1932

Abstract

Since its first demonstration, stimulated Raman scattering (SRS) microscopy has become a powerful chemical imaging tool that shows promise in numerous biological and biomedical applications. The spectroscopic capability of SRS enables identification and tracking of specific molecules or classes of molecules, often without labeling. SRS microscopy also has the hallmark advantage of signal strength that is directly proportional to molecular concentration, allowing for in situ quantitative analysis of chemical composition of heterogeneous samples with submicron spatial resolution and subminute temporal resolution. However, it is important to recognize that quantification through SRS microscopy requires assumptions regarding both system and sample. Such assumptions are often taken axiomatically, which may lead to erroneous conclusions without proper validation. In this review, we focus on the tacitly accepted, yet complex, quantitative aspect of SRS microscopy. We discuss the various approaches to quantitative analysis, examples of such approaches, challenges in different systems, and potential solutions. Through our examination of published literature, we conclude that a scrupulous approach to experimental design can further expand the powerful and incisive quantitative capabilities of SRS microscopy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061020-015110
2022-06-13
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/anchem/15/1/annurev-anchem-061020-015110.html?itemId=/content/journals/10.1146/annurev-anchem-061020-015110&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Freudiger CW, Min W, Saar BG, Lu S, Holtom GR et al. 2008. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322:59091857–61
    [Google Scholar]
  2. 2.
    Colles MJ, Griffiths JE. 1972. Relative and absolute Raman scattering cross sections in liquids. J. Chem. Phys. 56:73384–91
    [Google Scholar]
  3. 3.
    McAnally MO, Phelan BT, Young RM, Wasielewski MR, Schatz GC, Van Duyne RP. 2017. Quantitative determination of the differential Raman scattering cross sections of glucose by femtosecond stimulated Raman scattering. Anal. Chem. 89:136931–35
    [Google Scholar]
  4. 4.
    Xiong H, Qian N, Miao Y, Zhao Z, Min W 2019. Stimulated Raman excited fluorescence spectroscopy of visible dyes. J. Phys. Chem. Lett. 10:133563–70
    [Google Scholar]
  5. 5.
    Cheng J-X, Xie XS. 2015. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350:6264aaa8870
    [Google Scholar]
  6. 6.
    Hill AH, Fu D. 2019. Cellular imaging using stimulated Raman scattering microscopy. Anal. Chem. 91:159333–42
    [Google Scholar]
  7. 7.
    Duncan MD, Reintjes J, Manuccia TJ. 1982. Scanning coherent anti-Stokes Raman microscope. Opt. Lett. 7:8350–52
    [Google Scholar]
  8. 8.
    Cheng J-X, Xie XS. 2004. Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J. Phys. Chem. B 108:3827–40
    [Google Scholar]
  9. 9.
    Fu D. 2017. Quantitative chemical imaging with stimulated Raman scattering microscopy. Curr. Opin. Chem. Biol. 39:24–31
    [Google Scholar]
  10. 10.
    Stender A, Marchuk K, Liu C, Sander S, Meyer M et al. 2013. Single cell optical imaging and spectroscopy. Chem. Rev. 113:42469–527
    [Google Scholar]
  11. 11.
    Schie I, Krafft C, Popp J. 2015. Applications of coherent Raman scattering microscopies to clinical and biological studies. Analyst 140:123897–909
    [Google Scholar]
  12. 12.
    Min W, Freudiger CW, Lu S, Xie XS. 2011. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62:507–30
    [Google Scholar]
  13. 13.
    Camp CH Jr., Cicerone MT. 2015. Chemically sensitive bioimaging with coherent Raman scattering. Nat. Photon. 9:5295–305
    [Google Scholar]
  14. 14.
    Masia F, Karuna A, Borri P, Langbein W. 2015. Hyperspectral image analysis for CARS, SRS, and Raman data. J. Raman Spectrosc. 46:8727–34
    [Google Scholar]
  15. 15.
    Nandakumar P, Kovalev A, Volkmer A. 2009. Vibrational imaging based on stimulated Raman scattering microscopy. New J. Phys. 11:033026
    [Google Scholar]
  16. 16.
    Cheng J-X, Xie XS. 2013. Coherent Raman Scattering Microscopy Boca Raton, FL: CRC Press
    [Google Scholar]
  17. 17.
