1932

Abstract

Offering superb speed, chemical specificity, and analytical sensitivity, direct mass spectrometry (MS) technologies are highly amenable for the molecular analysis of complex tissues to aid in disease characterization and help identify new diagnostic, prognostic, and predictive markers. By enabling detection of clinically actionable molecular profiles from tissues and cells, direct MS technologies have the potential to guide treatment decisions and transform sample analysis within clinical workflows. In this review, we highlight recent health-related developments and applications of direct MS technologies that exhibit tangible potential to accelerate clinical research and disease diagnosis, including oncological and neurodegenerative diseases and microbial infections. We focus primarily on applications that employ direct MS technologies for tissue analysis, including MS imaging technologies to map spatial distributions of molecules in situ as well as handheld devices for rapid in vivo and ex vivo tissue analysis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061020-015544
2023-06-14
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/anchem/16/1/annurev-anchem-061020-015544.html?itemId=/content/journals/10.1146/annurev-anchem-061020-015544&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Swiner DJ, Jackson S, Burris BJ, Badu-Tawiah AK. 2020. Applications of mass spectrometry for clinical diagnostics: the influence of turnaround time. Anal. Chem. 92:183–202
    [Google Scholar]
  2. 2.
    Pu F, Chiang S, Zhang W, Ouyang Z. 2019. Direct sampling mass spectrometry for clinical analysis. Analyst 144:1034–51
    [Google Scholar]
  3. 3.
    Gupta S, Dey P. 2021. Diagnostic challenges in the gray-zone lesions of fine-needle aspiration cytology. CytoJournal 18:23
    [Google Scholar]
  4. 4.
    Neal L, Sandhu NP, Hieken TJ, Glazebrook KN, Mac Bride MB et al. 2014. Diagnosis and management of benign, atypical, and indeterminate breast lesions detected on core needle biopsy. Mayo Clin. Proc. 89:536–47
    [Google Scholar]
  5. 5.
    Hicks DG, Tubbs RR. 2005. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum. Pathol. 36:250–61
    [Google Scholar]
  6. 6.
    Yaziji H, Barry T. 2006. Diagnostic immunohistochemistry: What can go wrong?. Adv. Anat. Pathol. 13:238–46
    [Google Scholar]
  7. 7.
    Chrzanowska NM, Kowalewski J, Lewandowska MA. 2020. Use of fluorescence in situ hybridization (FISH) in diagnosis and tailored therapies in solid tumors. Molecules 25:1864
    [Google Scholar]
  8. 8.
    Casadonte R, Kriegsmann M, Perren A, Baretton G, Deininger S-O et al. 2019. Development of a class prediction model to discriminate pancreatic ductal adenocarcinoma from pancreatic neuroendocrine tumor by MALDI mass spectrometry imaging. Proteom. Clin. Appl. 13:e1800046
    [Google Scholar]
  9. 9.
    Lazova R, Smoot K, Anderson H, Powell MJ, Rosenberg AS et al. 2020. Histopathology-guided mass spectrometry differentiates benign nevi from malignant melanoma. J. Cutan. Pathol. 47:226–40
    [Google Scholar]
  10. 10.
    Piga I, Capitoli G, Tettamanti S, Denti V, Smith A et al. 2019. Feasibility study for the MALDI-MSI analysis of thyroid fine needle aspiration biopsies: evaluating the morphological and proteomic stability over time. Proteom. Clin. Appl. 13:e1700170
    [Google Scholar]
  11. 11.
    DeHoog RJ, Zhang J, Alore E, Lin JQ, Yu W et al. 2019. Preoperative metabolic classification of thyroid nodules using mass spectrometry imaging of fine-needle aspiration biopsies. PNAS 116:21401–8
    [Google Scholar]
  12. 12.
    Capitoli G, Piga I, L'Imperio V, Clerici F, Leni D et al. 2022. Cytomolecular classification of thyroid nodules using fine-needle washes aspiration biopsies. Int. J. Mol. Sci. 23:4156
    [Google Scholar]
  13. 13.
    Bensussan AV, Lin J, Guo C, Katz R, Krishnamurthy S et al. 2020. Distinguishing non-small cell lung cancer subtypes in fine needle aspiration biopsies by desorption electrospray ionization mass spectrometry imaging. Clin. Chem. 66:1424–33
    [Google Scholar]
  14. 14.
