425
    [Google Scholar]
  75. Sherman MT, Kanai R, Seth AK, VanRullen R 2016. Rhythmic influence of top-down perceptual priors in the phase of prestimulus occipital alpha oscillations. J. Cogn. Neurosci. 28:91318–30
    [Google Scholar]
  76. Srinivasan MV, Laughlin SB, Dubs A. 1982. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. B 216:1205427–59
    [Google Scholar]
  77. St. John-Saaltink E, Kok P, Lau HC, De Lange FP. 2016. Serial dependence in perceptual decisions is reflected in activity patterns in primary visual cortex. J. Neurosci. 36:236186–92
    [Google Scholar]
  78. Suárez-Pinilla M, Seth AK, Roseboom W. 2018. Serial dependence in the perception of visual variance. J. Vis. 18:74
    [Google Scholar]
  79. Taubert J, Alais D, Burr D. 2016a. Different coding strategies for the perception of stable and changeable facial attributes. Sci. Rep. 6:32239
    [Google Scholar]
  80. Taubert J, Van Der Burg E, Alais D. 2016b. Love at second sight: sequential dependence of facial attractiveness in an on-line dating paradigm. Sci. Rep. 6:22740
    [Google Scholar]
  81. Terzo C, Ranieri G, Xe X, Burr DC, Morrone MC. 2023. Serial dependence during saccades is mediated by alpha rhythms Paper presented at the Vision Sciences Society 2023 Meeting St. Pete Beach, FL: May 19–24
  82. Turbett K, Palermo R, Bell J, Hanran-Smith D, Jeffery L. 2021. Serial dependence of facial identity reflects high-level face coding. Vis. Res. 182:9–19
    [Google Scholar]
  83. Van der Burg E, Toet A, Brouwer AM, van Erp JBF. 2022. Sequential effects in odor perception. Chemosens. Percept. 15:119–25
    [Google Scholar]
  84. VanRullen R, MacDonald JSP. 2012. Perceptual echoes at 10 Hz in the human brain. Curr. Biol. 22:11995–99
    [Google Scholar]
  85. von Helmholtz H. 1910 (1866). Helmholtz's treatise on physiological optics JPC Southall. New York: Dover
    [Google Scholar]
  86. Wolpert DM, Ghahramani Z, Jordan MI. 1995. An internal model for sensorimotor integration. Science 269:52321880–2
    [Google Scholar]
  87. Xie X, Morrone MC, Burr DC. 2023. Serial dependence in orientation judgments at the time of saccades. J. Vis. 23:77
    [Google Scholar]
  88. Yoshimoto S, Takeuchi T. 2013. Visual motion priming reveals why motion perception deteriorates during mesopic vision. J. Vis. 13:88
    [Google Scholar]
  89. Zhang H, Luo H. 2023. Feature-specific reactivations of past information shift current neural encoding thereby mediating serial bias behaviors. PLOS Biol. 21:3e3002056
    [Google Scholar]
/content/journals/10.1146/annurev-psych-021523-104939
Loading
/content/journals/10.1146/annurev-psych-021523-104939
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error