1932

Abstract

An optical microscope is probably the most intuitive, simple, and commonly used instrument to observe objects and discuss behaviors through images. Although the idea of imaging electrochemical processes operando by optical microscopy was initiated 40 years ago, it was not until significant progress was made in the last two decades in advanced optical microscopy or plasmonics that it could become a mainstream electroanalytical strategy. This review illustrates the potential of different optical microscopies to visualize and quantify local electrochemical processes with unprecedented temporal and spatial resolution (below the diffraction limit), up to the single object level with subnanoparticle or single-molecule sensitivity. Developed through optically and electrochemically active model systems, optical microscopy is now shifting to materials and configurations focused on real-world electrochemical applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061020-015943
2022-06-13
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/anchem/15/1/annurev-anchem-061020-015943.html?itemId=/content/journals/10.1146/annurev-anchem-061020-015943&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Engstrom RC, Johnson KW, DesJarlais S 1987. Characterization of electrode heterogeneity with electrogenerated chemiluminescence. Anal. Chem. 59:4670–73
    [Google Scholar]
  2. 2.
    Wang W. 2018. Imaging the chemical activity of single nanoparticles with optical microscopy. Chem. Soc. Rev. 47:72485–508
    [Google Scholar]
  3. 3.
    Kanoufi F. 2022. Electrochemistry and optical microscopy. Encyclopedia of Electrochemistry In press. https://doi.org/10.1002/9783527610426.bard030108
    [Crossref] [Google Scholar]
  4. 4.
    Hoener BS, Kirchner SR, Heiderscheit TS, Collins SSE, Chang W-S et al. 2018. Plasmonic sensing and control of single-nanoparticle electrochemistry. Chemistry 4:71560–85
    [Google Scholar]
  5. 5.
    Wang Y, Cao Z, Yang Q, Guo W, Su B 2019. Optical methods for studying local electrochemical reactions with spatial resolution: a critical review. Anal. Chim. Acta 1074:1–15
    [Google Scholar]
  6. 6.
    Yuan L, Tao N, Wang W 2017. Plasmonic imaging of electrochemical impedance. Annu. Rev. Anal. Chem. 10:183–200
    [Google Scholar]
  7. 7.
    Willets KA, Van Duyne RP. 2007. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58:267–97
    [Google Scholar]
  8. 8.
    Dos Santos DP, Temperini MLA, Brolo AG 2019. Intensity fluctuations in single-molecule surface-enhanced Raman scattering. Acc. Chem. Res. 52:2456–64
    [Google Scholar]
  9. 9.
    Qian XM, Nie SM. 2008. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37:5912–20
    [Google Scholar]
  10. 10.
    Taylor RW, Sandoghdar V. 2019. Interferometric scattering microscopy: seeing single nanoparticles and molecules via Rayleigh scattering. Nano Lett 19:84827–35
    [Google Scholar]
  11. 11.
    Zhang J, Arbault S, Sojic N, Jiang D. 2019. Electrochemiluminescence imaging for bioanalysis. Annu. Rev. Anal. Chem. 12:275–95
    [Google Scholar]
  12. 12.
    Guo W, Liu Y, Cao Z, Su B 2017. Imaging analysis based on electrogenerated chemiluminescence. J. Anal. Test. 1:214
    [Google Scholar]
  13. 13.
    Dong J, Lu Y, Xu Y, Chen F, Yang J et al. 2021. Direct imaging of single-molecule electrochemical reactions in solution. Nature 596:7871244–49
    [Google Scholar]
  14. 14.
    Zrimsek AB, Chiang N, Mattei M, Zaleski S, McAnally MO et al. 2017. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 117:117583–613
    [Google Scholar]
  15. 15.
    Mathwig K, Aartsma TJ, Canters GW, Lemay SG. 2014. Nanoscale methods for single-molecule electrochemistry. Annu. Rev. Anal. Chem. 7:383–404
    [Google Scholar]
  16. 16.
    Le Ru EC, Etchegoin PG 2012. Single-molecule surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 63:65–87
    [Google Scholar]
  17. 17.
    Chieng A, Chiang M, Triloges K, Chang M, Wang Y 2019. Recent progress in the studies of electrochemical interfaces by surface plasmon resonance spectroscopy and microscopy. Curr. Opin. Electrochem. 13:94–99
    [Google Scholar]
  18. 18.
    Lu S-M, Peng Y-Y, Ying Y-L, Long Y-T. 2020. Electrochemical sensing at a confined space. Anal. Chem. 92:85621–44
    [Google Scholar]
  19. 19.
    Zhou X, Yang Y, Wang S, Liu X 2020. Surface plasmon resonance microscopy: from single-molecule sensing to single-cell imaging. Angew. Chem. 132:51792–801
    [Google Scholar]
  20. 20.
