1932

Abstract

Immunoassays are a powerful tool for sensitive and quantitative analysis of a wide range of biomolecular analytes in the clinic and in research laboratories. However, enzyme-linked immunosorbent assay (ELISA)—the gold-standard assay—requires significant user intervention, time, and clinical resources, making its deployment at the point-of-care (POC) impractical. Researchers have made great strides toward democratizing access to clinical quality immunoassays at the POC and at an affordable price. In this review, we first summarize the commercially available options that offer high performance, albeit at high cost. Next, we describe strategies for the development of frugal POC assays that repurpose consumer electronics and smartphones for the quantitative detection of analytes. Finally, we discuss innovative assay formats that enable highly sensitive analysis in the field with simple instrumentation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061020-123817
2022-06-13
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/anchem/15/1/annurev-anchem-061020-123817.html?itemId=/content/journals/10.1146/annurev-anchem-061020-123817&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Crowther JR. 2000. The ELISA Guidebook Totowa, NJ: Humana Press. , 2nd ed..
    [Google Scholar]
  2. 2.
    Sher M, Zhuang R, Demirci U, Asghar W 2017. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev. Mol. Diagn. 17:351–66
    [Google Scholar]
  3. 3.
    Li F, You M, Li S, Hu J, Liu C et al. 2020. Paper-based point-of-care immunoassays: recent advances and emerging trends. Biotechnol. Adv. 39:107442
    [Google Scholar]
  4. 4.
    Liu Y, Zhan L, Qin Z, Sackrison J, Bischof JC. 2021. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano 15:3593–611
    [Google Scholar]
  5. 5.
    Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B et al. 2014. Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron. 54:585–97
    [Google Scholar]
  6. 6.
    Mahmoudi T, de la Guardia M, Shirdel B, Mokhtarzadeh A, Baradaran B 2019. Recent advancements in structural improvements of lateral flow assays towards point-of-care testing. Trends Anal. Chem. 116:13–30
    [Google Scholar]
  7. 7.
    O'Farrell B 2008. Evolution in lateral flow–based immunoassay systems. Lateral Flow Immunoassay RC Wong, HY Tse 1–33 Totowa, NJ: Humana Press
    [Google Scholar]
  8. 8.
    Bosch I, de Puig H, Hiley M, Carre-Camps M, Perdomo-Celis F et al. 2017. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci. Transl. Med. 9:eaan1589
    [Google Scholar]
  9. 9.
    Fortune Bus. Insights 2021. Point of care (POC) diagnostics market size, share & COVID-19 impact analysis, by product (blood glucose monitoring, infectious diseases, cardiometabolic diseases, pregnancy & infertility testing, hematology testing, and others), by end-user (hospital bedside, physician's office lab, urgent care & retail clinics, and homecare/self-testing), and regional forecast, 2021–2028 Mark. Res. Rep. FBI101072 Fortune Bus. Insights Pune, India: https://www.fortunebusinessinsights.com/industry-reports/point-of-care-diagnostics-market-101072
    [Google Scholar]
  10. 10.
    Natl. Inst. Health 2021. The thin blue line: the history of the pregnancy test Natl. Inst. Health Bethesda, MD: https://history.nih.gov/display/history/Pregnancy+Test+Timeline
    [Google Scholar]
  11. 11.
    Johnson S, Cushion M, Bond S, Godbert S, Pike J 2015. Comparison of analytical sensitivity and women's interpretation of home pregnancy tests. Clin. Chem. Lab. Med. 53:391–402
    [Google Scholar]
  12. 12.
    Tomlinson C, Marshall J, Ellis JE 2008. Comparison of accuracy and certainty of results of six home pregnancy tests available over-the-counter. Curr. Med. Res. Opin. 24:1645–49
    [Google Scholar]
  13. 13.
    Lumos Diagnostics 2021. Point-of-care readers Lumos Diagnostics South Melbourne: Aust. https://lumosdiagnostics.com/solutions/readers/
    [Google Scholar]
  14. 14.
    Urusov AE, Zherdev AV, Dzantiev BB. 2019. Towards lateral flow quantitative assays: detection approaches. Biosensors 9:89
    [Google Scholar]
  15. 15.
    Faulstich K, Gruler R, Eberhard M, Lentzsch D, Haberstroh K 2009. Handheld and portable reader devices for lateral flow immunoassays. Lateral Flow Immunoassay R Wong, H Tse 1–27 Totowa, NJ: Humana Press
    [Google Scholar]
  16. 16.
    Pezzuto F, Scarano A, Marini C, Rossi G, Stocchi R et al. 2019. Assessing the reliability of commercially available point of care in various clinical fields. Open Public Health J 12:342–68
    [Google Scholar]
  17. 17.
    Li Y, Xuan J, Song Y, Qi W, He B et al. 2016. Nanoporous glass integrated in volumetric bar-chart chip for point-of-care diagnostics of non-small cell lung cancer. ACS Nano 10:1640–47
    [Google Scholar]
  18. 18.
