1932

Abstract

For many years, numerous efforts have been focused on the development of sensitive, selective, and practical sensors for environmental monitoring, food safety, and medical diagnostic applications. However, the transition from innovative research to commercial success is relatively sparse. In this review, we identify four scientific barriers and one technical barrier to developing successful sensors for practical applications, including the lack of general methods to () generate receptors for a wide range of targets, () improve sensor selectivity to overcome interferences, () transduce the selective binding to different optical, electrochemical, and other signals, and () tune dynamic range to match thresholds of detection required for different targets; and the costly development of a new device. We then summarize solutions to overcome these barriers using sensors based on functional nucleic acids that include DNAzymes, aptamers, and aptazymes and how these sensors are coupled to widely available measurement devices to expand their capabilities and lower the barrier for their practical applications in the field and point-of-care settings.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061020-104216
2022-06-13
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/anchem/15/1/annurev-anchem-061020-104216.html?itemId=/content/journals/10.1146/annurev-anchem-061020-104216&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A 2013. Biosensor technology: recent advances in threat agent detection and medicine. Chem. Soc. Rev. 42:8733–68
    [Google Scholar]
  2. 2.
    Turner AP. 2013. Biosensors: sense and sensibility. Chem. Soc. Rev. 42:3184–96
    [Google Scholar]
  3. 3.
    Lu Y, Liu J. 2006. Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr. Opin. Biotech. 17:580–88
    [Google Scholar]
  4. 4.
    Liu J, Cao Z, Lu Y. 2009. Functional nucleic acid sensors. Chem. Rev. 109:1948–98
    [Google Scholar]
  5. 5.
    Lu Y, Liu J. 2007. Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc. Chem. Res. 40:315–23
    [Google Scholar]
  6. 6.
    Famulok M, Hartig JS, Mayer G. 2007. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem. Rev. 107:3715–43
    [Google Scholar]
  7. 7.
    Zhou W, Saran R, Liu J. 2017. Metal sensing by DNA. Chem. Rev. 117:8272–325
    [Google Scholar]
  8. 8.
    Xu W, He W, Du Z, Zhu L, Huang K et al. 2021. Functional nucleic acid nanomaterials: development, properties, and applications. Angew. Chem. Int. Ed. 60:6890–918
    [Google Scholar]
  9. 9.
    McConnell EM, Cozma I, Mou Q, Brennan JD, Lu Y, Li Y 2021. Biosensing with DNAzymes. Chem. Soc. Rev. 50:8954–94
    [Google Scholar]
  10. 10.
    Geyer CR, McCafferty J, Dübel S, Bradbury AR, Sidhu SS. 2012. Recombinant antibodies and in vitro selection technologies. Methods Mol. Biol. 901:11–32
    [Google Scholar]
  11. 11.
    Goode JA, Rushworth JV, Millner PA. 2015. Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31:6267–76
    [Google Scholar]
  12. 12.
    Sharma S, Byrne H, O'Kennedy RJ 2016. Antibodies and antibody-derived analytical biosensors. Essays Biochem. 60:9–18
    [Google Scholar]
  13. 13.
    Iskierko Z, Noworyta K, Sharma PS. 2018. Molecular recognition by synthetic receptors: application in field-effect transistor based chemosensing. Biosens. Bioelectron. 109:50–62
    [Google Scholar]
  14. 14.
    Diehl KL, Bachman JL, Chapin BM, Edupuganti R, Escamilla PR et al. 2015. Design and synthesis of synthetic receptors for biomolecule recognition. Synthetic Receptors for Biomolecules: Design Principles and Applications BD Smith 39–85 Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  15. 15.
    Eersels K, Lieberzeit P, Wagner P. 2016. A review on synthetic receptors for bioparticle detection created by surface-imprinting techniques—from principles to applications. ACS Sens. 1:1171–87
    [Google Scholar]
  16. 16.
    Peveler WJ, Yazdani M, Rotello VM. 2016. Selectivity and specificity: pros and cons in sensing. ACS Sens. 1:1282–85
    [Google Scholar]
  17. 17.
    Zhang DY, Chen SX, Yin P 2012. Optimizing the specificity of nucleic acid hybridization. Nat. Chem. 4:208–14
    [Google Scholar]
  18. 18.
