1932

Abstract

The detection and deterrence of the abuse of performance-enhancing drugs in sport are important to maintaining a level playing field among athletes and to decreasing the risk to athletes’ health. The World Anti-Doping Program consists of six documents, three of which play a role in analytical development: , , and . Among the classes of prohibited substances, three have given rise to the most recent analytical developments in the field: anabolic agents; peptide and protein hormones; and methods to increase oxygen delivery to the tissues, including recombinant erythropoietin. Methods for anabolic agents, including designer steroids, have been enhanced through the use of liquid chromatography/tandem mass spectrometry and gas chromatography/combustion/isotope-ratio mass spectrometry. Protein and peptide identification and quantification have benefited from advances in liquid chromatography/tandem mass spectrometry. Incorporation of techniques such as flow cytometry and isoelectric focusing have supported the detection of blood doping.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-060908-155159
2009-07-19
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/anchem/2/1/annurev-anchem-060908-155159.html?itemId=/content/journals/10.1146/annurev-anchem-060908-155159&mimeType=html&fmt=ahah

Literature Cited

  1. 1. World Anti-Doping Agency 2009. World Anti-Doping Code Montreal: World Anti-Doping Agency135 http://www.wada-ama.org/rtecontent/document/code_v2009_En.pdf. Last accessed 5 Dec. 2008 [Google Scholar]
  2. 2. World Anti-Doping Agency 2009. The 2009 Prohibited List: International Standard Montreal: World Anti-Doping Agency9 http://www.wada-ama.org/rtecontent/document/2009_Prohibited_List_ENG_Final_20_Sept_08.pdf. Last accessed 5 Dec. 2008 [Google Scholar]
  3. 3. World Anti-Doping Agency 2009. International Standard for Laboratories v.6.0 Montreal: World Anti-Doping Agency85 http://www.wada-ama.org/rtecontent/document/International_Standard_for_Laboratories_v6_0_January_2009.pdf. Last accessed 5 Dec. 2008 [Google Scholar]
  4. 4. World Anti-Doping Agency 2009. International Standard for the Protection of Privacy and Personal Information Montreal: World Anti-Doping Agency17 http://www.wada-ama.org/rtecontent/document/International_Standard_for_Privacy.pdf. Last accessed 5 Dec. 2008 [Google Scholar]
  5. 5. World Anti-Doping Agency 2009. International Standard for Testing Montreal: World Anti-Doping Agency91 http://www.wada-ama.org/rtecontent/document/IST_En_2009.pdf. Last accessed 5 Dec. 2008 [Google Scholar]
  6. 6. World Anti-Doping Agency 2009. International Standard for Therapeutic Use Exemptions Montreal: World Anti-Doping Agency24 http://www.wada-ama.org/rtecontent/document/TUE_Standard_2009_Final_031008.pdf. Last accessed 5 Dec. 2008 [Google Scholar]
  7. 7. UNESCO 2005. International convention against doping in sport: 2005. Paris: UNESCO. 18 pp. http://unesdoc.unesco.org/images/0014/001425/142594m.pdf#page=2. Last accessed 5 Dec. 2008
  8. Bethem R, Boison J, Gale J, Heller DN, Lehotay S. 8.  et al. 2003. Establishing the fitness for purpose of mass spectrometric methods. J. Am. Soc. Mass Spectrom. 14:528–41 [Google Scholar]
  9. Ivanova V, Boghosian T, Rabin O. 9.  2007. The WADA proficiency testing program as an integral part of the fight against doping in sport. Accredit. Qual. Assur. 12:491–93 [Google Scholar]
  10. Brooks RV, Firth RG, Sumner NA. 10.  1975. Detection of anabolic steroids by radioimmunoassay. Br. J. Sports Med. 9:89–92 [Google Scholar]
  11. Lawson AM, Brooks CJ. 11.  1971. A sensitive method for the detection of metabolites of dianabol in urine in man. Biochem. J. 123:25–26P [Google Scholar]
  12. Dugal R, Massé R, Bertrand M. 12.  1978. GC-MS approach for the detection and characterization of anabolic steroids and their metabolites in biological fluids at major international sporting events. Sport en Doping: Formacetisch Tijdschrift voor België P Nijs 55–83 Brussels: Algemener Pharm. Bond [Google Scholar]
  13. Schänzer W. 13.  1996. Metabolism of anabolic androgenic steroids. Clin. Chem. 42:1001–20 [Google Scholar]
  14. Becchi M, Aguilera R, Farizon Y, Flament MM, Casabianca H, James P. 14.  1994. Gas chromatography/combustion/isotope-ratio mass spectrometry analysis of urinary steroids to detect misuse of testosterone in sport. Rapid Commun. Mass Spectrom. 8:304–8 [Google Scholar]
  15. Bowers LD, Sanaullah. 15.  1996. Direct measurement of steroid sulfate and glucuronide conjugates with high-performance liquid chromatography–mass spectrometry. J. Chromatogr. B: Biomed. Appl. 687:61–68 [Google Scholar]