    Sanderson MJ, Smith I, Parker I, Bootman MD 2014. Fluorescence microscopy. Cold Spring Harb. Protoc. 2014:10 https://doi.org/10.1101/pdb.top071795
    [Crossref] [Google Scholar]
  18. 18.
    Santi PA. 2011. Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59:2129–38
    [Google Scholar]
  19. 19.
    Ranjit S, Lanzanò L, Libby AE, Gratton E, Levi M. 2021. Advances in fluorescence microscopy techniques to study kidney function. Nat. Rev. Nephrol. 17:2128–44
    [Google Scholar]
  20. 20.
    Icha J, Weber M, Waters JC, Norden C. 2017. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays 39:81700003
    [Google Scholar]
  21. 21.
    Sepp K, Lee M, Bluntzer MTJ, Helgason GV, Hulme AN, Brunton VG. 2020. Utilizing stimulated Raman scattering microscopy to study intracellular distribution of label-free ponatinib in live cells. J. Med. Chem. 63:52028–34
    [Google Scholar]
  22. 22.
    Feizpour A, Marstrand T, Bastholm L, Eirefelt S, Evans CL. 2021. Label-free quantification of pharmacokinetics in skin with stimulated Raman scattering microscopy and deep learning. J. Investig. Dermatol. 141:2395–403
    [Google Scholar]
  23. 23.
    Liao C-S, Slipchenko MN, Wang P, Li J, Lee S-Y et al. 2015. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy. Light Sci. Appl. 4:3e265
    [Google Scholar]
  24. 24.
    Bae K, Zheng W, Ma Y, Huang Z. 2020. Real-time monitoring of pharmacokinetics of mitochondria-targeting molecules in live cells with bioorthogonal hyperspectral stimulated Raman scattering microscopy. Anal. Chem. 92:1740–48
    [Google Scholar]
  25. 25.
    Belsey N, Garrett N, Contreras-Rojas L, Pickup-Gerlaugh A, Price G et al. 2014. Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies. J. Control. Release 174:37–42
    [Google Scholar]
  26. 26.
    Stiebing C, Meyer T, Rimke I, Matthäus C, Schmitt M et al. 2017. Real-time Raman and SRS imaging of living human macrophages reveals cell-to-cell heterogeneity and dynamics of lipid uptake. J. Biophoton. 10:91217–26
    [Google Scholar]
  27. 27.
    Zhang L, Shi L, Shen Y, Miao Y, Wei M et al. 2019. Spectral tracing of deuterium for imaging glucose metabolism. Nat. Biomed. Eng. 3:5402–13
    [Google Scholar]
  28. 28.
    Zhang C, Li J, Lan L, Cheng J-X. 2017. Quantification of lipid metabolism in living cells through the dynamics of lipid droplets measured by stimulated Raman scattering imaging. Anal. Chem. 89:84502–7
    [Google Scholar]
  29. 29.
    Huang K-C, Li J, Zhang C, Tan Y, Cheng J-X. 2020. Multiplex stimulated Raman scattering imaging cytometry reveals lipid-rich protrusions in cancer cells under stress condition. iScience 23:3100953
    [Google Scholar]
  30. 30.
    Wang M, Min W, Freudiger C, Ruvkun G, Xie X. 2011. RNAi screening for fat regulatory genes with SRS microscopy. Nat. Methods 8:2135–38
    [Google Scholar]
  31. 31.
    Hong W, Karanja CW, Abutaleb NS, Younis W, Zhang X et al. 2018. Antibiotic susceptibility determination within one cell cycle at single-bacterium level by stimulated Raman metabolic imaging. Anal. Chem. 90:63737–43
    [Google Scholar]
  32. 32.
    Bae K, Zheng W, Ma Y, Huang Z. 2019. Real-time monitoring of pharmacokinetics of antibiotics in biofilms with Raman-tagged hyperspectral stimulated Raman scattering microscopy. Theranostics 9:51348–57
    [Google Scholar]
  33. 33.
    Zhang B, Xu H, Chen J, Zhu X, Xue Y et al. 2021. Highly specific and label-free histological identification of microcrystals in fresh human gout tissues with stimulated Raman scattering. Theranostics 11:73074–88
    [Google Scholar]
  34. 34.
    Zhang L, Wu Y, Zheng B, Su L, Chen Y et al. 2019. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy. Theranostics 9:92541–54
    [Google Scholar]
  35. 35.