    Teicher BA, Chari RV. 2011. Antibody conjugate therapeutics: challenges and potential. Clin. Cancer Res. 17:6389–97
    [Google Scholar]
  19. 19.
    Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H et al. 2005. A general method for greatly improving the affinity of antibodies by using combinatorial libraries. PNAS 102:8466–71
    [Google Scholar]
  20. 20.
    Smith BD. 2015. Preface. Synthetic Receptors for Biomolecules: Design Principles and Applications BD Smith v–vii Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  21. 21.
    Pluth MD, Tomat E, Lippard SJ 2011. Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors. Annu. Rev. Biochem. 80:333–55
    [Google Scholar]
  22. 22.
    Weeks I, Kricka LJ, Wild D 2013. Signal generation and detection systems (excluding homogeneous assays). The Immunoassay Handbook D Wild 267–85 Oxford, UK: Elsevier. , 4th ed..
    [Google Scholar]
  23. 23.
    Reyes-De-Corcuera JI, Olstad HE, Garcia-Torres R. 2018. Stability and stabilization of enzyme biosensors: the key to successful application and commercialization. Annu. Rev. Food. Sci. Technol. 9:293–322
    [Google Scholar]
  24. 24.
    Zhang J, Lu Y. 2019. Advancing point-of-care diagnostics of metabolites through engineering semisynthetic proteins. Clin. Chem. 65:507–9
    [Google Scholar]
  25. 25.
    Guo Z, Murphy L, Stein V, Johnston WA, Alcala-Perez S, Alexandrov K. 2016. Engineered PQQ-glucose dehydrogenase as a universal biosensor platform. J. Am. Chem. Soc. 138:10108–11
    [Google Scholar]
  26. 26.
    Xiang Y, Tong A, Lu Y. 2009. Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb2+ and adenosine with high sensitivity, selectivity, and tunable dynamic range. J. Am. Chem. Soc. 131:15352–57
    [Google Scholar]
  27. 27.
    Xiong Y, Meng P, Li H, Hu Y, Zhou L et al. 2018. Dual signal amplification strategy for high-sensitivity detection of copper species in bio-samples with a tunable dynamic range. Chem. Commun. 54:2542–45
    [Google Scholar]
  28. 28.
    Zhang J, Li Z, Zhao S, Lu Y. 2016. Size-dependent modulation of graphene oxide-aptamer interactions for an amplified fluorescence-based detection of aflatoxin B1 with a tunable dynamic range. Analyst 141:4029–34
    [Google Scholar]
  29. 29.
    Breaker RR. 1997. DNA aptamers and DNA enzymes. Curr. Opin. Chem. Biol. 1:26–31
    [Google Scholar]
  30. 30.
    Liu J, Lu Y 2009. Colorimetric and fluorescent biosensors based on directed assembly of nanomaterials with functional DNA. Functional Nucleic Acids for Analytical Applications L Yingfu, L Yi 155–78 New York: Springer
    [Google Scholar]
  31. 31.
    Liu M, Zhang WQ, Chang DR, Zhang Q, Brennan JD, Li YF. 2015. Integrating graphene oxide, functional DNA and nucleic-acid-manipulating strategies for amplified biosensing. Trends Anal. Chem. 74:120–29
    [Google Scholar]
  32. 32.
    Pei H, Zuo X, Zhu D, Huang Q, Fan C. 2014. Functional DNA nanostructures for theranostic applications. Acc. Chem. Res. 47:550–59
    [Google Scholar]
  33. 33.
    Torabi SF, Lu Y. 2014. Functional DNA nanomaterials for sensing and imaging in living cells. Curr. Opin. Biotech. 28:88–95
    [Google Scholar]
  34. 34.
    Lake RJ, Yang Z, Zhang J, Lu Y 2019. DNAzymes as activity-based sensors for metal ions: recent applications, demonstrated advantages, current challenges, and future directions. Acc. Chem. Res. 52:3275–86
    [Google Scholar]
  35. 35.
    Li L, Xing H, Zhang J, Lu Y. 2019. Functional DNA molecules enable selective and stimuli-responsive nanoparticles for biomedical applications. Acc. Chem. Res. 52:2415–26
    [Google Scholar]
  36. 36.
    Zhou W, Vazin M, Yu T, Ding J, Liu J 2016. In vitro selection of chromium-dependent DNAzymes for sensing chromium(III) and chromium(VI). Chemistry 22:9835–40
    [Google Scholar]
  37. 37.