    Valenti G, Scarabino S, Goudeau B, Lesch A, Jović M et al. 2017. Single cell electrochemiluminescence imaging: from the proof-of-concept to disposable device-based analysis. J. Am. Chem. Soc. 139:4616830–37
    [Google Scholar]
  21. 21.
    Wang W, Foley K, Shan X, Wang S, Eaton S et al. 2011. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy. Nat. Chem. 3:3249–55
    [Google Scholar]
  22. 22.
    Liu XW, Yang Y, Wang W, Wang S, Gao M et al. 2017. Plasmonic-based electrochemical impedance imaging of electrical activities in single cells. Angew. Chem. Int. Ed. 56:308855–59
    [Google Scholar]
  23. 23.
    Sentic M, Milutinovic M, Kanoufi F, Manojlovic D, Arbault S, Sojic N 2014. Mapping electrogenerated chemiluminescence reactivity in space: mechanistic insight into model systems used in immunoassays. Chem. Sci. 5:62568–72
    [Google Scholar]
  24. 24.
    Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. 2021. Electrochemiluminescence loss in photobleaching. Angew. Chem. Int. Ed. 60:147686–90
    [Google Scholar]
  25. 25.
    Xu L, Zhang C, He Y, Su B. 2015. Advances in the development and component recognition of latent fingerprints. Sci. China Chem. 58:71090–96
    [Google Scholar]
  26. 26.
    Zhao L, Wang W, Hu W 2016. Simultaneous transfer and imaging of latent fingerprints enabled by interfacial separation of polydopamine thin film. Anal. Chem. 88:2110357–61
    [Google Scholar]
  27. 27.
    Tan J, Xu L, Li T, Su B, Wu J 2014. Image-contrast technology based on the electrochemiluminescence of porous silicon and its application in fingerprint visualization. Angew. Chem. 126:379980–84
    [Google Scholar]
  28. 28.
    Shan X, Patel U, Wang S, Iglesias R, Tao N. 2010. Imaging local electrochemical current via surface plasmon resonance. Science 327:59711363–66
    [Google Scholar]
  29. 29.
    Xu L, Li Y, Wu S, Liu X, Su B. 2012. Imaging latent fingerprints by electrochemiluminescence. Angew. Chem. Int. Ed. 51:328068–72
    [Google Scholar]
  30. 30.
    He Y, Xu L, Zhu Y, Wei Q, Zhang M, Su B. 2014. Immunological multimetal deposition for rapid visualization of sweat fingerprints. Angew. Chem. Int. Ed. 53:4612609–12
    [Google Scholar]
  31. 31.
    Bouffier L, Manojlovic D, Kuhn A, Sojic N. 2019. Advances in bipolar electrochemiluminescence for the detection of biorelevant molecular targets. Curr. Opin. Electrochem. 16:28–34
    [Google Scholar]
  32. 32.
    Bouffier L, Doneux T, Goudeau B, Kuhn A 2014. Imaging redox activity at bipolar electrodes by indirect fluorescence modulation. Anal. Chem. 86:83708–11
    [Google Scholar]
  33. 33.
    Hasheminejad M, Fang Y, Li M, Jiang Y, Wang W, Chen H-Y 2017. Plasmonic imaging of the interfacial potential distribution on bipolar electrodes. Angew. Chem. Int. Ed. 56:61629–33
    [Google Scholar]
  34. 34.
    Scida K, Eden A, Arroyo-Currás N, MacKenzie S, Satik Y et al. 2019. Fluorescence-based observation of transient electrochemical and electrokinetic effects at nanoconfined bipolar electrodes. ACS Appl. Mater. Interfaces 11:1413777–86
    [Google Scholar]
  35. 35.
    Chang BY, Mavré F, Chow KF, Crooks JA, Crooks RM. 2010. Snapshot voltammetry using a triangular bipolar microelectrode. Anal. Chem. 82:125317–22
    [Google Scholar]
  36. 36.
    Wu MS, Qian GS, Xu JJ, Chen HY. 2012. Sensitive electrochemiluminescence detection of c-Myc mRNA in breast cancer cells on a wireless bipolar electrode. Anal. Chem. 84:125407–14
    [Google Scholar]
  37. 37.
    Loget G, Roche J, Gianessi E, Bouffier L, Kuhn A. 2012. Indirect bipolar electrodeposition. J. Am. Chem. Soc. 134:4920033–36
    [Google Scholar]
  38. 38.
    Li M, Liu S, Jiang Y, Wang W. 2018. Visualizing the zero-potential line of bipolar electrodes with arbitrary geometry. Anal. Chem. 90:116390–96
    [Google Scholar]
  39. 39.