    Sommella E, Salviati E, Caponigro V, Grimaldi M, Musella S et al. 2022. MALDI mass spectrometry imaging highlights specific metabolome and lipidome profiles in salivary gland tumor tissues. Metabolites 12:530
    [Google Scholar]
  15. 15.
    Gonçalves JPL, Bollwein C, Schwamborn K. 2022. Mass spectrometry imaging spatial tissue analysis toward personalized medicine. Life 12:1037
    [Google Scholar]
  16. 16.
    Martin B, Gonçalves JPL, Bollwein C, Sommer F, Schenkirsch G et al. 2021. A mass spectrometry imaging based approach for prognosis prediction in UICC stage I/II colon cancer. Cancers 13:5371
    [Google Scholar]
  17. 17.
    Zhang M, He J, Li T, Hu H, Li X et al. 2019. Accurate classification of non-small cell lung cancer (NSCLC) pathology and mapping of EGFR mutation spatial distribution by ambient mass spectrometry imaging. Front. Oncol. 9:804
    [Google Scholar]
  18. 18.
    Berghmans E, Jacobs J, Deben C, Hermans C, Broeckx G et al. 2020. Mass spectrometry imaging reveals neutrophil defensins as additional biomarkers for anti-PD-(L)1 immunotherapy response in NSCLC patients. Cancers 12:863
    [Google Scholar]
  19. 19.
    Conroy LR, Stanback AE, Young LEA, Clarke HA, Austin GL et al. 2021. In situ analysis of N-linked glycans as potential biomarkers of clinical course in human prostate cancer. Mol. Cancer Res. 19:1727–38
    [Google Scholar]
  20. 20.
    Rujchanarong D, Scott D, Park Y, Brown S, Mehta AS et al. 2022. Metabolic links to socioeconomic stresses uniquely affecting ancestry in normal breast tissue at risk for breast cancer. Front. Oncol. 12:876651
    [Google Scholar]
  21. 21.
    Meurs J, Scurr DJ, Lourdusamy A, Storer LCD, Grundy RG et al. 2021. Sequential orbitrap secondary ion mass spectrometry and liquid extraction surface analysis-tandem mass spectrometry-based metabolomics for prediction of brain tumor relapse from sample-limited primary tissue archives. Anal. Chem. 93:6947–54
    [Google Scholar]
  22. 22.
    Sun N, Kunzke T, Sbiera S, Kircher S, Feuchtinger A et al. 2019. Prognostic relevance of steroid sulfation in adrenocortical carcinoma revealed by molecular phenotyping using high-resolution mass spectrometry imaging. Clin. Chem. 65:1276–86
    [Google Scholar]
  23. 23.
    Sun N, Trajkovic-Arsic M, Li F, Wu Y, Münch C et al. 2021. Native glycan fragments detected by MALDI mass spectrometry imaging are independent prognostic factors in pancreatic ductal adenocarcinoma. EJNMMI Res 11:120
    [Google Scholar]
  24. 24.
    Orosco RK, Tapia VJ, Califano JA, Clary B, Cohen EEW et al. 2018. Positive surgical margins in the 10 most common solid cancers. Sci. Rep. 8:5686
    [Google Scholar]
  25. 25.
    Yang X, Song X, Zhang X, Shankar V, Wang S et al. 2021. In situ DESI-MSI lipidomic profiles of mucosal margin of oral squamous cell carcinoma. EBioMedicine 70:103529
    [Google Scholar]
  26. 26.
    Vijayalakshmi K, Shankar V, Bain RM, Nolley R, Sonn GA et al. 2020. Identification of diagnostic metabolic signatures in clear cell renal cell carcinoma using mass spectrometry imaging. Int. J. Cancer 147:256–65
    [Google Scholar]
  27. 27.
    Brown HM, Alfaro CM, Pirro V, Cooks RG, Dey M et al. 2021. Intraoperative mass spectrometry platform for IDH mutation status prediction, glioma diagnosis, and estimation of tumor cell infiltration. J. Appl. Lab. Med. 6:902–16
    [Google Scholar]
  28. 28.
    Alfaro CM, Pirro V, Keating MF, Hattab EM, Cooks RG, Cohen-Gadol AA. 2020. Intraoperative assessment of isocitrate dehydrogenase mutation status in human gliomas using desorption electrospray ionization-mass spectrometry. J. Neurosurg. 132:180–87
    [Google Scholar]
  29. 29.