  16. Liu CL, Bowers LD. 16.  1996. Immunoaffinity trapping of urinary human chorionic gonadotropin and its high-performance liquid chromatographic–mass spectrometric confirmation. J. Chromatogr. B: Biomed. Appl. 687:213–20 [Google Scholar]
  17. Bredehöft M, Schänzer W, Thevis M. 17.  2008. Quantification of human insulin-like growth factor–1 and qualitative detection of its analogues in plasma using liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 22:477–85 [Google Scholar]
  18. Thevis M, Maurer J, Kohler M, Geyer H, Schänzer W. 18.  2007. Proteases in doping control analysis. Int. J. Sports Med. 28:545–49 [Google Scholar]
  19. Ayotte C, Goudreault D, Charlebois A. 19.  1996. Testing for natural and synthetic anabolic agents in human urine. J. Chromatogr. B: Biomed. Appl. 687:3–25 [Google Scholar]
  20. Amendola L, Colamonici C, Rossi F, Botre F. 20.  2002. Determination of clenbuterol in human urine by GC-MS-MS-MS: confirmation analysis in antidoping control. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 773:7–16 [Google Scholar]
  21. Mareck U, Geyer H, Guddat S, Haenelt N, Koch A. 21.  et al. 2006. Identification of the aromatase inhibitors anastrozole and exemestane in human urine using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 20:1954–62 [Google Scholar]
  22. Thevis M, Geyer H, Mareck U, Flenker U, Schänzer W. 22.  2007. Doping-control analysis of the 5α-reductase inhibitor finasteride: determination of its influence on urinary steroid profiles and detection of its major urinary metabolite. Ther. Drug Monit. 29:236–47 [Google Scholar]
  23. Thevis M, Schänzer W. 23.  2008. Mass spectrometry of selective androgen receptor modulators. J. Mass Spectrom. 43:865–76 [Google Scholar]
  24. Thevis M, Kohler M, Schlorer N, Kamber M, Kuhn A. 24.  et al. 2008. Mass spectrometry of hydantoin-derived selective androgen receptor modulators. J. Mass Spectrom. 43:639–50 [Google Scholar]
  25. Ventura R, Segura J. 25.  1996. Detection of diuretic agents in doping control. J. Chromatogr. B: Biomed. Appl. 687:127–44 [Google Scholar]
  26. Guddat S, Thevis M, Thomas A, Schänzer W. 26.  2008. Rapid screening of polysaccharide-based plasma volume expanders dextran and hydroxyethyl starch in human urine by liquid chromatography–tandem mass spectrometry. Biomed. Chromatogr. 22:695–701 [Google Scholar]
  27. Thevis M, Opfermann G, Schänzer W. 27.  2000. Mass spectrometry of partially methylated alditol acetates derived from hydroxyethyl starch. J. Mass Spectrom. 35:77–84 [Google Scholar]
  28. Thevis M, Opfermann G, Schänzer W. 28.  2000. Detection of the plasma volume expander hydroxyethyl starch in human urine. J. Chromatogr. B: Biomed. Sci. Appl. 744:345–50 [Google Scholar]
  29. Guddat S, Thevis M, Schänzer W. 29.  2008. Identification and quantification of the osmodiuretic mannitol in urine for sports drug testing using gas chromatography–mass spectrometry. Eur. J. Mass Spectrom. 14:127–33 [Google Scholar]
  30. Beckett AH, Tucker GT, Moffat AC. 30.  1967. Routine detection and identification in urine of stimulants and other drugs, some of which may be used to modify performance in sport. J. Pharm. Pharmacol. 19:273 [Google Scholar]
  31. Hemmersbach P, de la Torre R. 31.  1996. Stimulants, narcotics and β-blockers: 25 years of development in analytical techniques for doping control. J. Chromatogr. B: Biomed. Appl. 687:221–38 [Google Scholar]
  32. Thevis M, Geyer H, Bahr D, Schänzer W. 32.  2005. Identification of fentanyl, alfentanil, sufentanil, remifentanil and their major metabolites in human urine by liquid chromatography/tandem mass spectrometry for doping control purposes. Eur. J. Mass Spectrom. 11:419–27 [Google Scholar]
  33. Mazzarino M, de la Torre X, Botre F. 33.  2008. A screening method for the simultaneous detection of glucocorticoids, diuretics, stimulants, antioestrogens, β-adrenergic drugs and anabolic steroids in human urine by LC-ESI-MS/MS. Anal. Bioanal. Chem. 392:681–98 [Google Scholar]
  34. Thorngren JO, Ostervall F, Garle M. 34.  2008. A high-throughput multicomponent screening method for diuretics, masking agents, central nervous system (CNS) stimulants and opiates in human urine by UPLC-MS/MS. J. Mass Spectrom. 43:980–92 [Google Scholar]
  35. Mazzarino M, Turi S, Botre F. 35.  2008. A screening method for the detection of synthetic glucocorticosteroids in human urine by liquid chromatography–mass spectrometry based on class-characteristic fragmentation pathways. Anal. Bioanal. Chem. 390:1389–402 [Google Scholar]