    Jin H, Guo C, Liu X, Liu J, Vasileff A et al. 2018. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118:136337–408
    [Google Scholar]
  40. 40.
    Liu S, Pan X, Liu H. 2020. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. 132:155943–53
    [Google Scholar]
  41. 41.
    Tan C, Cao X, Wu X-J, He Q, Yang J et al. 2017. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117:96225–331
    [Google Scholar]
  42. 42.
    Shan X, Chen S, Wang H, Chen Z, Guan Y et al. 2015. Mapping local quantum capacitance and charged impurities in graphene via plasmonic impedance imaging. Adv. Mater. 27:406213–19
    [Google Scholar]
  43. 43.
    Li W, Wojcik M, Xu K. 2019. Optical microscopy unveils rapid, reversible electrochemical oxidation and reduction of graphene. Nano Lett 19:2983–89
    [Google Scholar]
  44. 44.
    Wang H, Shan X, Chen H-Y, Tao N. 2017. Pauli repulsion-induced expansion and electromechanical properties of graphene. Nano Lett 17:1236–41
    [Google Scholar]
  45. 45.
    Zhu H, Zhang F, Wang H, Lu Z, Chen HY et al. 2019. Optical imaging of charges with atomically thin molybdenum disulfide. ACS Nano 13:22298–306
    [Google Scholar]
  46. 46.
    Walsh FC, Wang S, Zhou N 2020. The electrodeposition of composite coatings: diversity, applications and challenges. Curr. Opin. Electrochem. 20:8–19
    [Google Scholar]
  47. 47.
    Liu Y, Yin X, Zhang J, Yu S, Han Z, Ren L 2014. A electro-deposition process for fabrication of biomimetic super-hydrophobic surface and its corrosion resistance on magnesium alloy. Electrochim. Acta 125:395–403
    [Google Scholar]
  48. 48.
    García-Antón J, Igual-Muñoz A, Guiñón JL, Pérez-Herranz V. 2001. A new technique for online visualization of the electrode surface under electrochemical corrosion processes. J. Appl. Electrochem. 31:111195–202
    [Google Scholar]
  49. 49.
    Büchler M, Kerimo J, Guillaume F, Smyrl WH 2000. Fluorescence and near-field scanning optical microscopy for investigating initiation of localized corrosion of Al 2024. J. Electrochem. Soc. 147:103691
    [Google Scholar]
  50. 50.
    Alodan MA, Smyrl WH. 1998. Detection of localized corrosion of aluminum alloys using fluorescence microscopy. J. Electrochem. Soc. 145:51571–77
    [Google Scholar]
  51. 51.
    Chakri S, Patel AN, Frateur I, Kanoufi F, Sutter EMM et al. 2017. Imaging of a thin oxide film formation from the combination of surface reflectivity and electrochemical methods. Anal. Chem. 89:105303–10
    [Google Scholar]
  52. 52.
    Chen B, Zhang H, Xuan J, Offer GJ, Wang H 2020. Seeing is believing: in situ/operando optical microscopy for probing electrochemical energy systems. Adv. Mater. Technol. 5:102000555
    [Google Scholar]
  53. 53.
    Bai P, Li J, Brushett FR, Bazant MZ. 2016. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9:103221–29
    [Google Scholar]
  54. 54.
    Ye X, Saqib M, Mao J, Li G, Hao R 2021. Spatiotemporally super-resolved dendrites nucleation and early-stage growth dynamics in zinc-ion batteries. Cell Rep. Phys. Sci. 2:5100420
    [Google Scholar]
  55. 55.
    Fuladpanjeh-Hojaghan B, Elsutohy MM, Kabanov V, Heyne B, Trifkovic M, Roberts EPL 2019. In-operando mapping of pH distribution in electrochemical processes. Angew. Chem. Int. Ed. 58:4716815–19
    [Google Scholar]
  56. 56.
    Patrice FT, Qiu K, Ying Y-L, Long Y-T. 2019. Single nanoparticle electrochemistry. Annu. Rev. Anal. Chem. 12:347–70
    [Google Scholar]
  57. 57.
    Ebejer N, Güell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR. 2013. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 6:329–51
    [Google Scholar]
  58. 58.
    Baker LA. 2018. Perspective and prospectus on single-entity electrochemistry. J. Am. Chem. Soc. 140:4615549–59
    [Google Scholar]
  59. 59.
    Wang Y, Shan X, Tao N 2016. Emerging tools for studying single entity electrochemistry. Faraday Discuss 193:9–39
    [Google Scholar]
  60. 60.
    Saha P, Hill JW, Walmsley JD, Hill CM. 2018. Probing electrocatalysis at individual Au nanorods via correlated optical and electrochemical measurements. Anal. Chem. 90:2112832–39
    [Google Scholar]
  61. 61.