    Margulis K, Chiou AS, Aasi SZ, Tibshirani RJ, Tang JY, Zare RN. 2018. Distinguishing malignant from benign microscopic skin lesions using desorption electrospray ionization mass spectrometry imaging. PNAS 115:6347–52
    [Google Scholar]
  30. 30.
    Chen X, Gao J, Wang T, Jiang X, Chen J et al. 2019. Hepatocarcinoma discrimination by ratiometric lipid profiles using tip-contact sampling/ionization mass spectrometry. Anal. Chem. 91:10376–80
    [Google Scholar]
  31. 31.
    Basu SS, Stopka SA, Abdelmoula WM, Randall EC, Gimenez-Cassina Lopez B et al. 2021. Interim clinical trial analysis of intraoperative mass spectrometry for breast cancer surgery. NPJ Breast Cancer 7:116
    [Google Scholar]
  32. 32.
    Huang YC, Chung HH, Dutkiewicz EP, Chen CL, Hsieh HY et al. 2020. Predicting breast cancer by paper spray ion mobility spectrometry mass spectrometry and machine learning. Anal. Chem. 92:1653–57
    [Google Scholar]
  33. 33.
    Kiritani S, Yoshimura K, Arita J, Kokudo T, Hakoda H et al. 2021. A new rapid diagnostic system with ambient mass spectrometry and machine learning for colorectal liver metastasis. BMC Cancer 21:262
    [Google Scholar]
  34. 34.
    Giordano S, Takeda S, Donadon M, Saiki H, Brunelli L et al. 2020. Rapid automated diagnosis of primary hepatic tumour by mass spectrometry and artificial intelligence. Liver Int 40:3117–24
    [Google Scholar]
  35. 35.
    Basu SS, Regan MS, Randall EC, Abdelmoula WM, Clark AR et al. 2019. Rapid MALDI mass spectrometry imaging for surgical pathology. NPJ Precis. Oncol. 3:17
    [Google Scholar]
  36. 36.
    Vaysse PM, Grabsch HI, van den Hout M, Bemelmans MHA, Heeren RMA et al. 2021. Real-time lipid patterns to classify viable and necrotic liver tumors. Lab. Investig. 101:381–95
    [Google Scholar]
  37. 37.
    Tzafetas M, Mitra A, Paraskevaidi M, Bodai Z, Kalliala I et al. 2020. The intelligent knife (iKnife) and its intraoperative diagnostic advantage for the treatment of cervical disease. PNAS 117:7338–46
    [Google Scholar]
  38. 38.
    Van Hese L, De Vleeschouwer S, Theys T, Lariviere E, Solie L et al. 2022. Towards real-time intraoperative tissue interrogation for REIMS-guided glioma surgery. J. Mass Spectrom. Adv. Clin. Lab. 24:80–89
    [Google Scholar]
  39. 39.
    Vaysse PM, Demers I, van den Hout M, van de Worp W, Anthony IGM et al. 2022. Evaluation of the sensitivity of metabolic profiling by rapid evaporative ionization mass spectrometry: toward more radical oral cavity cancer resections. Anal. Chem. 94:6939–47
    [Google Scholar]
  40. 40.
    Vaysse PM, Kooreman LFS, Engelen SME, Kremer B, Olde Damink SWM et al. 2020. Stromal vapors for real-time molecular guidance of breast-conserving surgery. Sci. Rep. 10:20109
    [Google Scholar]
  41. 41.
    Zhang J, Sans M, DeHoog RJ, Garza KY, King ME et al. 2021. Clinical translation and evaluation of a handheld and biocompatible mass spectrometry probe for surgical use. Clin. Chem. 67:1271–80
    [Google Scholar]
  42. 42.
    King ME, Zhang J, Lin JQ, Garza KY, DeHoog RJ et al. 2021. Rapid diagnosis and tumor margin assessment during pancreatic cancer surgery with the MasSpec Pen technology. PNAS 118:e2104411118
    [Google Scholar]
  43. 43.
    Saudemont P, Quanico J, Robin YM, Baud A, Balog J et al. 2018. Real-time molecular diagnosis of tumors using water-assisted laser desorption/ionization mass spectrometry technology. Cancer Cell 34:840–51.e4
    [Google Scholar]
  44. 44.
    Ogrinc N, Kruszewski A, Chaillou P, Saudemont P, Lagadec C et al. 2021. Robot-assisted SpiderMass for in vivo real-time topography mass spectrometry imaging. Anal. Chem. 93:14383–91
    [Google Scholar]
  45. 45.