  36. Fluri K, Rivier L, Dienes-Nagy A, You C, Maitre A. 36.  et al. 2001. Method for confirmation of synthetic corticosteroids in doping urine samples by liquid chromatography–electrospray ionisation mass spectrometry. J. Chromatogr. A 926:87–95 [Google Scholar]
  37. Stevens S. 37.  2003. Drug test. Outside 11:Nov.58–68 [Google Scholar]
  38. Donike M, Zimmermann J, Bärwald KR, Schänzer W, Christ V. 38.  et al. 1984. Routinebestimmung von Anabolika in Harn. Dtsch. Z. Sportmed. 35:14–24 [Google Scholar]
  39. Christakoudi S, Cowan DA, Taylor NF. 39.  2008. Sodium ascorbate improves yield of urinary steroids during hydrolysis with Helix pomatia juice. Steroids 73:309–19 [Google Scholar]
  40. Geyer H, Schänzer W, Mareck-Engelke U, Nolteernsting E, Opfermann G. 40.  1998. Screening procedure for anabolic steroids—the control of hydrolysis with deuterated androsterone glucuronide and studies with direct hydrolysis. Recent Advances in Doping Analysis 5 W Schänzer, H Geyer, A Gotzmann, U Mareck-Engelke 99–101 Köln, Ger.: Sport und Buch Strauß [Google Scholar]
  41. Mareck U, Geyer H, Opfermann G, Thevis M, Schänzer W. 41.  2008. Factors influencing the steroid profile in doping control analysis. J. Mass Spectrom. 43:877–91 [Google Scholar]
  42. Norli HR, Esbensen K, Westad F, Birkeland KI, Hemmersbach P. 42.  1995. Chemometric evaluation of urinary steroid profiles in doping control. J. Steroid. Biochem. Mol. Biol. 54:83–88 [Google Scholar]
  43. Edlund PO, Bowers L, Henion J. 43.  1989. Determination of methandrostenolone and its metabolites in equine plasma and urine by coupled-column liquid chromatography with UV detection and confirmation by tandem mass spectrometry. J. Chromatogr. 487:341–56 [Google Scholar]
  44. Masse R, Ayotte C, Dugal R. 44.  1989. Studies on anabolic steroids. I. Integrated methodological approach to the gas chromatographic–mass spectrometric analysis of anabolic steroid metabolites in urine. J. Chromatogr. 489:23–50 [Google Scholar]
  45. Masse R, Bi HG, Ayotte C, Dugal R. 45.  1989. Studies on anabolic steroids. II. Gas chromatographic/mass spectrometric characterization of oxandrolone urinary metabolites in man. Biomed. Environ. Mass Spectrom. 18:429–38 [Google Scholar]
  46. Schänzer W, Opfermann G, Donike M. 46.  1990. Metabolism of stanozolol: identification and synthesis of urinary metabolites. J. Steroid. Biochem. 36:153–74 [Google Scholar]
  47. Schänzer W, Donike M. 47.  1993. Metabolism of anabolic steroids in man: synthesis and use of reference substances for identification of anabolic steroid metabolites. Anal. Chim. Acta 275:23–48 [Google Scholar]
  48. Schänzer W, Horning S, Donike M. 48.  1995. Metabolism of anabolic steroids in humans: synthesis of 6 β-hydroxy metabolites of 4-chloro-1,2-dehydro-17 α-methyltestosterone, fluoxymesterone, and metandienone. Steroids 60:353–66 [Google Scholar]
  49. Schänzer W, Geyer H, Fussholler G, Halatcheva N, Kohler M. 49.  et al. 2006. Mass spectrometric identification and characterization of a new long-term metabolite of metandienone in human urine. Rapid Commun. Mass Spectrom. 20:2252–58 [Google Scholar]
  50. Thevis M, Opfermann G, Schmickler H, Schänzer W. 50.  2001. Mass spectrometry of steroid glucuronide conjugates. II. Electron impact fragmentation of 3-keto-4-en- and 3-keto-5α-steroid-17-O-β glucuronides and 5α-steroid-3α, 17β-diol 3- and 17-glucuronides. J. Mass Spectrom. 36:998–1012 [Google Scholar]
  51. Thevis M, Opfermann G, Schmickler H, Schänzer W. 51.  2001. Mass spectrometry of steroid glucuronide conjugates. I. Electron impact fragmentation of 5α-/5β-androstan-3α-ol-17-one glucuronides, 5α-estran-3α-ol-17-one glucuronide and deuterium-labelled analogues. J. Mass Spectrom. 36:159–68 [Google Scholar]
  52. Catlin DH, Ahrens BD, Kucherova Y. 52.  2002. Detection of norbolethone, an anabolic steroid never marketed, in athletes’ urine. Rapid Commun. Mass Spectrom. 16:1273–75 [Google Scholar]
  53. Catlin DH, Sekera MH, Ahrens BD, Starcevic B, Chang YC, Hatton CK. 53.  2004. Tetrahydrogestrinone: discovery, synthesis, and detection in urine. Rapid Commun. Mass Spectrom. 18:1245–49 [Google Scholar]
  54. Sekera MH, Ahrens BD, Chang YC, Starcevic B, Georgakopoulos C, Catlin DH. 54.  2005. Another designer steroid: discovery, synthesis, and detection of ‘madol’ in urine. Rapid Commun. Mass Spectrom. 19:781–84 [Google Scholar]