    Sundaresan V, Marchuk K, Yu Y, Titus EJ, Wilson AJ et al. 2017. Visualizing and calculating tip-substrate distance in nanoscale scanning electrochemical microscopy using 3-dimensional super-resolution optical imaging. Anal. Chem. 89:1922–28
    [Google Scholar]
  62. 62.
    Valavanis D, Ciocci P, Meloni GN, Morris P, Lemineur J-F et al. 2022. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss. 233:12248
    [Google Scholar]
  63. 63.
    Tolbert CL, Hill CM. 2022. Electrochemically probing exciton transport in monolayers of two-dimensional semiconductors. Faraday Discuss 233:16374
    [Google Scholar]
  64. 64.
    Godeffroy L, Ciocci P, Nsabimana A, Miranda Vieira M, Noël J-M et al. 2021. Deciphering competitive routes for nickel-based nanoparticle electrodeposition by an operando optical monitoring. Angew. Chem. Int. Ed. 60:3116980–83
    [Google Scholar]
  65. 65.
    Nizamov S, Kasian O, Mirsky VM. 2016. Individual detection and electrochemically assisted identification of adsorbed nanoparticles by using surface plasmon microscopy. Angew. Chem. Int. Ed. 55:257247–51
    [Google Scholar]
  66. 66.
    Hill CM, Pan S. 2013. A dark-field scattering spectroelectrochemical technique for tracking the electrodeposition of single silver nanoparticles. J. Am. Chem. Soc. 135:4617250–53
    [Google Scholar]
  67. 67.
    Lemineur J-F, Noël J-M, Ausserré D, Combellas C, Kanoufi F 2018. Combining electrodeposition and optical microscopy for probing size-dependent single-nanoparticle electrochemistry. Angew. Chem. Int. Ed. 57:3711998–12002
    [Google Scholar]
  68. 68.
    Brasiliense V, Clausmeyer J, Dauphin AL, Noël J-M, Berto P et al. 2017. Opto-electrochemical in situ monitoring of the cathodic formation of single cobalt nanoparticles. Angew. Chem. Int. Ed. 56:3510598–601
    [Google Scholar]
  69. 69.
    Laurinavichyute VK, Nizamov S, Mirsky VM 2021. Real time tracking of the early stage of electrochemical nucleation. Electrochim. Acta 382:138278
    [Google Scholar]
  70. 70.
    Lemineur J-F, Noël J-M, Combellas C, Kanoufi F 2020. Optical monitoring of the electrochemical nucleation and growth of silver nanoparticles on electrode: from single to ensemble nanoparticles inspection. J. Electroanal. Chem. 872:114043
    [Google Scholar]
  71. 71.
    Fang Y, Wang W, Wo X, Luo Y, Yin S et al. 2014. Plasmonic imaging of electrochemical oxidation of single nanoparticles. J. Am. Chem. Soc. 136:3612584–87
    [Google Scholar]
  72. 72.
    Lemineur J-F, Noël J-M, Combellas C, Ausserré D, Kanoufi F 2018. The promise of antireflective gold electrodes for optically monitoring the electro-deposition of single silver nanoparticles. Faraday Discuss 210:381–95
    [Google Scholar]
  73. 73.
    Hill CM, Bennett R, Zhou C, Street S, Zheng J, Pan S. 2015. Single Ag nanoparticle spectroelectrochemistry via dark-field scattering and fluorescence microscopies. J. Phys. Chem. C 119:126760–68
    [Google Scholar]
  74. 74.
    Brasiliense V, Berto P, Combellas C, Tessier G, Kanoufi F. 2016. Electrochemistry of single nanodomains revealed by three-dimensional holographic microscopy. Acc. Chem. Res. 49:92049–57
    [Google Scholar]
  75. 75.
    Patel AN, Martinez-Marrades A, Brasiliense V, Koshelev D, Besbes M et al. 2015. Deciphering the elementary steps of transport-reaction processes at individual Ag nanoparticles by 3D superlocalization microscopy. Nano Lett 15:106454–63
    [Google Scholar]
  76. 76.
    Hao R, Fan Y, Zhang B 2017. Imaging dynamic collision and oxidation of single silver nanoparticles at the electrode/solution interface. J. Am. Chem. Soc. 139:3512274–82
    [Google Scholar]
  77. 77.
    Sun L, Wang W, Chen H. 2018. Dynamic nanoparticle-substrate contacts regulate multi-peak behavior of single silver nanoparticle collisions. ChemElectroChem 5:202995–99
    [Google Scholar]
  78. 78.
    Brasiliense V, Patel AN, Martinez-Marrades A, Shi J, Chen Y et al. 2016. Correlated electrochemical and optical detection reveals the chemical reactivity of individual silver nanoparticles. J. Am. Chem. Soc. 138:103478–83
    [Google Scholar]
  79. 79.