    Ogrinc N, Attencourt C, Colin E, Boudahi A, Tebbakha R et al. 2022. Mass spectrometry-based differentiation of oral tongue squamous cell carcinoma and nontumor regions with the SpiderMass technology. Front. Oral Health 3:827360
    [Google Scholar]
  46. 46.
    Woolman M, Kuzan-Fischer CM, Ferry I, Kiyota T, Luu B et al. 2019. Picosecond infrared laser desorption mass spectrometry identifies medulloblastoma subgroups on intrasurgical timescales. Cancer Res 79:2426–34
    [Google Scholar]
  47. 47.
    Woolman M, Qiu J, Kuzan-Fischer CM, Ferry I, Dara D et al. 2020. In situ tissue pathology from spatially encoded mass spectrometry classifiers visualized in real time through augmented reality. Chem. Sci. 11:8723–35
    [Google Scholar]
  48. 48.
    Keating MF, Zhang J, Feider CL, Retailleau S, Reid R et al. 2020. Integrating the MasSpec pen to the da Vinci surgical system for in vivo tissue analysis during a robotic assisted porcine surgery. Anal. Chem. 92:11535–42
    [Google Scholar]
  49. 49.
    Mason S, Manoli E, Poynter L, Alexander J, Paizs P et al. 2020. Mass spectrometry transanal minimally invasive surgery (MS-TAMIS) to promote organ preservation in rectal cancer. Surg. Endosc. 34:3618–25
    [Google Scholar]
  50. 50.
    Manoli E, Mason S, Ford L, Adebesin A, Bodai Z et al. 2021. Validation of ultrasonic harmonic scalpel for real-time tissue identification using rapid evaporative ionization mass spectrometry. Anal. Chem. 93:5906–16
    [Google Scholar]
  51. 51.
    Michno W, Nyström S, Wehrli P, Lashley T, Brinkmalm G et al. 2019. Pyroglutamation of amyloid-βx-42 (Aβx-42) followed by Aβ1–40 deposition underlies plaque polymorphism in progressing Alzheimer's disease pathology. J. Biol. Chem. 294:6719–32
    [Google Scholar]
  52. 52.
    Michno W, Wehrli PM, Koutarapu S, Marsching C, Minta K et al. 2022. Structural amyloid plaque polymorphism is associated with distinct lipid accumulations revealed by trapped ion mobility mass spectrometry imaging. J. Neurochem. 160:482–98
    [Google Scholar]
  53. 53.
    Akerman SC, Hossain S, Shobo A, Zhong Y, Jourdain R et al. 2019. Neurodegenerative disease-related proteins within the epidermal layer of the human skin. J. Alzheimer's Dis. 69:463–78
    [Google Scholar]
  54. 54.
    Sisley EK, Hale OJ, Styles IB, Cooper HJ. 2022. Native ambient mass spectrometry imaging of ligand-bound and metal-bound proteins in rat brain. J. Am. Chem. Soc. 144:2120–28
    [Google Scholar]
  55. 55.
    Hawkinson TR, Clarke HA, Young LEA, Conroy LR, Markussen KH et al. 2022. In situ spatial glycomic imaging of mouse and human Alzheimer's disease brains. Alzheimer's Dement 18:1721–35
    [Google Scholar]
  56. 56.
    Pang X, Gao S, Ga M, Zhang J, Luo Z et al. 2021. Mapping metabolic networks in the brain by ambient mass spectrometry imaging and metabolomics. Anal. Chem. 93:6746–54
    [Google Scholar]
  57. 57.
    Vallianatou T, Shariatgorji R, Nilsson A, Karlgren M, Hulme H et al. 2021. Integration of mass spectrometry imaging and machine learning visualizes region-specific age-induced and drug-target metabolic perturbations in the brain. ACS Chem. Neurosci. 12:1811–23
    [Google Scholar]
  58. 58.
    Vos DRN, Bowman AP, Heeren RMA, Balluff B, Ellis SR. 2019. Class-specific depletion of lipid ion signals in tissues upon formalin fixation. Int. J. Mass Spectrom. 446:116212
    [Google Scholar]
  59. 59.
    Harris A, Roseborough A, Mor R, Yeung KKC, Whitehead SN. 2020. Ganglioside detection from formalin-fixed human brain tissue utilizing MALDI imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 31:479–87
    [Google Scholar]
  60. 60.