    Ji M, Arbel M, Zhang L, Freudiger CW, Hou SS et al. 2018. Label-free imaging of amyloid plaques in Alzheimer's disease with stimulated Raman scattering microscopy. Sci. Adv. 4:11eaat7715
    [Google Scholar]
  36. 36.
    Yang Y, Yang Y, Liu Z, Guo L, Li S et al. 2021. Microcalcification-based tumor malignancy evaluation in fresh breast biopsies with hyperspectral stimulated Raman scattering. Anal. Chem. 93:156223–31
    [Google Scholar]
  37. 37.
    Fu D, Lu F, Zhang X, Freudiger C, Pernik D et al. 2012. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J. Am. Chem. Soc. 134:83623–26
    [Google Scholar]
  38. 38.
    Shi L, Fung A, Zhou A. 2021. Advances in stimulated Raman scattering imaging for tissues and animals. Quant. Imaging Med. Surg. 11:31078–101
    [Google Scholar]
  39. 39.
    Streets A, Li A, Chen T, Huang Y. 2014. Imaging without fluorescence: nonlinear optical microscopy for quantitative cellular imaging. Anal. Chem. 86:178506–13
    [Google Scholar]
  40. 40.
    Zhang D, Wang P, Slipchenko M, Cheng J. 2014. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy. Acc. Chem. Res. 47:82282–90
    [Google Scholar]
  41. 41.
    Lee HJ, Cheng J-X. 2017. Imaging chemistry inside living cells by stimulated Raman scattering microscopy. Methods 128:119–28
    [Google Scholar]
  42. 42.
    Lee M, Simon Herrington C, Ravindra M, Sepp K, Davies A et al. 2021. Recent advances in the use of stimulated Raman scattering in histopathology. Analyst 146:3789–802
    [Google Scholar]
  43. 43.
    Shen Y, Hu F, Min W 2019. Raman imaging of small biomolecules. Annu. Rev. Biophys. 48:347–69
    [Google Scholar]
  44. 44.
    Vanden-Hehir S, Tipping WJ, Lee M, Brunton VG, Williams A, Hulme AN 2019. Raman imaging of nanocarriers for drug delivery. Nanomaterials 9:3341
    [Google Scholar]
  45. 45.
    Pawley J. 2000. The 39 steps: a cautionary tale of quantitative 3-D fluorescence microscopy. BioTechniques 28:5884–87
    [Google Scholar]
  46. 46.
    Waters JC, Wittmann T. 2014. Concepts in quantitative fluorescence microscopy. Methods Cell Biol. 123:1–18
    [Google Scholar]
  47. 47.
    Lee J-Y, Kitaoka M. 2018. A beginner's guide to rigor and reproducibility in fluorescence imaging experiments. Mol. Biol. Cell 29:131519–25
    [Google Scholar]
  48. 48.
    Fu D, Holtom G, Freudiger C, Zhang X, Xie XS. 2013. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers. J. Phys. Chem. B 117:164634–40
    [Google Scholar]
  49. 49.
    Fimpel P, Choorakuttil A, Pruccoli A, Ebner L, Tanaka S et al. 2020. Double modulation SRS and SREF microscopy: signal contributions under pre-resonance conditions. Phys. Chem. Chem. Phys. 22:3721421–27
    [Google Scholar]
  50. 50.
    Zhang D, Slipchenko MN, Leaird DE, Weiner AM, Cheng J-X. 2013. Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. Opt. Express 21:1113864–74
    [Google Scholar]
  51. 51.
    Fu D, Ye T, Matthews TE, Yurtsever G, Warren SW. 2007. Two-color, two-photon, and excited-state absorption microscopy. J. Biomed. Optics 12:5054004
    [Google Scholar]
  52. 52.
    Hill AH, Munger E, Francis AT, Manifold B, Fu D. 2019. Frequency modulation stimulated Raman scattering microscopy through polarization encoding. J. Phys. Chem. B 123:408397–404
    [Google Scholar]
  53. 53.
    Berto P, Andresen ER, Rigneault H. 2014. Background-free stimulated Raman spectroscopy and microscopy. Phys. Rev. Lett. 112:5053905
    [Google Scholar]
  54. 54.
    Nahmad-Rohen A, Regan D, Masia F, McPhee C, Pope I et al. 2020. Quantitative label-free imaging of lipid domains in single bilayers by hyperspectral coherent Raman scattering. Anal. Chem. 92:2114657–66
    [Google Scholar]
  55. 55.