    Wonner K, Evers MV, Tschulik K. 2018. Simultaneous opto- and spectro-electrochemistry: reactions of individual nanoparticles uncovered by dark-field microscopy. J. Am. Chem. Soc. 140:4012658–61
    [Google Scholar]
  80. 80.
    Wonner K, Evers MV, Tschulik K. 2019. The electrochemical dissolution of single silver nanoparticles enlightened by hyperspectral dark-field microscopy. Electrochim. Acta 301:458–64
    [Google Scholar]
  81. 81.
    Hao R, Fan Y, Howard MD, Vaughan JC, Zhang B. 2018. Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting. PNAS 115:235878–83
    [Google Scholar]
  82. 82.
    Hao R, Fan Y, Anderson TJ, Zhang B 2020. Imaging single nanobubbles of H2 and O2 during the overall water electrolysis with single-molecule fluorescence microscopy. Anal. Chem. 92:53682–88
    [Google Scholar]
  83. 83.
    Suvira M, Zhang B. 2021. Effect of surfactant on electrochemically generated surface nanobubbles. Anal. Chem. 93:125170–76
    [Google Scholar]
  84. 84.
    Ciocci P, Lemineur J-F, Noël J-M, Combellas C, Kanoufi F 2021. Differentiating electrochemically active regions of indium tin oxide electrodes for hydrogen evolution and reductive decomposition reactions. An in situ optical microscopy approach. Electrochim. Acta 386:138498
    [Google Scholar]
  85. 85.
    Lemineur J-F, Ciocci P, Noël J-M, Ge H, Combellas C, Kanoufi F 2021. Imaging and quantifying the formation of single nanobubbles at single platinum nanoparticles during the hydrogen evolution reaction. ACS Nano 15:22643–53
    [Google Scholar]
  86. 86.
    Huang W, Yu L, Zhu Y, Yu H, He Y 2021. Single-particle imaging of anion exchange reactions in cuprous oxide. ACS Nano 15:46481–88
    [Google Scholar]
  87. 87.
    Liu L, Corma A. 2021. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 5:4256–76
    [Google Scholar]
  88. 88.
    Lemineur J-F, Noël J-M, Courty A, Ausserré D, Combellas C, Kanoufi F 2020. In situ optical monitoring of the electrochemical conversion of dielectric nanoparticles: from multistep charge injection to nanoparticle motion. J. Am. Chem. Soc. 142:177937–46
    [Google Scholar]
  89. 89.
    Pang J, Liu H-L, Li J, Zhai T-T, Wang K, Xia X-H 2018. Structural change of a single Ag nanoparticle observed by dark-field microspectroscopy. ChemPhysChem 19:8954–58
    [Google Scholar]
  90. 90.
    Brasiliense V, Berto P, Combellas C, Kuszelewicz R, Tessier G, Kanoufi F. 2016. Electrochemical transformation of individual nanoparticles revealed by coupling microscopy and spectroscopy. Faraday Discuss 193:339–52
    [Google Scholar]
  91. 91.
    Smith JG, Yang Q, Jain PK 2014. Identification of a critical intermediate in galvanic exchange reactions by single-nanoparticle-resolved kinetics. Angew. Chem. Int. Ed. 53:112867–72
    [Google Scholar]
  92. 92.
    Park Y, Lee C, Ryu S, Song H 2015. Ex situ and in situ surface plasmon monitoring of temperature-dependent structural evolution in galvanic replacement reactions at a single-particle level. J. Phys. Chem. C 119:3420125–35
    [Google Scholar]
  93. 93.
    Smith JG, Jain PK. 2016. The ligand shell as an energy barrier in surface reactions on transition metal nanoparticles. J. Am. Chem. Soc. 138:216765–73
    [Google Scholar]
  94. 94.
    Jiang D, Jiang Y, Li Z, Liu T, Wo X et al. 2017. Optical imaging of phase transition and Li-ion diffusion kinetics of single LiCoO2 nanoparticles during electrochemical cycling. J. Am. Chem. Soc. 139:1186–92
    [Google Scholar]
  95. 95.
    Sun L, Jiang D, Li M, Liu T, Yuan L et al. 2017. Collision and oxidation of single LiCoO2 nanoparticles studied by correlated optical imaging and electrochemical recording. Anal. Chem. 89:116050–55
    [Google Scholar]
  96. 96.
    Evans RC, Nilsson ZN, Sambur JB. 2019. High-throughput single-nanoparticle-level imaging of electrochemical ion insertion reactions. Anal. Chem. 91:2314983–91
    [Google Scholar]
  97. 97.