  55. Thevis M, Makarov AA, Horning S, Schänzer W. 55.  2005. Mass spectrometry of stanozolol and its analogues using electrospray ionization and collision-induced dissociation with quadrupole-linear ion trap and linear ion trap–orbitrap hybrid mass analyzers. Rapid Commun. Mass Spectrom. 19:3369–78 [Google Scholar]
  56. Thevis M, Schänzer W. 56.  2007. Mass spectrometry in sports drug testing: structure characterization and analytical assays. Mass Spectrom. Rev. 26:79–107 [Google Scholar]
  57. Hintikka L, Kuuranne T, Leinonen A, Thevis M, Schänzer W. 57.  et al. 2008. Liquid chromatographic–mass spectrometric analysis of glucuronide-conjugated anabolic steroid metabolites: method validation and interlaboratory comparison. J. Mass Spectrom. 43:965–73 [Google Scholar]
  58. Hintikka L, Kuuranne T, Aitio O, Thevis M, Schänzer W, Kostiainen R. 58.  2008. Enzyme-assisted synthesis and structure characterization of glucuronide conjugates of eleven anabolic steroid metabolites. Steroids 73:257–65 [Google Scholar]
  59. Thevis M, Opfermann G, Schänzer W. 59.  2003. Liquid chromatography/electrospray ionization tandem mass spectrometric screening and confirmation methods for β2-agonists in human or equine urine. J. Mass Spectrom. 38:1197–206 [Google Scholar]
  60. Thevis M, Kamber M, Schänzer W. 60.  2006. Screening for metabolically stable aryl-propionamide-derived selective androgen receptor modulators for doping control purposes. Rapid Commun. Mass Spectrom. 20:870–76 [Google Scholar]
  61. Thevis M, Kohler M, Maurer J, Schlorer N, Kamber M, Schänzer W. 61.  2007. Screening for 2-quinolinone-derived selective androgen receptor agonists in doping control analysis. Rapid Commun. Mass Spectrom. 21:3477–86 [Google Scholar]
  62. Kuuranne T, Leinonen A, Schänzer W, Kamber M, Kostiainen R, Thevis M. 62.  2008. Aryl-propionamide-derived selective androgen receptor modulators: liquid chromatography–tandem mass spectrometry characterization of the in vitro synthesized metabolites for doping control purposes. Drug Metab. Dispos. 36:571–81 [Google Scholar]
  63. Thevis M, Kohler M, Schlorer N, Fussholler G, Schänzer W. 63.  2008. Screening for two selective androgen receptor modulators using gas chromatography-mass spectrometry in doping control analysis. Eur. J. Mass Spectrom. 14:153–61 [Google Scholar]
  64. Thevis M, Kohler M, Thomas A, Schlorer N, Schänzer W. 64.  2008. Doping control analysis of tricyclic tetrahydroquinoline–derived selective androgen receptor modulators using liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 22:2471–78 [Google Scholar]
  65. Thevis M, Kohler M, Thomas A, Maurer J, Schlorer N. 65.  et al. 2008. Determination of benzimidazole- and bicyclic hydantoin–derived selective androgen receptor antagonists and agonists in human urine using LC-MS/MS. Anal. Bioanal. Chem. 391:251–61 [Google Scholar]
  66. Donike M, Bärwald K-R, Klostermann K, Schänzer W, Zimmermann J. 66.  1983. Nachweis von exogenem Testesteron. Sport: Leistung und Gesundheit H Heck, H Hollman, H Liesen, R Rost 293–98 Cologne: Dtsch. Ärtze Verlag [Google Scholar]
  67. Ayotte C. 67.  2008. Suivi des profils de steroides urinaires dans le controle du dopage des sportifs. Rev. Francoph. Lab. 401:39–46 [Google Scholar]
  68. Sottas PE, Baume N, Saudan C, Schweizer C, Kamber M, Saugy M. 68.  2007. Bayesian detection of abnormal values in longitudinal biomarkers with an application to T/E ratio. Biostatistics 8:285–96 [Google Scholar]
  69. Baenziger J, Bowers LD. 69.  1994. Variability of T/E ratios in athletes. Recent Advances in Doping Analysis 1 M Donike, H Geyer, A Gotzmann, U Mareck-Engelke, S Rauth 41–52 Köln: Verlag Sport und BUCH Strauß [Google Scholar]
  70. Donike M, Rauth S, Mareck-Engelke U, Geyer H, Nitschke R. 70.  1994. Evaluation of longitudinal studies, the determination of subject-based reference ranges for the testosterone/epitestosterone ratio. Recent Advances in Doping Analysis, vol. 1 M Donike, H Geyer, A Gotzmann, U Mareck-Engelke, S Rauth 33–40 Köln: Verlag Sport und BUCH Strauß [Google Scholar]
  71. Harris EK, Boyd JC. 71.  1995. Statistical Bases of Reference Values in Laboratory Medicine New York: Marcel Dekker361 [Google Scholar]
  72. Sottas PE, Saudan C, Schweizer C, Baume N, Mangin P, Saugy M. 72.  2008. From population- to subject-based limits of T/E ratio to detect testosterone abuse in elite sports. Forensic Sci. Int. 174:166–72 [Google Scholar]
  73. Jakobsson J, Ekstrom L, Inotsume N, Garle M, Lorentzon M. 73.  et al. 2006. Large differences in testosterone excretion in Korean and Swedish men are strongly associated with a UDP-glucuronosyl transferase 2B17 polymorphism. J. Clin. Endocrinol. Metab. 91:687–93 [Google Scholar]