    Pinsky W, Harris A, Roseborough AD, Wang W, Khan AR et al. 2021. Regional lipid expression abnormalities identified using MALDI IMS correspond to MRI-defined white matter hyperintensities within post-mortem human brain tissues. Anal. Chem. 93:2652–59
    [Google Scholar]
  61. 61.
    Ajith A, Mondal S, Chattopadhyay S, Kumar A, Sthanikam Y et al. 2021. Mass spectrometry imaging deciphers dysregulated lipid metabolism in the human hippocampus affected by temporal lobe epilepsy. ACS Chem. Neurosci. 12:4187–94
    [Google Scholar]
  62. 62.
    Tanaka E, Ogawa Y, Fujii R, Shimonaka T, Sato Y et al. 2020. Metabolomic analysis and mass spectrometry imaging after neonatal stroke and cell therapies in mouse brains. Sci. Rep. 10:21881
    [Google Scholar]
  63. 63.
    Liu X, Liu R, Fu D, Wu H, Zhao X et al. 2021. Dl-3-n-butylphthalide inhibits neuroinflammation by stimulating foxp3 and Ki-67 in an ischemic stroke model. Aging 13:3763–78
    [Google Scholar]
  64. 64.
    Mallah K, Quanico J, Raffo-Romero A, Cardon T, Aboulouard S et al. 2019. Matrix-assisted laser desorption/ionization-mass spectrometry imaging of lipids in experimental model of traumatic brain injury detecting acylcarnitines as injury related markers. Anal. Chem. 91:11879–87
    [Google Scholar]
  65. 65.
    Havlikova J, May RC, Styles IB, Cooper HJ. 2021. Liquid extraction surface analysis mass spectrometry of ESKAPE pathogens. J. Am. Soc. Mass Spectrom. 32:1345–51
    [Google Scholar]
  66. 66.
    Cameron SJS, Bodai Z, Temelkuran B, Perdones-Montero A, Bolt F et al. 2019. Utilisation of ambient laser desorption ionisation mass spectrometry (ALDI-MS) improves lipid-based microbial species level identification. Sci. Rep. 9:3006
    [Google Scholar]
  67. 67.
    Bardin EE, Cameron SJS, Perdones-Montero A, Hardiman K, Bolt F et al. 2018. Metabolic phenotyping and strain characterisation of Pseudomonas aeruginosa isolates from cystic fibrosis patients using rapid evaporative ionisation mass spectrometry. Sci. Rep. 8:10952
    [Google Scholar]
  68. 68.
    Schultz D, Cuypers F, Skorka SB, Rockstroh J, Gesell Salazar M et al. 2022. Bioactive lipid screening during respiratory tract infections with bacterial and viral pathogens in mice. Metabolomics 18:39
    [Google Scholar]
  69. 69.
    Havlikova J, May RC, Styles IB, Cooper HJ. 2020. Direct identification of bacterial and human proteins from infected wounds in living 3D skin models. Sci. Rep. 10:11900
    [Google Scholar]
  70. 70.
    Ryan DJ, Patterson NH, Putnam NE, Wilde AD, Weiss A et al. 2019. MicroLESA: integrating autofluorescence microscopy, in situ micro-digestions, and liquid extraction surface analysis for high spatial resolution targeted proteomic studies. Anal. Chem. 91:7578–85
    [Google Scholar]
  71. 71.
    Guiberson ER, Weiss A, Ryan DJ, Monteith AJ, Sharman K et al. 2021. Spatially targeted proteomics of the host–pathogen interface during staphylococcal abscess formation. ACS Infect. Dis. 7:101–13
    [Google Scholar]
  72. 72.
    Povilaitis SC, Chakraborty A, Kirkpatrick LM, Downey RD, Hauger SB, Eberlin LS. 2022. Identifying clinically relevant bacteria directly from culture and clinical samples with a handheld mass spectrometry probe. Clin. Chem. 68:1459–70
    [Google Scholar]
  73. 73.
    Margulis K, Zhou Z, Fang Q, Sievers RE, Lee RJ, Zare RN. 2018. Combining desorption electrospray ionization mass spectrometry imaging and machine learning for molecular recognition of myocardial infarction. Anal. Chem. 90:12198–206
    [Google Scholar]
  74. 74.
    Van Nuffel S, Quatredeniers M, Pirkl A, Zakel J, Le Caer JP et al. 2020. Multimodal imaging mass spectrometry to identify markers of pulmonary arterial hypertension in human lung tissue using MALDI-ToF, ToF-SIMS, and hybrid SIMS. Anal. Chem. 92:12079–87
    [Google Scholar]
  75. 75.