    Evans RC, Nilsson Z, Balch B, Wang L, Neilson JR et al. 2020. Quantifying capacitive-like and battery-like charge storage contributions using single-nanoparticle electro-optical imaging. ChemElectroChem 7:3753–60
    [Google Scholar]
  98. 98.
    Yuan T, Wei W, Jiang W, Wang W 2021. Vertical diffusion of ions within single particles during electrochemical charging. ACS Nano 15:23522–28
    [Google Scholar]
  99. 99.
    Jiang D, Sun L, Liu T, Wang W. 2017. Thin-film electrochemistry of single Prussian blue nanoparticles revealed by surface plasmon resonance microscopy. Anal. Chem. 89:2111641–47
    [Google Scholar]
  100. 100.
    Jiang W, Wei W, Yuan T, Liu S, Niu B et al. 2021. Tracking the optical mass centroid of single electroactive nanoparticles reveals the electrochemically inactive zone. Chem. Sci. 12:248556–62
    [Google Scholar]
  101. 101.
    Wei W, Yuan T, Jiang W, Gao J, Chen H-Y, Wang W 2020. Accessing the electrochemical activity of single nanoparticles by eliminating the heterogeneous electrical contacts. J. Am. Chem. Soc. 142:3314307–13
    [Google Scholar]
  102. 102.
    Xu W, Kong JS, Yeh Y-TE, Chen P 2008. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7:12992–96
    [Google Scholar]
  103. 103.
    Zhang Y, Chen T, Alia S, Pivovar BS, Xu W 2016. Single-molecule nanocatalysis shows in situ deactivation of Pt/C electrocatalysts during the hydrogen-oxidation reaction. Angew. Chem. Int. Ed. 55:93086–90
    [Google Scholar]
  104. 104.
    Xiao Y, Hong J, Wang X, Chen T, Hyeon T, Xu W 2020. Revealing kinetics of two-electron oxygen reduction reaction at single-molecule level. J. Am. Chem. Soc. 142:3013201–9
    [Google Scholar]
  105. 105.
    Weber ML, Wilson AJ, Willets KA. 2015. Characterizing the spatial dependence of redox chemistry on plasmonic nanoparticle electrodes using correlated super-resolution surface-enhanced Raman scattering imaging and electron microscopy. J. Phys. Chem. C 119:3218591–601
    [Google Scholar]
  106. 106.
    Wilson AJ, Willets KA. 2014. Visualizing site-specific redox potentials on the surface of plasmonic nanoparticle aggregates with superlocalization SERS microscopy. Nano Lett 14:2939–45
    [Google Scholar]
  107. 107.
    Kumari G, Zhang X, Devasia D, Heo J, Jain PK. 2018. Watching visible light-driven CO2 reduction on a plasmonic nanoparticle catalyst. ACS Nano 12:88330–40
    [Google Scholar]
  108. 108.
    Pan S, Liu J, Hill CM. 2015. Observation of local redox events at individual Au nanoparticles using electrogenerated chemiluminescence microscopy. J. Phys. Chem. C 119:4827095–103
    [Google Scholar]
  109. 109.
    Zhu M-J, Pan J-B, Wu Z-Q, Gao X-Y, Zhao W et al. 2018. Electrogenerated chemiluminescence imaging of electrocatalysis at a single Au-Pt Janus nanoparticle. Angew. Chem. Int. Ed. 57:154010–14
    [Google Scholar]
  110. 110.
    Novo C, Funston AM, Gooding AK, Mulvaney P. 2009. Electrochemical charging of single gold nanorods. J. Am. Chem. Soc. 131:4114664–66
    [Google Scholar]
  111. 111.
    Dondapati SK, Ludemann M, Müller R, Schwieger S, Schwemer A et al. 2012. Voltage-induced adsorbate damping of single gold nanorod plasmons in aqueous solution. Nano Lett 12:31247–52
    [Google Scholar]
  112. 112.
    Byers CP, Hoener BS, Chang W-S, Yorulmaz M, Link S, Landes CF. 2014. Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon. J. Phys. Chem. B 118:4914047–55
    [Google Scholar]
  113. 113.
    Novo C, Funston AM, Mulvaney P. 2008. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat. Nanotechnol. 3:10598–602
    [Google Scholar]
  114. 114.
    Jing C, Rawson FJ, Zhou H, Shi X, Li W-H et al. 2014. New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Anal. Chem. 86:115513–18
    [Google Scholar]
  115. 115.
    Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y et al. 2012. Imaging the electrocatalytic activity of single nanoparticles. Nat. Nanotechnol. 7:10668–72
    [Google Scholar]
  116. 116.
    Yang X, Karnbach F, Uhlemann M, Odenbach S, Eckert K 2015. Dynamics of single hydrogen bubbles at a platinum microelectrode. Langmuir 31:298184–93
    [Google Scholar]
  117. 117.