    Pillai RS, Brakenhoff GJ, Müller M. 2006. Analysis of the influence of spherical aberration from focusing through a dielectric slab in quantitative nonlinear optical susceptibility measurements using third-harmonic generation. Opt. Express 14:1260–69
    [Google Scholar]
  56. 56.
    Gelber MK, Kole MR, Kim N, Aluru NR, Bhargava R. 2017. Quantitative chemical imaging of nonplanar microfluidics. Anal. Chem. 89:31716–23
    [Google Scholar]
  57. 57.
    Li X, Jiang M, Lam JWY, Tang BZ, Qu JY. 2017. Mitochondrial imaging with combined fluorescence and stimulated Raman scattering microscopy using a probe of the aggregation-induced emission characteristic. J. Am. Chem. Soc. 139:4717022–30
    [Google Scholar]
  58. 58.
    Fu D, Yang W, Xie XS. 2017. Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering. J. Am. Chem. Soc. 139:2583–86
    [Google Scholar]
  59. 59.
    Bi Y, Yang C, Chen Y, Yan S, Yang G et al. 2018. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm. Light Sci. Appl. 7:181
    [Google Scholar]
  60. 60.
    Zipfel WR, Williams RM, Webb WW. 2003. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21:111369–77
    [Google Scholar]
  61. 61.
    Ji M, Lewis S, Camelo-Piragua S, Ramkissoon SH, Snuderl M et al. 2015. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci. Transl. Med. 7:309309ra163
    [Google Scholar]
  62. 62.
    Lee D, Du J, Yu R, Su Y, Heath JR, Wei L. 2020. Visualizing subcellular enrichment of glycogen in live cancer cells by stimulated Raman scattering. Anal. Chem. 92:1913182–91
    [Google Scholar]
  63. 63.
    Nixdorf J, Di Florio G, Brockers L, Borbeck C, Hermes H et al. 2019. Uptake of methanol by poly(methyl methacrylate): an old problem addressed by a novel Raman technique. Macromolecules 52:134997–5005
    [Google Scholar]
  64. 64.
    Tian F, Yang W, Mordes D, Wang J, Salameh J et al. 2016. Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging. Nat. Commun. 7:13283
    [Google Scholar]
  65. 65.
    Gupta A, Dorlhiac G, Streets A. 2019. Quantitative imaging of lipid droplets in single cells. Analyst 144:3753–65
    [Google Scholar]
  66. 66.
    Cao C, Zhou D, Chen T, Streets AM, Huang Y. 2016. Label-free digital quantification of lipid droplets in single cells by stimulated Raman microscopy on a microfluidic platform. Anal. Chem. 88:94931–39
    [Google Scholar]
  67. 67.
    Urasaki Y, Zhang C, Cheng J-X, Le TT. 2018. Quantitative assessment of liver steatosis and affected pathways with molecular imaging and proteomic profiling. Sci. Rep. 8:13606
    [Google Scholar]
  68. 68.
    Francis AT, Nguyen TT, Lamm MS, Teller R, Forster SP et al. 2018. In situ stimulated Raman scattering (SRS) microscopy study of the dissolution of sustained-release implant formulation. Mol. Pharm. 15:125793–801
    [Google Scholar]
  69. 69.
    Wei L, Chen Z, Shi L, Long R, Anzalone AV et al. 2017. Super-multiplex vibrational imaging. Nature 544:7651465–70
    [Google Scholar]
  70. 70.
    Chen C, Zhao Z, Qian N, Wei S, Hu F, Min W 2021. Multiplexed live-cell profiling with Raman probes. Nat. Commun. 12:13405
    [Google Scholar]
  71. 71.
    Miao Y, Qian N, Shi L, Hu F, Min W 2021. 9-Cyanopyronin probe palette for super-multiplexed vibrational imaging. Nat. Commun. 12:14518
    [Google Scholar]
  72. 72.
    Zhang J, Yan S, He Z, Ding C, Zhai T et al. 2018. Small unnatural amino acid carried Raman tag for molecular imaging of genetically targeted proteins. J. Phys. Chem. Lett. 9:164679–85
    [Google Scholar]
  73. 73.
    Manifold B, Thomas E, Francis AT, Hill AH, Fu D. 2019. Denoising of stimulated Raman scattering microscopy images via deep learning. Biomed. Opt. Express 10:83860–74
    [Google Scholar]
  74. 74.