    Torabi SF, Wu P, McGhee CE, Chen L, Hwang K et al. 2015. In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing. PNAS 112:5903–8
    [Google Scholar]
  38. 38.
    Ihms HE, Lu Y. 2012. In vitro selection of metal ion-selective DNAzymes. Methods Mol. Biol. 848:297–316
    [Google Scholar]
  39. 39.
    Silverman S 2009. Artificial functional nucleic acids: aptamers, ribozymes, and deoxyribozymes identified by in vitro selection. Functional Nucleic Acids for Analytical Applications L Yingfu, L Yi 47–108 New York: Springer
    [Google Scholar]
  40. 40.
    Hook KD, Chambers JT, Hili R. 2017. A platform for high-throughput screening of DNA-encoded catalyst libraries in organic solvents. Chem. Sci. 8:7072–76
    [Google Scholar]
  41. 41.
    Nelson KE, Bruesehoff PJ, Lu Y. 2005. In vitro selection of high temperature Zn2+-dependent DNAzymes. J. Mol. Evol. 61:216–25
    [Google Scholar]
  42. 42.
    Huang YJ, Ouyang WJ, Wu X, Li Z, Fossey JS et al. 2013. Glucose sensing via aggregation and the use of “knock-out” binding to improve selectivity. J. Am. Chem. Soc. 135:1700–3
    [Google Scholar]
  43. 43.
    Bruesehoff PJ, Li J, Augustine AJ3rd, Lu Y. 2002. Improving metal ion specificity during in vitro selection of catalytic DNA. Comb. Chem. High Throughput Screen. 5:327–35
    [Google Scholar]
  44. 44.
    Li J, Lu Y 2000. A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 122:10466–67
    [Google Scholar]
  45. 45.
    Liu J, Lu Y. 2003. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125:6642–43
    [Google Scholar]
  46. 46.
    Liu J, Lu Y. 2003. Improving fluorescent DNAzyme biosensors by combining inter- and intramolecular quenchers. Anal. Chem. 75:6666–72
    [Google Scholar]
  47. 47.
    Liu J, Lu Y. 2004. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 126:12298–305
    [Google Scholar]
  48. 48.
    Liu J, Lu Y. 2006. Fluorescent DNAzyme biosensors for metal ions based on catalytic molecular beacons. Methods Mol. Biol. 335:275–88
    [Google Scholar]
  49. 49.
    Liu J, Brown AK, Meng X, Cropek DM, Istok JD et al. 2007. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. PNAS 104:2056–61
    [Google Scholar]
  50. 50.
    Kim HK, Liu J, Li J, Nagraj N, Li M et al. 2007. Metal-dependent global folding and activity of the 8–17 DNAzyme studied by fluorescence resonance energy transfer. J. Am. Chem. Soc. 129:6896–902
    [Google Scholar]
  51. 51.
    Liu J, Lu Y. 2007. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity. J. Am. Chem. Soc. 129:9838–39
    [Google Scholar]
  52. 52.
    Liu J, Lu Y. 2007. Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew. Chem. Int. Ed. 46:7587–90
    [Google Scholar]
  53. 53.
    Kim HK, Rasnik I, Liu J, Ha T, Lu Y 2007. Dissecting metal ion-dependent folding and catalysis of a single DNAzyme. Nat. Chem. Biol. 3:763–68
    [Google Scholar]
  54. 54.
    Wang ZD, Lee JH, Lu Y. 2008. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv. Mater. 20:3263–67
    [Google Scholar]
  55. 55.
    Lee JH, Wang Z, Liu J, Lu Y. 2008. Highly sensitive and selective colorimetric sensors for uranyl (UO22+): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J. Am. Chem. Soc. 130:14217–26
    [Google Scholar]
  56. 56.
    Wang Z, Lu Y 2009. Functional DNA directed assembly of nanomaterials for biosensing. J. Mater. Chem. 19:1788–98
    [Google Scholar]
  57. 57.
    Mazumdar D, Nagraj N, Kim HK, Meng X, Brown AK et al. 2009. Activity, folding and Z-DNA formation of the 8–17 DNAzyme in the presence of monovalent ions. J. Am. Chem. Soc. 131:5506–15
    [Google Scholar]
  58. 58.