    Li S, Du Y, He T, Shen Y, Bai C et al. 2017. Nanobubbles: an effective way to study gas-generating catalysis on a single nanoparticle. J. Am. Chem. Soc. 139:4014277–84
    [Google Scholar]
  118. 118.
    Xu S, Yu X, Chen Z, Zeng Y, Guo L et al. 2020. Real-time visualization of the single-nanoparticle electrocatalytic hydrogen generation process and activity under dark field microscopy. Anal. Chem. 92:139016–23
    [Google Scholar]
  119. 119.
    Wang Y, Yuan T, Su H, Zhou K, Yin L, Wang W 2021. A bubble-STORM approach for super-resolved imaging of nucleation sites in hydrogen evolution reactions. ACS Sens 6:2380–86
    [Google Scholar]
  120. 120.
    Noël J-M, Lemineur J-F. 2021. Optical microscopy to study single nanoparticles electrochemistry: from reaction to motion. Curr. Opin. Electrochem. 25:100647
    [Google Scholar]
  121. 121.
    Guan Y, Shan X, Zhang F, Wang S, Chen H-Y, Tao N. 2015. Kinetics of small molecule interactions with membrane proteins in single cells measured with mechanical amplification. Sci. Adv. 1:9e1500633
    [Google Scholar]
  122. 122.
    Brasiliense V, Clausmeyer J, Berto P, Tessier G, Combellas C et al. 2018. Monitoring cobalt-oxide single particle electrochemistry with subdiffraction accuracy. Anal. Chem. 90:127341–48
    [Google Scholar]
  123. 123.
    Pendergast AD, Renault C, Dick JE 2021. Correlated optical-electrochemical measurements reveal bidirectional current steps for graphene nanoplatelet collisions at ultramicroelectrodes. Anal. Chem. 93:52898–906
    [Google Scholar]
  124. 124.
    Pendergast AD, Deng Z, Maroun F, Renault C, Dick JE 2021. Revealing dynamic rotation of single graphene nanoplatelets on electrified microinterfaces. ACS Nano 15:11250–58
    [Google Scholar]
  125. 125.
    Chirea M, Collins SSE, Wei X, Mulvaney P 2014. Spectroelectrochemistry of silver deposition on single gold nanocrystals. J. Phys. Chem. Lett. 5:244331–35
    [Google Scholar]
  126. 126.
    Hu S, Yi J, Zhang Y-J, Lin K-Q, Liu B-J et al. 2020. Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy. Nat. Commun. 11:12518
    [Google Scholar]
  127. 127.
    Byers CP, Zhang H, Swearer DF, Yorulmaz M, Hoener BS et al. 2015. From tunable core-shell nanoparticles to plasmonic drawbridges: active control of nanoparticle optical properties. Sci. Adv. 1:11e1500988
    [Google Scholar]
  128. 128.
    Wang J-G, Fossey JS, Li M, Xie T, Long Y-T. 2016. Real-time plasmonic monitoring of single gold amalgam nanoalloy electrochemical formation and stripping. ACS Appl. Mater. Interfaces 8:128305–14
    [Google Scholar]
  129. 129.
    Schopf C, Wahl A, Martín A, O'Riordan A, Iacopino D. 2016. Direct observation of mercury amalgamation on individual gold nanorods using spectroelectrochemistry. J. Phys. Chem. C 120:3419295–301
    [Google Scholar]
  130. 130.
    Byers CP, Hoener BS, Chang W-S, Link S, Landes CF. 2016. Single-particle plasmon voltammetry (spPV) for detecting anion adsorption. Nano Lett 16:42314–21
    [Google Scholar]
  131. 131.
    Wang Y, Shan X, Wang H, Wang S, Tao N 2017. Plasmonic imaging of surface electrochemical reactions of single gold nanowires. J. Am. Chem. Soc. 139:41376–79
    [Google Scholar]
  132. 132.
    Garcia A, Wang S, Tao N, Shan X, Wang Y 2021. Plasmonic imaging of oxidation and reduction of single gold nanoparticles and their surface structural dynamics. ACS Sens 6:2502–7
    [Google Scholar]
  133. 133.
    Merryweather AJ, Schnedermann C, Jacquet Q, Grey CP, Rao A. 2021. Operando optical tracking of single-particle ion dynamics in batteries. Nature 594:7864522–28
    [Google Scholar]
  134. 134.
    Namink K, Meng X, Koper MTM, Kukura P, Faez S. 2020. Electric-double-layer-modulation microscopy. Phys. Rev. Appl. 13:4044065
    [Google Scholar]
  135. 135.