    Lou JQ, Cao Y, Yu YJ, Hu L, Mao ZS et al. 2020. Investigation of heart lipid changes in acute β-AR activation-induced sudden cardiac death by time-of-flight secondary ion mass spectrometry. Analyst 145:5889–96
    [Google Scholar]
  76. 76.
    Johno H, Yoshimura K, Mori Y, Kimura T, Niimi M et al. 2018. Detection of potential new biomarkers of atherosclerosis by probe electrospray ionization mass spectrometry. Metabolomics 14:38
    [Google Scholar]
  77. 77.
    Davies HA, Caamano-Gutierrez E, Sarsby J, Nawaytou O, Harky A et al. 2021. Exploring the potential of rapid evaporative ionization mass spectrometry (Intelligent Knife) for point-of-care testing in aortic surgery. Eur. J. Cardiothorac. Surg. 60:562–68
    [Google Scholar]
  78. 78.
    Davies HA, Caamano-Gutierrez E, Sarsby J, Chim YH, Barrett S et al. 2022. Rapid evaporative ionization mass spectrometry (intelligent knife) for point-of-care testing in acute aortic dissection surgery. Interact. Cardiovasc. Thorac. Surg. 34:833–40
    [Google Scholar]
  79. 79.
    Feider CL, Woody S, Ledet S, Zhang J, Sebastian K et al. 2019. Molecular imaging of endometriosis tissues using desorption electrospray ionization mass spectrometry. Sci. Rep. 9:15690
    [Google Scholar]
  80. 80.
    Lin M, Eberlin LS, Seeley EH. 2022. Reduced hemoglobin signal and improved detection of endogenous proteins in blood-rich tissues for MALDI mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 33:296–303
    [Google Scholar]
  81. 81.
    Müller R, Henss A, Kampschulte M, Rohnke M, Langheinrich AC et al. 2019. Analysis of microscopic bone properties in an osteoporotic sheep model: a combined biomechanics, FE and ToF-SIMS study. J. R. Soc. Interface 16:20180793
    [Google Scholar]
  82. 82.
    Rocha B, Cillero-Pastor B, Ruiz-Romero C, Paine MRL, Canete JD et al. 2021. Identification of a distinct lipidomic profile in the osteoarthritic synovial membrane by mass spectrometry imaging. Osteoarthritis Cartilage 29:750–61
    [Google Scholar]
  83. 83.
    Eveque-Mourroux MR, Emans PJ, Zautsen RRM, Boonen A, Heeren RMA, Cillero-Pastor B. 2019. Spatially resolved endogenous improved metabolite detection in human osteoarthritis cartilage by matrix assisted laser desorption ionization mass spectrometry imaging. Analyst 144:5953–58
    [Google Scholar]
  84. 84.
    Celis R, Cuervo A, Ramirez J, Canete JD. 2019. Psoriatic synovitis: singularity and potential clinical implications. Front. Med. 6:14
    [Google Scholar]
  85. 85.
    Nauta SP, Poeze M, Heeren RMA, Porta Siegel T 2020. Clinical use of mass spectrometry (imaging) for hard tissue analysis in abnormal fracture healing. Clin. Chem. Lab. Med. 58:897–913
    [Google Scholar]
  86. 86.
    Khodjaniyazova S, Hanne NJ, Cole JH, Muddiman DC. 2019. Mass spectrometry imaging (MSI) of fresh bones using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Anal. Methods 11:5929–38
    [Google Scholar]
  87. 87.
    Good CJ, Neumann EK, Butrico CE, Cassat JE, Caprioli RM, Spraggins JM. 2022. High spatial resolution MALDI imaging mass spectrometry of fresh-frozen bone. Anal. Chem. 94:3165–72
    [Google Scholar]
  88. 88.
    Genangeli M, Heeren RMA, Porta Siegel T 2019. Tissue classification by rapid evaporative ionization mass spectrometry (REIMS): comparison between a diathermic knife and CO2 laser sampling on classification performance. Anal. Bioanal. Chem. 411:7943–55
    [Google Scholar]
  89. 89.
    Prentice BM, Hart NJ, Phillips N, Haliyur R, Judd A et al. 2019. Imaging mass spectrometry enables molecular profiling of mouse and human pancreatic tissue. Diabetologia 62:1036–47
    [Google Scholar]
  90. 90.