    Mei SH, Liu Z, Brennan JD, Li Y. 2003. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J. Am. Chem. Soc. 125:412–20
    [Google Scholar]
  59. 59.
    Tram K, Kanda P, Li Y 2012. Lighting up RNA-cleaving DNAzymes for biosensing. J. Nucleic Acids 2012:958683
    [Google Scholar]
  60. 60.
    Iliuk AB, Hu L, Tao WA. 2011. Aptamer in bioanalytical applications. Anal. Chem. 83:4440–52
    [Google Scholar]
  61. 61.
    Blind M, Blank M. 2015. Aptamer selection technology and recent advances. Mol. Ther. Nucleic Acids 4:e223
    [Google Scholar]
  62. 62.
    Dhiman A, Kaira P, Bansal V, Bruno JG, Sharma TK. 2017. Aptamer-based point-of-care diagnostic platforms. Sens. Actuators B 246:535–53
    [Google Scholar]
  63. 63.
    Du Y, Dong S. 2017. Nucleic acid biosensors: recent advances and perspectives. Anal. Chem. 89:189–215
    [Google Scholar]
  64. 64.
    Fan HH, Zhang XB, Lu Y. 2017. Recent advances in DNAzyme-based gene silencing. Sci. China Chem. 60:591–601
    [Google Scholar]
  65. 65.
    McGhee CE, Loh KY, Lu Y. 2017. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells. Curr. Opin. Biotech. 45:191–201
    [Google Scholar]
  66. 66.
    Rong G, Corrie SR, Clark HA. 2017. In vivo biosensing: progress and perspectives. ACS Sens. 2:327–38
    [Google Scholar]
  67. 67.
    Zhang JJ. 2018. RNA-cleaving DNAzymes: old catalysts with new tricks for intracellular and in vivo applications. Catalysts 8:550
    [Google Scholar]
  68. 68.
    Xing S, Lin Y, Cai L, Basa PN, Shigemoto AK et al. 2021. Detection and quantification of tightly bound Zn2+ in blood serum using a photocaged chelator and a DNAzyme fluorescent sensor. Anal. Chem. 93:5856–61
    [Google Scholar]
  69. 69.
    Nutiu R, Li Y. 2003. Structure-switching signaling aptamers. J. Am. Chem. Soc. 125:4771–78
    [Google Scholar]
  70. 70.
    Xing H, Zhang CL, Ruan G, Zhang J, Hwang K, Lu Y. 2016. Multimodal detection of a small molecule target using stimuli-responsive liposome triggered by aptamer-enzyme conjugate. Anal. Chem. 88:1506–10
    [Google Scholar]
  71. 71.
    Lee JH, Yigit MV, Mazumdar D, Lu Y 2010. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv. Drug Deliv. Rev. 62:592–605
    [Google Scholar]
  72. 72.
    Li LL, Xie M, Wang J, Li X, Wang C et al. 2013. A vitamin-responsive mesoporous nanocarrier with DNA aptamer-mediated cell targeting. Chem. Commun. 49:5823–25
    [Google Scholar]
  73. 73.
    Li LL, Ge P, Selvin PR, Lu Y. 2012. Direct detection of adenosine in undiluted serum using a luminescent aptamer sensor attached to a terbium complex. Anal. Chem. 84:7852–56
    [Google Scholar]
  74. 74.
    Peng H, Newbigging AM, Wang Z, Tao J, Deng W et al. 2018. DNAzyme-mediated assays for amplified detection of nucleic acids and proteins. Anal. Chem. 90:190–207
    [Google Scholar]
  75. 75.
    Gong L, Zhao Z, Lv YF, Huan SY, Fu T et al. 2015. DNAzyme-based biosensors and nanodevices. Chem. Commun. 51:979–95
    [Google Scholar]
  76. 76.
    Yuan R, Yu X, Zhang Y, Xu L, Cheng W et al. 2017. Target-triggered DNA nanoassembly on quantum dots and DNAzyme-modulated double quenching for ultrasensitive microRNA biosensing. Biosens. Bioelectron. 92:342–48
    [Google Scholar]
  77. 77.
    Leng X, Wang Y, Li R, Liu S, Yao J et al. 2018. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria. Mikrochim. Acta 185:168
    [Google Scholar]
  78. 78.