  74. Schulze JJ, Lundmark J, Garle M, Skilving I, Ekstrom L, Rane A. 74.  2008. Doping test results dependent on the genotype of UGT2B17, the major enzyme for testosterone glucuronidation. J. Clin. Endocrinol. Metab. 93:2500–6 [Google Scholar]
  75. Aguilera R, Becchi M, Casabianca H, Hatton CK, Catlin DH. 75.  et al. 1996. Improved method of detection of testosterone abuse by gas chromatography/combustion/isotope ratio mass spectrometry analysis of urinary steroids. J. Mass Spectrom. 31:169–76 [Google Scholar]
  76. Aguilera R, Becchi M, Grenot C, Casabianca H, Hatton CK. 76.  1996. Detection of testosterone misuse: comparison of two chromatographic sample preparation methods for gas chromatographic–combustion/isotope ratio mass spectrometric analysis. J. Chromatogr. B: Biomed. Appl. 687:43–53 [Google Scholar]
  77. Shackleton CH, Phillips A, Chang T, Li Y. 77.  1997. Confirming testosterone administration by isotope ratio mass spectrometric analysis of urinary androstanediols. Steroids 62:379–87 [Google Scholar]
  78. Shackleton CH, Roitman E, Phillips A, Chang T. 78.  1997. Androstanediol and 5-androstenediol profiling for detecting exogenously administered dihydrotestosterone, epitestosterone, and dehydroepiandrosterone: potential use in gas chromatography isotope ratio mass spectrometry. Steroids 62:665–73 [Google Scholar]
  79. Flenker U, Guntner U, Schänzer W. 79.  2008. δ13C-values of endogenous urinary steroids. Steroids 73:408–16 [Google Scholar]
  80. Cawley AT, Kazlauskas R, Trout G, Tjoa J, Huynh T, George AV. 80.  2006. GC-C-IRMS of endogenous reference compounds. Recent Advances in Doping Analysis 14 W Schänzer, H Geyer, A Gotzmann, U Mareck 267–75 Köln: SPORT und BUCH Strauß [Google Scholar]
  81. Saudan C, Baume N, Mangin P, Saugy M. 81.  2004. Urinary analysis of 16(5α)-androsten-3α-ol by gas chromatography/combustion/isotope ratio mass spectrometry: implications in antidoping analysis. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 810:157–64 [Google Scholar]
  82. Aguilera R, Hatton CK, Catlin DH. 82.  2002. Detection of epitestosterone doping by isotope ratio mass spectrometry. Clin. Chem. 48:629–36 [Google Scholar]
  83. Mathurin JC, Herrou V, Bourgogne E, Pascaud L, de Ceaurriz J. 83.  2001. Gas chromatography–combustion–isotope ratio mass spectrometry analysis of 19-norsteroids: application to the detection of a nandrolone metabolite in urine. J. Chromatogr. B: Biomed. Sci. Appl. 759:267–75 [Google Scholar]
  84. Hebestreit M, Flenker U, Fussholler G, Geyer H, Guntner U. 84.  et al. 2006. Determination of the origin of urinary norandrosterone traces by gas chromatography combustion isotope ratio mass spectrometry. Analyst 131:1021–26 [Google Scholar]
  85. Ueki M, Okano M. 85.  1999. Analysis of exogenous dehydroepiandrosterone excretion in urine by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 13:2237–43 [Google Scholar]
  86. Cawley AT, Hine ER, Trout GJ, George AV, Kazlauskas R. 86.  2004. Searching for new markers of endogenous steroid administration in athletes: “looking outside the metabolic box.”. Forensic. Sci. Int. 143:103–14 [Google Scholar]
  87. Flenker U, Hebestreit M, Piper T, Hulsemann F, Schänzer W. 87.  2007. Improved performance and maintenance in gas chromatography/isotope ratio mass spectrometry by precolumn solvent removal. Anal. Chem. 79:4162–68 [Google Scholar]
  88. Sacks GL, Zhang Y, Brenna JT. 88.  2007. Fast gas chromatography combustion isotope ratio mass spectrometry. Anal. Chem. 79:6348–58 [Google Scholar]
  89. Tobias HJ, Sacks GL, Zhang Y, Brenna JT. 89.  2008. Comprehensive two-dimensional gas chromatography combustion isotope ratio mass spectrometry (GC × GCC-IRMS). Anal. Chem. 88:100–200 [Google Scholar]
  90. Sonksen PH. 90.  2001. Insulin, growth hormone and sport. J. Endocrinol. 170:13–25 [Google Scholar]
  91. Kicman AT, Brooks RV, Cowan DA. 91.  1991. Human chorionic gonadotrophin and sport. Br. J. Sports Med. 25:73–80 [Google Scholar]
  92. Kicman AT, Cowan DA. 92.  1992. Peptide hormones and sport: misuse and detection. Br. Med. Bull. 48:496–517 [Google Scholar]
  93. Laidler P, Cowan DA, Hider RC, Kicman AT. 93.  1994. New decision limits and quality-control material for detecting human chorionic gonadotropin misuse in sports. Clin. Chem. 40:1306–11 [Google Scholar]
  94. Cole LA. 94.  1997. Immunoassay of human chorionic gonadotropin, its free units, and metabolites. Clin. Chem. 43:2233–43 [Google Scholar]
  95. Liu C, Bowers LD. 95.  1997. Mass spectrometric characterization of the β-subunit of human chorionic gonadotropin. J. Mass Spectrom. 32:33–42 [Google Scholar]