    Hill AH, Manifold B, Fu D. 2020. Tissue imaging depth limit of stimulated Raman scattering microscopy. Biomed. Opt. Express 11:2762–74
    [Google Scholar]
  75. 75.
    Manifold B, Men S, Hu R, Fu D. 2021. A versatile deep learning architecture for classification and label-free prediction of hyperspectral images. Nat. Mach. Intell. 3:4306–15
    [Google Scholar]
  76. 76.
    Lin H, Lee HJ, Tague N, Lugagne J-B, Zong C et al. 2021. Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning. Nat. Commun. 12:13052
    [Google Scholar]
  77. 77.
    Zhang J, Zhao J, Lin H, Tan Y, Cheng J-X. 2020. High-speed chemical imaging by dense-net learning of femtosecond stimulated Raman scattering. J. Phys. Chem. Lett. 11:208573–78
    [Google Scholar]
  78. 78.
    Alfonso-Garcia A, Paugh J, Farid M, Garg S, Jester J, Potma E 2017. A machine learning framework to analyze hyperspectral stimulated Raman scattering microscopy images of expressed human meibum. J. Raman Spectrosc. 48:6803–12
    [Google Scholar]
  79. 79.
    Ragupathy I, Schweikhard V, Zumbusch A. 2021. Multivariate analysis of hyperspectral stimulated Raman scattering microscopy images. J. Raman Spectrosc. 52:1630–42
    [Google Scholar]
  80. 80.
    Zhang D, Wang P, Slipchenko MN, Ben-Amotz D, Weiner AM, Cheng J-X. 2013. Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis. Anal. Chem. 85:198–106
    [Google Scholar]
  81. 81.
    Fu D, Zhou J, Zhu WS, Manley PW, Wang YK et al. 2014. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 6:7614–22
    [Google Scholar]
  82. 82.
    Miao K, Wei L. 2020. Live-cell imaging and quantification of PolyQ aggregates by stimulated Raman scattering of selective deuterium labeling. ACS Cent. Sci. 6:4478–86
    [Google Scholar]
  83. 83.
    Li X, Li Y, Jiang M, Wu W, He S et al. 2019. Quantitative imaging of lipid synthesis and lipolysis dynamics in Caenorhabditis elegans by stimulated Raman scattering microscopy. Anal. Chem. 91:32279–87
    [Google Scholar]
  84. 84.
    Figueroa B, Nguyen T, Sotthivirat S, Xu W, Rhodes T et al. 2019. Detecting and quantifying microscale chemical reactions in pharmaceutical tablets by stimulated Raman scattering microscopy. Anal. Chem. 91:106894–6901
    [Google Scholar]
  85. 85.
    Wei L, Yu Y, Shen Y, Wang MC, Min W. 2013. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. PNAS 110:2811226–31
    [Google Scholar]
  86. 86.
    Wang P, Li J, Wang P, Hu C, Zhang D et al. 2013. Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy. Angew. Chem. Int. Ed. 52:4913042–46
    [Google Scholar]
  87. 87.
    Orringer D, Pandian B, Niknafs Y, Hollon T, Boyle J et al. 2017. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 1:20027
    [Google Scholar]
  88. 88.
    Pekmezci M, Morshed RA, Chunduru P, Pandian B, Young J et al. 2021. Detection of glioma infiltration at the tumor margin using quantitative stimulated Raman scattering histology. Sci. Rep. 11:112162
    [Google Scholar]
  89. 89.
    Sarri B, Poizat F, Heuke S, Wojak J, Franchi F et al. 2019. Stimulated Raman histology: one to one comparison with standard hematoxylin and eosin staining. Biomed. Opt. Express 10:105378–84
    [Google Scholar]
  90. 90.
    Shin KS, Francis AT, Hill AH, Laohajaratsang M, Cimino PJ et al. 2019. Intraoperative assessment of skull base tumors using stimulated Raman scattering microscopy. Sci. Rep. 9:120392
    [Google Scholar]
  91. 91.
    Li H, Cheng Y, Tang H, Bi Y, Chen Y et al. 2020. Imaging chemical kinetics of radical polymerization with an ultrafast coherent Raman microscope. Adv. Sci. 7:101903644
    [Google Scholar]
  92. 92.