    Dong XY, Mi XN, Zhang L, Liang TM, Xu JJ, Chen HY. 2012. DNAzyme-functionalized Pt nanoparticles/carbon nanotubes for amplified sandwich electrochemical DNA analysis. Biosens. Bioelectron. 38:337–41
    [Google Scholar]
  79. 79.
    Yim TJ, Liu J, Lu Y, Kane RS, Dordick JS. 2005. Highly active and stable DNAzyme-carbon nanotube hybrids. J. Am. Chem. Soc. 127:12200–1
    [Google Scholar]
  80. 80.
    Pelossof G, Tel-Vered R, Willner I. 2012. Amplified surface plasmon resonance and electrochemical detection of Pb2+ ions using the Pb2+-dependent DNAzyme and hemin/G-quadruplex as a label. Anal. Chem. 84:3703–9
    [Google Scholar]
  81. 81.
    Liu X, Niazov-Elkan A, Wang F, Willner I 2013. Switching photonic and electrochemical functions of a DNAzyme by DNA machines. Nano Lett. 13:219–25
    [Google Scholar]
  82. 82.
    Xu W, Xing H, Lu Y. 2013. A smart T1-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate. Analyst 138:6266–69
    [Google Scholar]
  83. 83.
    Liu M, Zhang Q, Kannan B, Botton GA, Yang J et al. 2018. Self-assembled functional DNA superstructures as high-density and versatile recognition elements for printed paper sensors. Angew. Chem. Int. Ed. 57:12440–43
    [Google Scholar]
  84. 84.
    Yousefi H, Ali MM, Su HM, Filipe CDM, Didar TF 2018. Sentinel wraps: real-time monitoring of food contamination by printing DNAzyme probes on food packaging. ACS Nano 12:3287–94
    [Google Scholar]
  85. 85.
    Wu P, Hwang K, Lan T, Lu Y 2013. A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc. 135:5254–57
    [Google Scholar]
  86. 86.
    Wang W, Satyavolu NSR, Wu Z, Zhang JR, Zhu JJ, Lu Y. 2017. Near-infrared photothermally activated DNAzyme-gold nanoshells for imaging metal ions in living cells. Angew. Chem. Int. Ed. 56:6798–802
    [Google Scholar]
  87. 87.
    Wu Z, Fan H, Satyavolu NSR, Wang W, Lake R et al. 2017. Imaging endogenous metal ions in living cells using a DNAzyme-catalytic hairpin assembly probe. Angew. Chem. Int. Ed. 56:8721–25
    [Google Scholar]
  88. 88.
    Xiong M, Yang Z, Lake RJ, Li J, Hong S et al. 2020. DNAzyme-mediated genetically encoded sensors for ratiometric imaging of metal ions in living cells. Angew. Chem. Int. Ed. 59:1891–96
    [Google Scholar]
  89. 89.
    Zhang P, He Z, Wang C, Chen J, Zhao J et al. 2015. In situ amplification of intracellular microRNA with MNAzyme nanodevices for multiplexed imaging, logic operation, and controlled drug release. ACS Nano 9:789–98
    [Google Scholar]
  90. 90.
    Li L, Feng J, Fan Y, Tang B 2015. Simultaneous imaging of Zn2+ and Cu2+ in living cells based on DNAzyme modified gold nanoparticle. Anal. Chem. 87:4829–35
    [Google Scholar]
  91. 91.
    Hwang K, Wu P, Kim T, Lei L, Tian S et al. 2014. Photocaged DNAzymes as a general method for sensing metal ions in living cells. Angew. Chem. Int. Ed. 53:13798–802
    [Google Scholar]
  92. 92.
    Wang X, Feng M, Xiao L, Tong A, Xiang Y 2016. Postsynthetic modification of DNA phosphodiester backbone for photocaged DNAzyme. ACS Chem. Biol. 11:444–51
    [Google Scholar]
  93. 93.
    Yang Z, Loh KY, Chu YT, Feng R, Satyavolu NSR et al. 2018. Optical control of metal ion probes in cells and zebrafish using highly selective DNAzymes conjugated to upconversion nanoparticles. J. Am. Chem. Soc. 140:17656–65
    [Google Scholar]
  94. 94.