    Zhang G, Zhang J, DeHoog RJ, Pennathur S, Anderton CR et al. 2020. DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules. Metabolomics 16:11
    [Google Scholar]
  91. 91.
    Wang Z, Fu W, Huo M, He B, Liu Y et al. 2021. Spatial-resolved metabolomics reveals tissue-specific metabolic reprogramming in diabetic nephropathy by using mass spectrometry imaging. Acta Pharm. Sin. B 11:3665–77
    [Google Scholar]
  92. 92.
    Banerjee S, Wong AC, Yan X, Wu B, Zhao H et al. 2019. Early detection of unilateral ureteral obstruction by desorption electrospray ionization mass spectrometry. Sci. Rep. 9:11007
    [Google Scholar]
  93. 93.
    Palmer A, Phapale P, Chernyavsky I, Lavigne R, Fay D et al. 2017. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 14:57–60
    [Google Scholar]
  94. 94.
    Ivanova M, Dyadyk O, Ivanov D, Clerici F, Smith A, Magni F. 2020. Matrix-assisted laser desorption/ionization mass spectrometry imaging to uncover protein alterations associated with the progression of IgA nephropathy. Virchows Arch 476:903–14
    [Google Scholar]
  95. 95.
    Smith A, Iablokov V, Mazza M, Guarnerio S, Denti V et al. 2020. Detecting proteomic indicators to distinguish diabetic nephropathy from hypertensive nephrosclerosis by integrating matrix-assisted laser desorption/ionization mass spectrometry imaging with high-mass accuracy mass spectrometry. Kidney Blood Press Res 45:233–48
    [Google Scholar]
  96. 96.
    de Boer IH, Alpers CE, Azeloglu EU, Balis UG, Barasch JM et al. 2021. Rationale and design of the kidney precision medicine project. Kidney Int 99:498–510
    [Google Scholar]
  97. 97.
    Hansen J, Sealfon R, Menon R, Eadon MT, Lake BB et al. 2022. A reference tissue atlas for the human kidney. Sci. Adv. 8:eabn4965
    [Google Scholar]
  98. 98.
    Feenstra AD, Dueñas ME, Lee YJ. 2017. Five micron high resolution MALDI mass spectrometry imaging with simple, interchangeable, multi-resolution optical system. J. Am. Soc. Mass Spectrom. 28:434–42
    [Google Scholar]
  99. 99.
    Norris JL, Caprioli RM. 2013. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 113:2309–42
    [Google Scholar]
  100. 100.
    Ščupáková K, Balluff B, Tressler C, Adelaja T, Heeren RMA et al. 2020. Cellular resolution in clinical MALDI mass spectrometry imaging: the latest advancements and current challenges. J. Clin. Chem. Lab. Med. 58:914–29
    [Google Scholar]
  101. 101.
    Engel KM, Prabutzki P, Leopold J, Nimptsch A, Lemmnitzer K et al. 2022. A new update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res. 86:101145
    [Google Scholar]
  102. 102.
    Drake RR, West CA, Mehta AS, Angel PM 2018. MALDI mass spectrometry imaging of N-linked glycans in tissues. Glycobiophysics Y Yamaguchi, K Kato 59–76. Singapore: Springer
    [Google Scholar]
  103. 103.
    Kubicek M, Holzlechner G, Opitz AK, Larisegger S, Hutter H, Fleig J. 2014. A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance. Appl. Surface Sci. 289:407–16
    [Google Scholar]
  104. 104.
    Sodhi RNS. 2004. Time-of-flight secondary ion mass spectrometry (TOF-SIMS):—versatility in chemical and imaging surface analysis. Analyst 129:483–87
    [Google Scholar]
  105. 105.
    Yoon S, Lee TG. 2018. Biological tissue sample preparation for time-of-flight secondary ion mass spectrometry (ToF–SIMS) imaging. Nano Converg. 5:24
    [Google Scholar]
  106. 106.
    Noun M, Akoumeh R, Abbas I. 2022. Cell and tissue imaging by TOF-SIMS and MALDI-TOF: an overview for biological and pharmaceutical analysis. Microsc. Microanal. 28:1–26
    [Google Scholar]
  107. 107.
    Lv Y, Li T, Guo C, Sun C, Tang F et al. 2019. A high-performance bio-tissue imaging method using air flow-assisted desorption electrospray ionization coupled with a high-resolution mass spectrometer. Chin. Chem. Lett. 30:461–64
    [Google Scholar]
  108. 108.