    Wang H, Shan X, Yu H, Wang Y, Schmickler W et al. 2017. Determining electrochemical surface stress of single nanowires. Angew. Chem. Int. Ed. 56:82132–35
    [Google Scholar]
  136. 136.
    Sundaresan V, Monaghan JW, Willets KA. 2018. Visualizing the effect of partial oxide formation on single silver nanoparticle electrodissolution. J. Phys. Chem. C 122:53138–45
    [Google Scholar]
  137. 137.
    Willets KA. 2019. Supercharging superlocalization microscopy: how electrochemical charging of plasmonic nanostructures uncovers hidden heterogeneity. ACS Nano 13:66145–50
    [Google Scholar]
  138. 138.
    Wilson AJ, Devasia D, Jain PK. 2020. Nanoscale optical imaging in chemistry. Chem. Soc. Rev. 49:166087–112
    [Google Scholar]
  139. 139.
    Fan Y, Anderson TJ, Zhang B 2018. Single-molecule electrochemistry: from redox cycling to single redox events. Curr. Opin. Electrochem. 7:81–86
    [Google Scholar]
  140. 140.
    Zaleski S, Wilson AJ, Mattei M, Chen X, Goubert G et al. 2016. Investigating nanoscale electrochemistry with surface- and tip-enhanced Raman spectroscopy. Acc. Chem. Res. 49:92023–30
    [Google Scholar]
  141. 141.
    Fan FRF, Bard AJ 1995. Electrochemical detection of single molecules. Science 267:871–74
    [Google Scholar]
  142. 142.
    Hill CM, Clayton DA, Pan S 2013. Combined optical and electrochemical methods for studying electrochemistry at the single molecule and single particle level: recent progress and perspectives. Phys. Chem. Chem. Phys. 15:4820797
    [Google Scholar]
  143. 143.
    Tian Z-Q, Ren B. 2004. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu. Rev. Phys. Chem. 55:197–229
    [Google Scholar]
  144. 144.
    Willets KA. 2019. Probing nanoscale interfaces with electrochemical surface-enhanced Raman scattering. Curr. Opin. Electrochem. 13:18–24
    [Google Scholar]
  145. 145.
    Cortés E, Etchegoin PG, Le Ru EC, Fainstein A, Vela ME, Salvarezza RC 2010. Monitoring the electrochemistry of single molecules by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 132:5118034–37
    [Google Scholar]
  146. 146.
    Zaleski S, Cardinal MF, Klingsporn JM, Van Duyne RP. 2015. Observing single, heterogeneous, one-electron transfer reactions. J. Phys. Chem. C 119:5028226–34
    [Google Scholar]
  147. 147.
    Titus EJ, Weber ML, Stranahan SM, Willets KA. 2012. Super-resolution SERS imaging beyond the single-molecule limit: an isotope-edited approach. Nano Lett 12:105103–10
    [Google Scholar]
  148. 148.
    Willets KA. 2014. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 43:113854–64
    [Google Scholar]
  149. 149.
    Hao R, Peng Z, Zhang B. 2020. Single-molecule fluorescence microscopy for probing the electrochemical interface. ACS Omega 5:189–97
    [Google Scholar]
  150. 150.
    Willets KA, Ostroverkhova O, He M, Twieg RJ, Moerner WE. 2003. Novel fluorophores for single-molecule imaging. J. Am. Chem. Soc. 125:51174–75
    [Google Scholar]
  151. 151.
    Palacios RE, Fan F-RF, Bard AJ, Barbara PF. 2006. Single-molecule spectroelectrochemistry (SMS-EC). J. Am. Chem. Soc. 128:289028–29
    [Google Scholar]
  152. 152.
    Fan S, Webb JEA, Yang Y, Nieves DJ, Gonçales VR et al. 2019. Observing the reversible single molecule electrochemistry of Alexa Fluor 647 dyes by total internal reflection fluorescence microscopy. Angew. Chem. Int. Ed. 58:4114495–98
    [Google Scholar]
  153. 153.
    Zhang W, Caldarola M, Pradhan B, Orrit M. 2017. Gold nanorod enhanced fluorescence enables single-molecule electrochemistry of methylene blue. Angew. Chem. Int. Ed. 56:133566–69
    [Google Scholar]
  154. 154.
    Midtvedt B, Helgadottir S, Argun A, Pineda J, Midtvedt D, Volpe G 2021. Quantitative digital microscopy with deep learning. Appl. Phys. Rev. 8:1011310
    [Google Scholar]
  155. 155.
    Liu T, Liu S, Jiang W, Wang W 2019. Tracking sub-nanometer shift in the scattering centroid of single gold nanorods during electrochemical charging. ACS Nano 13:66279–86
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061020-015943
Loading
/content/journals/10.1146/annurev-anchem-061020-015943
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error