    Nutiu R, Li Y. 2005. In vitro selection of structure-switching signaling aptamers. Angew. Chem. Int. Ed. 44:1061–65
    [Google Scholar]
  95. 95.
    Porciani D, Cardwell LN, Tawiah KD, Alam KK, Lange MJ et al. 2018. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines. Nat. Commun. 9:2283
    [Google Scholar]
  96. 96.
    Zhang Z, Oni O, Liu J. 2017. New insights into a classic aptamer: binding sites, cooperativity and more sensitive adenosine detection. Nuclei. Acids Res. 45:7593–601
    [Google Scholar]
  97. 97.
    Yang J, Dou B, Yuan R, Xiang Y. 2017. Aptamer/protein proximity binding-triggered molecular machine for amplified electrochemical sensing of thrombin. Anal. Chem. 89:5138–43
    [Google Scholar]
  98. 98.
    Liu J, Mazumdar D, Lu Y 2006. A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. Int. Ed. 45:7955–59
    [Google Scholar]
  99. 99.
    Hui CY, Liu M, Li Y, Brennan JD 2018. A paper sensor printed with multifunctional bio/nano materials. Angew. Chem. Int. Ed. 57:4549–53
    [Google Scholar]
  100. 100.
    Famulok M, Mayer G. 2011. Aptamer modules as sensors and detectors. Acc. Chem. Res. 44:1349–58
    [Google Scholar]
  101. 101.
    Du Y, Li B, Wang E 2013.. “ Fitting” makes “sensing” simple: label-free detection strategies based on nucleic acid aptamers. Acc. Chem. Res. 46:203–13
    [Google Scholar]
  102. 102.
    Ugo P, Moretto LM, eds. 2017. Electrochemical Immunosensors and Aptasensors Basel, Switz: MDPI
    [Google Scholar]
  103. 103.
    Sassolas A, Blum LJ, Leca-Bouvier BD. 2009. Electrochemical aptasensors. Electroanalysis 21:1237–50
    [Google Scholar]
  104. 104.
    Li H, Dauphin-Ducharme P, Ortega G, Plaxco KW. 2017. Calibration-free electrochemical biosensors supporting accurate molecular measurements directly in undiluted whole blood. J. Am. Chem. Soc. 139:11207–13
    [Google Scholar]
  105. 105.
    Yigit MV, Mazumdar D, Kim HK, Lee JH, Odintsov B, Lu Y 2007. Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. ChemBioChem 8:1675–78
    [Google Scholar]
  106. 106.
    Xu W, Lu Y. 2011. A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex. Chem. Commun. 47:4998–5000
    [Google Scholar]
  107. 107.
    Gotrik MR, Feagin TA, Csordas AT, Nakamoto MA, Soh HT. 2016. Advancements in aptamer discovery technologies. Acc. Chem. Res. 49:1903–10
    [Google Scholar]
  108. 108.
    Xing H, Hwang K, Li J, Torabi SF, Lu Y. 2014. DNA aptamer technology for personalized medicine. Curr. Opin. Chem. Eng. 4:79–87
    [Google Scholar]
  109. 109.
    Liu Z, Chen S, Liu B, Wu J, Zhou Y et al. 2014. Intracellular detection of ATP using an aptamer beacon covalently linked to graphene oxide resisting nonspecific probe displacement. Anal. Chem. 86:12229–35
    [Google Scholar]
  110. 110.
    Chen TT, Tian X, Liu CL, Ge J, Chu X, Li Y 2015. Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor. J. Am. Chem. Soc. 137:982–89
    [Google Scholar]
  111. 111.
    Zhang J, Smaga LP, Satyavolu NSR, Chan J, Lu Y 2017. DNA aptamer-based activatable probes for photoacoustic imaging in living mice. J. Am. Chem. Soc. 139:17225–28
    [Google Scholar]
  112. 112.
    Zhao J, Gao J, Xue W, Di Z, Xing H et al. 2018. Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells. J. Am. Chem. Soc. 140:578–81
    [Google Scholar]
  113. 113.
    Ogawa A, Maeda M. 2009. Easy design of logic gates based on aptazymes and noncrosslinking gold nanoparticle aggregation. Chem. Commun. 31:4666–68
    [Google Scholar]
  114. 114.
    Tang J, Breaker RR. 1997. Rational design of allosteric ribozymes. Chem. Biol. 4:453–59
    [Google Scholar]
  115. 115.