    Luo Z, He J, Chen Y, He J, Gong T et al. 2013. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions. Anal. Chem. 85:2977–82
    [Google Scholar]
  109. 109.
    He J, Sun C, Li T, Luo Z, Huang L et al. 2018. A sensitive and wide coverage ambient mass spectrometry imaging method for functional metabolites based molecular histology. Adv. Sci. 5:1800250
    [Google Scholar]
  110. 110.
    Quartier J, Rao W, Slade S, Métral F, Lapteva M, Kalia YN. 2021. DESI-MS imaging to visualize spatial distribution of xenobiotics and endogenous lipids in the skin. Int. J. Pharm. 607:120967
    [Google Scholar]
  111. 111.
    Holm NB, Deryabina M, Knudsen CB, Janfelt C. 2022. Tissue distribution and metabolic profiling of cyclosporine (CsA) in mouse and rat investigated by DESI and MALDI mass spectrometry imaging (MSI) of whole-body and single organ cryo-sections. Anal. Bioanal. Chem. 414:7167–77
    [Google Scholar]
  112. 112.
    Takats Z, Wiseman JM, Gologan B, Cooks RG. 2004. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–73
    [Google Scholar]
  113. 113.
    Soudah T, Zoabi A, Margulis K. 2023. Desorption electrospray ionization mass spectrometry imaging in discovery and development of novel therapies. Mass Spectrom. Rev. 42:751–78
    [Google Scholar]
  114. 114.
    Das S, Bhatia R. 2022. Liquid extraction surface analysis-mass spectrometry: an advanced and environment-friendly analytical tool in modern analysis. J. Sep. Sci. 45:2746–65
    [Google Scholar]
  115. 115.
    Kertesz V, Van Berkel GJ. 2010. Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J. Mass Spectrom. 45:252–60
    [Google Scholar]
  116. 116.
    Wu Q, Huang ZH, Wang Y, Zhang ZM, Lu HM. 2020. Absolute quantitative imaging of sphingolipids in brain tissue by exhaustive liquid microjunction surface sampling-liquid chromatography-mass spectrometry. J. Chromatogr. A 1609:460436
    [Google Scholar]
  117. 117.
    Simon D, Oleschuk R. 2021. The liquid micro junction-surface sampling probe (LMJ-SSP); a versatile ambient mass spectrometry interface. Analyst 146:6365–78
    [Google Scholar]
  118. 118.
    Van Berkel GJ, Kertesz V, Koeplinger KA, Vavrek M, Kong A-NT. 2008. Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections. J. Mass Spectrom. 43:500–8
    [Google Scholar]
  119. 119.
    Yin R, Burnum-Johnson KE, Sun X, Dey SK, Laskin J. 2019. High spatial resolution imaging of biological tissues using nanospray desorption electrospray ionization mass spectrometry. Nat. Protoc. 14:3445–70
    [Google Scholar]
  120. 120.
    Hale OJ, Hughes JW, Sisley EK, Cooper HJ. 2022. Native ambient mass spectrometry enables analysis of intact endogenous protein assemblies up to 145 kDa directly from tissue. Anal. Chem. 94:5608–14
    [Google Scholar]
  121. 121.
    Roach PJ, Laskin J, Laskin A. 2010. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135:2233–36
    [Google Scholar]
  122. 122.
    Zhang J, Rector J, Lin JQ, Young JH, Sans M et al. 2017. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci. Transl. Med. 9: https://doi.org/10.1126/scitranslmed.aan3968
    [Google Scholar]
  123. 123.
    Woolman M, Gribble A, Bluemke E, Zou J, Ventura M et al. 2017. Optimized mass spectrometry analysis workflow with polarimetric guidance for ex vivo and in situ sampling of biological tissues. Sci. Rep. 7:468
    [Google Scholar]
  124. 124.
    Schäfer K-C, Dénes J, Albrecht K, Szaniszló T, Balog J et al. 2009. In vivo, in situ tissue analysis using rapid evaporative ionization mass spectrometry. Angew. Chem. Int. Ed. 48:8240–42
    [Google Scholar]
  125. 125.
    Fatou B, Saudemont P, Leblanc E, Vinatier D, Mesdag V et al. 2016. In vivo real-time mass spectrometry for guided surgery application. Sci. Rep. 6:25919
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061020-015544
Loading
/content/journals/10.1146/annurev-anchem-061020-015544
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error