  96. Liu C, Bowers LD. 96.  1997. Mass spectrometric characterization of nicked fragments of the β-subunit of human chorionic gonadotropin. Clin. Chem. 43:1172–81 [Google Scholar]
  97. Gam LH, Tham SY, Latiff A. 97.  2003. Immunoaffinity extraction and tandem mass spectrometric analysis of human chorionic gonadotropin in doping analysis. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 792:187–96 [Google Scholar]
  98. Laidler P, Cowan DA, Hider RC, Keane A, Kicman AT. 98.  1995. Tryptic mapping of human chorionic gonadotropin by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 9:1021–26 [Google Scholar]
  99. Thevis M, Thomas A, Delahaut P, Bosseloir A, Schänzer W. 99.  2005. Qualitative determination of synthetic analogues of insulin in human plasma by immunoaffinity purification and liquid chromatography-tandem mass spectrometry for doping control purposes. Anal. Chem. 77:3579–85 [Google Scholar]
  100. Thevis M, Thomas A, Delahaut P, Bosseloir A, Schänzer W. 100.  2006. Doping control analysis of intact rapid-acting insulin analogues in human urine by liquid chromatography–tandem mass spectrometry. Anal. Chem. 78:1897–903 [Google Scholar]
  101. Thomas A, Thevis M, Delahaut P, Bosseloir A, Schänzer W. 101.  2007. Mass spectrometric identification of degradation products of insulin and its long-acting analogues in human urine for doping control purposes. Anal. Chem. 79:2518–24 [Google Scholar]
  102. Wallace JD, Cuneo RC, Bidlingmaier M, Lundberg PA, Carlsson L. 102.  et al. 2001. Changes in non22-kDa isoforms of growth hormone (GH) after administration of 22-kDa recombinant human GH in trained adult males. J. Clin. Endocrinol. Metab. 86:1731–37 [Google Scholar]
  103. Abramson FP, Osborn BL, Teffera Y. 103.  1996. Isotopic differences in human growth hormone preparations. Anal. Chem. 68:1971–72 [Google Scholar]
  104. Bidlingmaier M, Strasburger CJ. 104.  2007. Technology insight: detecting growth hormone abuse in athletes. Nat. Clin. Pract. Endocrinol. Metab. 3:769–77 [Google Scholar]
  105. Erotokritou-Mulligan I, Bassett EE, Kniess A, Sonksen PH, Holt RI. 105.  2007. Validation of the growth hormone (GH)-dependent marker method of detecting GH abuse in sport through the use of independent data sets. Growth Horm. IGF Res. 17:416–23 [Google Scholar]
  106. Wu Z, Bidlingmaier M, Dall R, Strahm E. 106.  1999. Detection of doping with human growth hormone. Lancet 353:895 [Google Scholar]
  107. Bidlingmaier M, Suhr J, Ernst A, Wu Z, Keller A. 106a.  et al. 2009. High-sensitivity chemiluminescence immunoassays for detection of growth hormone doping in sports. Clin. Chem. 55:445–53 [Google Scholar]
  108. Wallace JD, Cuneo RC, Bidlingmaier M, Lundberg PA, Carlsson L. 107.  et al. 2001. The response of molecular isoforms of growth hormone to acute exercise in trained adult males. J. Clin. Endocrinol. Metab. 86:200–6 [Google Scholar]
  109. Hashimoto Y, Ikeda I, Ikeda M, Takahashi Y, Hosaka M. 108.  et al. 1998. Construction of a specific and sensitive sandwich enzyme immunoassay for 20 kDa human growth hormone. J. Immunol. Methods 221:77–85 [Google Scholar]
  110. Dall R, Longobardi S, Ehrnborg C, Keay N, Rosen T. 109.  et al. 2000. The effect of four weeks of supraphysiological growth hormone administration on the insulin-like growth factor axis in women and men. GH-2000 Study Group. J. Clin. Endocrinol. Metab. 85:4193–200 [Google Scholar]
  111. Wallace JD, Cuneo RC, Baxter R, Orskov H, Keay N. 110.  et al. 1999. Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: a potential test for GH abuse in sport. J. Clin. Endocrinol. Metab. 84:3591–601 [Google Scholar]
  112. Longobardi S, Keay N, Ehrnborg C, Cittadini A, Rosen T. 111.  et al. 2000. Growth hormone (GH) effects on bone and collagen turnover in healthy adults and its potential as a marker of GH abuse in sports: a double blind, placebo-controlled study. The GH-2000 Study Group. J. Clin. Endocrinol. Metab. 85:1505–12 [Google Scholar]
  113. Wallace JD, Cuneo RC, Lundberg PA, Rosen T, Jorgensen JO. 112.  et al. 2000. Responses of markers of bone and collagen turnover to exercise, growth hormone (GH) administration, and GH withdrawal in trained adult males. J. Clin. Endocrinol. Metab. 85:124–33 [Google Scholar]
  114. Kniess A, Ziegler E, Kratzsch J, Thieme D, Muller RK. 113.  2003. Potential parameters for the detection of hGH doping. Anal. Bioanal. Chem. 376:696–700 [Google Scholar]