    Liu J, Lu Y. 2004. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal. Chem. 76:1627–32
    [Google Scholar]
  116. 116.
    Yu T, Zhou W, Liu J. 2018. Ultrasensitive DNAzyme-based Ca2+ detection boosted by ethanol and a solvent-compatible scaffold for aptazyme design. ChemBioChem 19:31–36
    [Google Scholar]
  117. 117.
    Zhang XB, Wang Z, Xing H, Xiang Y, Lu Y. 2010. Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity. Anal. Chem. 82:5005–11
    [Google Scholar]
  118. 118.
    Yang Y, Huang J, Yang X, Quan K, Wang H et al. 2016. Aptazyme-gold nanoparticle sensor for amplified molecular probing in living cells. Anal. Chem. 88:5981–87
    [Google Scholar]
  119. 119.
    Tang W, Hu JH, Liu DR. 2017. Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat. Commun. 8:15939
    [Google Scholar]
  120. 120.
    Wen Y, Peng C, Li D, Zhuo L, He S et al. 2011. Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range. Chem. Commun. 47:6278–80
    [Google Scholar]
  121. 121.
    Porchetta A, Vallee-Belisle A, Plaxco KW, Ricci F. 2012. Using distal-site mutations and allosteric inhibition to tune, extend, and narrow the useful dynamic range of aptamer-based sensors. J. Am. Chem. Soc. 134:20601–4
    [Google Scholar]
  122. 122.
    Kang D, Vallee-Belisle A, Porchetta A, Plaxco KW, Ricci F. 2012. Re-engineering electrochemical biosensors to narrow or extend their useful dynamic range. Angew. Chem. Int. Ed. 51:6717–21
    [Google Scholar]
  123. 123.
    Zhang H, Jia S, Lv M, Shi J, Zuo X et al. 2014. Size-dependent programming of the dynamic range of graphene oxide-DNA interaction-based ion sensors. Anal. Chem. 86:4047–51
    [Google Scholar]
  124. 124.
    Ko JW, Woo JM, Jinhong A, Cheon JH, Lim JH et al. 2011. Multi-order dynamic range DNA sensor using a gold decorated SWCNT random network. ACS Nano 5:4365–72
    [Google Scholar]
  125. 125.
    Noor MO, Krull UJ. 2013. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal. Chem. 85:7502–11
    [Google Scholar]
  126. 126.
    Pu F, Huang Z, Ren J, Qu X 2010. DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. Anal. Chem. 82:8211–16
    [Google Scholar]
  127. 127.
    Wei B, Zhang J, Ou X, Lou X, Xia F, Vallee-Belisle A. 2018. Engineering biosensors with dual programmable dynamic ranges. Anal. Chem. 90:1506–10
    [Google Scholar]
  128. 128.
    Zhang J, Lan T, Lu Y 2020. Translating in vitro diagnostics from centralized laboratories to point-of-care locations using commercially-available handheld meters. Trends Anal. Chem. 124:115782
    [Google Scholar]
  129. 129.
    Xiang Y, Lu Y. 2011. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat. Chem. 3:697–703
    [Google Scholar]
  130. 130.
    Zhang J, Xing H, Lu Y. 2018. Translating molecular detections into a simple temperature test using a target-responsive smart thermometer. Chem. Sci. 9:3906–10
    [Google Scholar]
  131. 131.
    Lan T, Zhang J, Lu Y. 2016. Transforming the blood glucose meter into a general healthcare meter for in vitro diagnostics in mobile health. Biotechnol. Adv. 34:331–41
    [Google Scholar]
  132. 132.
    Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM 2010. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip 10:3163–69
    [Google Scholar]
  133. 133.
    Xiang Y, Lu Y. 2012. Using commercially available personal glucose meters for portable quantification of DNA. Anal. Chem. 84:1975–80
    [Google Scholar]
  134. 134.
    Xiang Y, Lu Y. 2012. Portable and quantitative detection of protein biomarkers and small molecular toxins using antibodies and ubiquitous personal glucose meters. Anal. Chem. 84:4174–78
    [Google Scholar]
  135. 135.
    Xiang Y, Lu Y. 2013. An invasive DNA approach toward a general method for portable quantification of metal ions using a personal glucose meter. Chem. Commun. 49:585–87
    [Google Scholar]
  136. 136.