    Liu B, Lee H, Zhang D, Liao C, Ji N et al. 2015. Label-free spectroscopic detection of membrane potential using stimulated Raman scattering. Appl. Phys. Lett. 106:17173704
    [Google Scholar]
  93. 93.
    Li J, Cheng J-X. 2014. Direct visualization of de novo lipogenesis in single living cells. Sci. Rep. 4:16807
    [Google Scholar]
  94. 94.
    Shen Y, Xu F, Wei L, Hu F, Min W 2014. Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering. Angew. Chem. Int. Ed. 53:225596–99
    [Google Scholar]
  95. 95.
    Shen Y, Zhao Z, Zhang L, Shi L, Shahriar S et al. 2017. Metabolic activity induces membrane phase separation in endoplasmic reticulum. PNAS 114:5113394–99
    [Google Scholar]
  96. 96.
    He R, Xu Y, Zhang L, Ma S, Wang X et al. 2017. Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging. Optica 4:144–47
    [Google Scholar]
  97. 97.
    Long R, Zhang L, Shi L, Shen Y, Hu F et al. 2018. Two-color vibrational imaging of glucose metabolism using stimulated Raman scattering. Chem. Commun. 54:2152–55
    [Google Scholar]
  98. 98.
    Laptenok S, Rajamanickam V, Genchi L, Monfort T, Lee Y et al. 2019. Fingerprint-to-CH stretch continuously tunable high spectral resolution stimulated Raman scattering microscope. J. Biophoton. 12:9e201900028
    [Google Scholar]
  99. 99.
    Figueroa B, Fu W, Nguyen T, Shin K, Manifold B et al. 2018. Broadband hyperspectral stimulated Raman scattering microscopy with a parabolic fiber amplifier source. Biomed. Opt. Express 9:126116–31
    [Google Scholar]
  100. 100.
    Shin S, Kim D, Kim K, Park Y 2018. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. Sci. Rep. 8:19183
    [Google Scholar]
  101. 101.
    Karpf S, Eibl M, Wieser W, Klein T, Huber R. 2015. A time-encoded technique for fibre-based hyperspectral broadband stimulated Raman microscopy. Nat. Commun. 6:6784
    [Google Scholar]
  102. 102.
    Shin KS, Laohajaratsang M, Men S, Figueroa B, Dintzis SM, Fu D. 2020. Quantitative chemical imaging of breast calcifications in association with neoplastic processes. Theranostics 10:135865–78
    [Google Scholar]
  103. 103.
    Du J, Su Y, Qian C, Yuan D, Miao K et al. 2020. Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells. Nat. Commun. 11:14830
    [Google Scholar]
  104. 104.
    Shi L, Shen Y, Min W 2018. Invited article: visualizing protein synthesis in mice with in vivo labeling of deuterated amino acids using vibrational imaging. APL Photon 3:9092401
    [Google Scholar]
  105. 105.
    Wilson LT, Tipping WJ, Wetherill C, Henley Z, Faulds K et al. 2021. Mitokyne: a ratiometric Raman probe for mitochondrial pH. Anal. Chem. 93:3712786–92
    [Google Scholar]
  106. 106.
    Figueroa B, Hu R, Rayner SG, Zheng Y, Fu D. 2020. Real-time microscale temperature imaging by stimulated Raman scattering. J. Phys. Chem. Lett. 11:177083–89
    [Google Scholar]
  107. 107.
    Zeng C, Hu F, Long R, Min W. 2018. A ratiometric Raman probe for live-cell imaging of hydrogen sulfide in mitochondria by stimulated Raman scattering. Analyst 143:204844–48
    [Google Scholar]
  108. 108.
    Shi L, Hu F, Min W 2019. Optical mapping of biological water in single live cells by stimulated Raman excited fluorescence microscopy. Nat. Commun. 10:14764
    [Google Scholar]
  109. 109.
    Lang X, Welsher K. 2020. Mapping solvation heterogeneity in live cells by hyperspectral stimulated Raman scattering microscopy. J. Chem. Phys. 152:17174201
    [Google Scholar]
  110. 110.
    Oh S, Lee C, Fu D, Yang W, Li A et al. 2019. situ measurement of absolute concentrations by Normalized Raman Imaging. bioRxiv 629543. https://www.biorxiv.org/content/biorxiv/early/2019/05/08/629543.1.full.pdf
/content/journals/10.1146/annurev-anchem-061020-015110
Loading
/content/journals/10.1146/annurev-anchem-061020-015110
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error