  115. Sartorio A, Agosti F, Marazzi N, Maffiuletti NA, Cella SG. 114.  et al. 2004. Combined evaluation of resting IGF-I, N-terminal propeptide of type III procollagen (PIIINP) and C-terminal cross-linked telopeptide of type I collagen (ICTP) levels might be useful for detecting inappropriate GH administration in athletes: a preliminary report. Clin. Endocrinol. 61:487–93 [Google Scholar]
  116. Abellan R, Ventura R, Pichini S, Di Giovannandrea R, Bellver M. 115.  et al. 2006. Effect of physical fitness and endurance exercise on indirect biomarkers of recombinant growth hormone misuse: insulin-like growth factor I and procollagen type III peptide. Int. J. Sports Med. 27:976–83 [Google Scholar]
  117. Nelson AE, Meinhardt U, Hansen JL, Walker IH, Stone G. 116.  et al. 2008. Pharmacodynamics of growth hormone abuse biomarkers and the influence of gender and testosterone: a randomized double-blind placebo-controlled study in young recreational athletes. J. Clin. Endocrinol. Metab. 93:2213–22 [Google Scholar]
  118. Abellan R, Ventura R, Pichini S, Pascual JA, Pacifici R. 117.  et al. 2005. Evaluation of immunoassays for the measurement of insulin-like growth factor-I and procollagen type III peptide, indirect biomarkers of recombinant human growth hormone misuse in sport. Clin. Chem. Lab. Med. 43:75–85 [Google Scholar]
  119. Erotokritou-Mulligan I, Bassett EE, Bartlett C, Cowan D, McHugh C. 118.  et al. 2008. The effect of sports injury on insulin-like growth factor–I and type 3 procollagen: implications for detection of growth hormone abuse in athletes. J. Clin. Endocrinol. Metab. 93:2760–63 [Google Scholar]
  120. Nguyen TV, Nelson AE, Howe CJ, Seibel MJ, Baxter RC. 119.  et al. 2008. Within-subject variability and analytic imprecision of insulinlike growth factor axis and collagen markers: implications for clinical diagnosis and doping tests. Clin. Chem. 54:1268–76 [Google Scholar]
  121. Nelson RW, Nedelkov D, Tubbs KA, Kierman UA. 120.  2004. Quantitative mass spectrometric immunoassay for insulin like growth factor 1. J. Proteome. Res. 3:851–55 [Google Scholar]
  122. Bredehöft M, Schänzer W, Thevis M. 121.  2008. Quantification of human insulin-like growth factor–1 and qualitative detection of its analogues in plasma using liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 22:477–85 [Google Scholar]
  123. Wide L, Bengtsson C. 122.  1990. Molecular charge heterogeneity of human serum erythropoietin. Br. J. Haematol. 76:121–27 [Google Scholar]
  124. Wide L, Bengtsson C, Berglund B, Ekblom B. 123.  1995. Detection in blood and urine of recombinant erythropoietin administered to healthy men. Med. Sci. Sports Exerc. 27:1569–76 [Google Scholar]
  125. Lasne F, de Ceaurriz J. 124.  2000. Recombinant erythropoietin in urine. Nature 405:635 [Google Scholar]
  126. Lasne F, Martin L, Crepin N, de Ceaurriz J. 125.  2002. Detection of isoelectric profiles of erythropoietin in urine: differentiation of natural and administered recombinant hormones. Anal. Biochem. 311:119–26 [Google Scholar]
  127. Catlin DH, Breidbach A, Elliott S, Glaspy J. 126.  2002. Comparison of the isoelectric focusing patterns of darbepoetin α, recombinant human erythropoietin, and endogenous erythropoietin from human urine. Clin. Chem. 48:2057–59 [Google Scholar]
  128. Breidbach A, Catlin DH, Green GA, Tregub I, Truong H, Gorzek J. 127.  2003. Detection of recombinant human erythropoietin in urine by isoelectric focusing. Clin. Chem. 49:901–7 [Google Scholar]
  129. Lamon S, Robinson N, Mangin P, Saugy M. 128.  2007. Detection window of darbepoetin-α following one single subcutaneous injection. Clin. Chim. Acta 379:145–49 [Google Scholar]
  130. Lasne F, Martin L, de Ceaurriz J, Larcher T, Moullier P, Chenuaud P. 129.  2004. “Genetic doping” with erythropoietin cDNA in primate muscle is detectable. Mol. Ther. 10:409–10 [Google Scholar]
  131. Bajla I, Hollander I, Gmeiner G, Reichel C. 130.  2005. Quantitative analysis of images in erythropoietin doping control. Med. Biol. Eng. Comput. 43:403–9 [Google Scholar]
  132. Bajla I, Hollander I, Minichmayr M, Gmeiner G, Reichel C. 131.  2005. GASepo—a software solution for quantitative analysis of digital images in EPO doping control. Comput. Methods Programs Biomed. 80:246–70 [Google Scholar]
  133. Lasne F, Thioulouse J, Martin L, de Ceaurriz J. 132.  2007. Detection of recombinant human erythropoietin in urine for doping analysis: interpretation of isoelectric profiles by discriminant analysis. Electrophoresis 28:1875–81 [Google Scholar]
  134. Khan A, Grinyer J, Truong ST, Breen EJ, Packer NH. 133.  2005. New urinary EPO drug testing method using two-dimensional gel electrophoresis. Clin. Chim. Acta 358:119–30 [Google Scholar]