    Xiang Y, Lan T, Lu Y 2014. Using the widely available blood glucose meter to monitor insulin and HbA1c. J. Diabetes Sci. Technol. 8:855–58
    [Google Scholar]
  137. 137.
    Lan T, Xiang Y, Lu Y. 2015. Detection of protein biomarker using a blood glucose meter. Methods Mol. Biol. 1256:99–109
    [Google Scholar]
  138. 138.
    Gu C, Lan T, Shi H, Lu Y. 2015. Portable detection of melamine in milk using a personal glucose meter based on an in vitro selected structure-switching aptamer. Anal. Chem. 87:7676–82
    [Google Scholar]
  139. 139.
    Zhang J, Shen Z, Xiang Y, Lu Y. 2016. Integration of solution-based assays onto lateral flow device for one-step quantitative point-of-care diagnostics using personal glucose meter. ACS Sens. 1:1091–96
    [Google Scholar]
  140. 140.
    Zhang J, Lu Y. 2018. Biocomputing for portable, resettable, and quantitative point-of-care diagnostics: making the glucose meter a logic-gate responsive device for measuring many clinically relevant targets. Angew. Chem. Int. Ed. 57:9702–6
    [Google Scholar]
  141. 141.
    Zhang S, Luan Y, Xiong M, Zhang J, Lake R, Lu Y. 2021. DNAzyme amplified aptasensing platform for ochratoxin A detection using a personal glucose meter. ACS Appl. Mater. Interfaces 13:9472–81
    [Google Scholar]
  142. 142.
    Liu R, Hu Y, He Y, Lan T, Zhang J 2021. Translating daily COVID-19 screening into a simple glucose test: a proof of concept study. Chem. Sci. 12:9022–30
    [Google Scholar]
  143. 143.
    Lafraya A, Sanz-Aparicio J, Polaina J, Marin-Navarro J. 2011. Fructo-oligosaccharide synthesis by mutant versions of Saccharomyces cerevisiae invertase. Appl. Environ. Microbiol. 77:6148–57
    [Google Scholar]
  144. 144.
    Wan Y, Qi P, Zeng Y, Sun Y, Zhang D 2016. Invertase-mediated system for simple and rapid detection of pathogen. Sens. Actuators B 233:454–58
    [Google Scholar]
  145. 145.
    Yan L, Zhu Z, Zou Y, Huang Y, Liu D et al. 2013. Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. J. Am. Chem. Soc. 135:3748–51
    [Google Scholar]
  146. 146.
    Zhang J, Xiang Y, Novak DE, Hoganson GE, Zhu J, Lu Y 2015. Using a personal glucose meter and alkaline phosphatase for point-of-care quantification of galactose-1-phosphate uridyltransferase in clinical galactosemia diagnosis. Chem. Asian J. 10:2221–27
    [Google Scholar]
  147. 147.
    Mohapatra H, Phillips ST. 2013. Reagents and assay strategies for quantifying active enzyme analytes using a personal glucose meter. Chem. Commun. 49:6134–36
    [Google Scholar]
  148. 148.
    Zhang J, Xiang Y, Wang M, Basu A, Lu Y. 2016. Dose-dependent response of personal glucose meters to nicotinamide coenzymes: applications to point-of-care diagnostics of many non-glucose targets in a single step. Angew. Chem. Int. Ed. 55:732–36
    [Google Scholar]
  149. 149.
    Tram K, Kanda P, Salena BJ, Huan S, Li Y 2014. Translating bacterial detection by DNAzymes into a litmus test. Angew. Chem. Int. Ed. 53:12799–802
    [Google Scholar]
  150. 150.
    Lyu M, Kong L, Yang Z, Wu Y, McGhee CE, Lu Y. 2021. PNA-assisted DNAzymes to cleave double-stranded DNA for genetic engineering with high sequence fidelity. J. Am. Chem. Soc. 143:9724–28
    [Google Scholar]
  151. 151.
    Xiong Y, Zhang J, Yang Z, Mou Q, Ma Y et al. 2020. Functional DNA regulated CRISPR-Cas12a sensors for point-of-care diagnostics of non-nucleic-acid targets. J. Am. Chem. Soc. 142:207–13
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061020-104216
Loading
/content/journals/10.1146/annurev-anchem-061020-104216
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error