  135. Beullens M, Delanghe JR, Bollen M. 134.  2006. False-positive detection of recombinant human erythropoietin in urine following strenuous physical exercise. Blood 107:4711–13 [Google Scholar]
  136. Franke WW, Heid H. 135.  2006. Pitfalls, errors and risks of false-positive results in urinary EPO drug tests. Clin. Chim. Acta 373:189–90 [Google Scholar]
  137. Khan A, Baker MS. 136.  2007. Non-specific binding of monoclonal human erythropoietin antibody AE7A5 to Escherichia coli and Saccharomyces cerevisiae proteins. Clin. Chim. Acta 379:173–75 [Google Scholar]
  138. Delanghe JR, Bollen M, Beullens M. 137.  2008. Testing for recombinant erythropoietin. Am. J. Hematol. 83:237–41 [Google Scholar]
  139. Catlin D, Green G, Sekera M, Scott P, Starcevic B. 138.  2006. False-positive EPO test concerns unfounded. Blood 108:1778–80 [Google Scholar]
  140. Lasne F. 139.  2006. No doubt about the validity of the urine test for detection of recombinant human erythropoietin. Blood 108:1778–80 [Google Scholar]
  141. Rabin OP, Lasne F, Pascual JA, Saugy M, Delbeke FJ, Van Eenoo P. 140.  2006. New urinary EPO drug testing method using two-dimensional gel electrophoresis. Clin. Chim. Acta 373:186–88 [Google Scholar]
  142. Belalcazar V, Ventura R, Segura J, Pascual JA. 141.  2008. Clarification on the detection of epoetin delta and epoetin omega using isoelectric focusing. Am. J. Hematol. 83:754–55 [Google Scholar]
  143. Lasne F, Martin L, Martin JA, de Ceaurriz J. 142.  2007. Isoelectric profiles of human erythropoietin are different in serum and urine. Int. J. Biol. Macromol. 41:354–57 [Google Scholar]
  144. Reichel C. 143.  2008. Identification of zinc-α-2-glycoprotein binding to clone AE7A5 antihuman EPO antibody by means of nano-HPLC and high-resolution high-mass accuracy ESI-MS/MS. J. Mass Spectrom. 43:916–23 [Google Scholar]
  145. Belalcazar V, Gutierrez Gallego R, Llop E, Segura J, Pascual JA. 144.  2006. Assessing the instability of the isoelectric focusing patterns of erythropoietin in urine. Electrophoresis 27:4387–95 [Google Scholar]
  146. Kohler M, Ayotte C, Desharnais P, Flenker U, Ludke S. 145.  et al. 2008. Discrimination of recombinant and endogenous urinary erythropoietin by calculating relative mobility values from SDS gels. Int. J. Sports Med. 29:1–6 [Google Scholar]
  147. Stubiger G, Marchetti M, Nagano M, Grimm R, Gmeiner G. 146.  et al. 2005. Characterization of N- and O-glycopeptides of recombinant human erythropoietins as potential biomarkers for doping analysis by means of microscale sample purification combined with MALDI-TOF and quadrupole IT/RTOF mass spectrometry. J. Sep. Sci. 28:1764–78 [Google Scholar]
  148. Caldini A, Moneti G, Fanelli A, Bruschettini A, Mercurio S. 147.  et al. 2003. Epoetin α, epoetin β and darbepoetin α: two-dimensional gel electrophoresis isoforms characterization and mass spectrometry analysis. Proteomics 3:937–41 [Google Scholar]
  149. Groleau PE, Desharnais P, Cote L, Ayotte C. 148.  2008. Low LC-MS/MS detection of glycopeptides released from pmol levels of recombinant erythropoietin using nanoflow HPLC-chip electrospray ionization. J. Mass Spectrom. 43:924–35 [Google Scholar]
  150. Stubiger G, Marchetti M, Nagano M, Reichel C, Gmeiner G, Allmaier G. 149.  2005. Characterisation of intact recombinant human erythropoietins applied in doping by means of planar gel electrophoretic techniques and matrix-assisted laser desorption/ionisation linear time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 19:728–42 [Google Scholar]
  151. Nelson M, Ashenden M, Langshaw M, Popp H. 150.  2002. Detection of homologous blood transfusion by flow cytometry: a deterrent against blood doping. Haematologica 87:881–82 [Google Scholar]
  152. Nelson M, Popp H, Sharpe K, Ashenden M. 151.  2003. Proof of homologous blood transfusion through quantification of blood group antigens. Haematologica 88:1284–95 [Google Scholar]
  153. Giraud S, Robinson N, Mangin P, Saugy M. 152.  2008. Scientific and forensic standards for homologous blood transfusion antidoping analyses. Forensic. Sci. Int. 179:23–33 [Google Scholar]
  154. Arndt PA, Kumpel BM. 153.  2008. Blood doping in athletes—detection of allogeneic blood transfusions by flow cytofluorometry. Am. J. Hematol. 83:657–67 [Google Scholar]
/content/journals/10.1146/annurev-anchem-060908-155159
Loading
/content/journals/10.1146/annurev-anchem-060908-155159
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error