    Li Y, Uddayasankar U, He B, Wang P, Qin L 2017. Fast, sensitive, and quantitative point-of-care platform for the assessment of drugs of abuse in urine, serum, and whole blood. Anal. Chem. 89:8273–81
    [Google Scholar]
  19. 19.
    Dunn J, Obuekwe J, Baun T, Rogers J, Patel T, Snow L 2014. Prompt detection of influenza A and B viruses using the BD Veritor™ System Flu A+B, Quidel® Sofia® Influenza A+B FIA, and Alere BinaxNOW® Influenza A&B compared to real-time reverse transcription-polymerase chain reaction (RT-PCR). Diagnost. Microbiol. Infect. Dis. 79:10–13
    [Google Scholar]
  20. 20.
    Beck ET, Paar W, Fojut L, Serwe J, Jahnke RR. 2021. Comparison of the Quidel Sofia SARS FIA test to the Hologic Aptima SARS-CoV-2 TMA test for diagnosis of COVID-19 in symptomatic outpatients. J. Clin. Microbiol. 59:e02727–20
    [Google Scholar]
  21. 21.
    Reenen AV, Berger M, Moreau E, Bekx E, Bruinink T et al. 2019. Analytical performance of a single epitope B-type natriuretic peptide sandwich immunoassay on the Minicare platform for point-of-care diagnostics. Pract. Lab. Med. 15:e00119
    [Google Scholar]
  22. 22.
    Venge P, van Lippen L, Blaschke S, Christ M, Geier F et al. 2017. Equal clinical performance of a novel point-of-care cardiac troponin I (cTnI) assay with a commonly used high-sensitivity cTnI assay. Clin. Chim. Acta 469:119–25
    [Google Scholar]
  23. 23.
    Christenson RH, Jacobs E, Uettwiller-Geiger D, Estey MP, Lewandrowski K et al. 2017. Comparison of 13 commercially available cardiac troponin assays in a multicenter North American study. J. Appl. Lab. Med. 1:544–61
    [Google Scholar]
  24. 24.
    Martin CL. 2010. i-STAT—combining chemistry and haematology in PoCT. Clin. Biochem. Rev. 31:81–84
    [Google Scholar]
  25. 25.
    Korley FK, Datwyler SA, Jain S, Sun X, Beligere G et al. 2021. Comparison of GFAP and UCH-L1 measurements from two prototype assays: the Abbott i-STAT and ARCHITECT assays. Neurotrauma Rep 2:193–99
    [Google Scholar]
  26. 26.
    Hernandez-Neuta I, Neumann F, Brightmeyer J, Ba Tis T, Madaboosi N et al. 2019. Smartphone-based clinical diagnostics: towards democratization of evidence-based health care. J. Intern. Med. 285:19–39
    [Google Scholar]
  27. 27.
    Steinhubl SR, Muse ED, Topol EJ. 2015. The emerging field of mobile health. Sci. Transl. Med. 7:283rv3
    [Google Scholar]
  28. 28.
    Merazzo KJ, Totoricaguena-Gorrino J, Fernandez-Martin E, Del Campo FJ, Baldrich E. 2021. Smartphone-enabled personalized diagnostics: current status and future prospects. Diagnostics 11:1067
    [Google Scholar]
  29. 29.
    Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P et al. 2015. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron. 64:63–68
    [Google Scholar]
  30. 30.
    Roda A, Cavalera S, Di Nardo F, Calabria D, Rosati S et al. 2021. Dual lateral flow optical/chemiluminescence immunosensors for the rapid detection of salivary and serum IgA in patients with COVID-19 disease. Biosens. Bioelectron. 172:112765
    [Google Scholar]
  31. 31.
    Wang J, Jiang C, Jin J, Huang L, Yu W et al. 2021. Ratiometric fluorescent lateral flow immunoassay for point-of-care testing of acute myocardial infarction. Angew. Chem. Int. Ed. 60:13042–49
    [Google Scholar]
  32. 32.
    Yeo SJ, Kang H, Dao TD, Cuc BT, Nguyen ATV et al. 2018. Development of a smartphone-based rapid dual fluorescent diagnostic system for the simultaneous detection of influenza A and H5 subtype in avian influenza A-infected patients. Theranostics 8:6132–48
    [Google Scholar]
  33. 33.
    Berg B, Cortazar B, Tseng D, Ozkan H, Feng S et al. 2015. Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano 9:7857–66
    [Google Scholar]
  34. 34.
    Sun AC, Hall DA. 2019. Point-of-care smartphone-based electrochemical biosensing. Electroanalysis 31:2–16
    [Google Scholar]
  35. 35.
    Islam T, Hasan MM, Awal A, Nurunnabi M, Ahammad AJS. 2020. Metal nanoparticles for electrochemical sensing: progress and challenges in the clinical transition of point-of-care testing. Molecules 25:5787
    [Google Scholar]
  36. 36.
    Aronoff-Spencer E, Venkatesh AG, Sun A, Brickner H, Looney D, Hall DA. 2016. Detection of Hepatitis C core antibody by dual-affinity yeast chimera and smartphone-based electrochemical sensing. Biosens. Bioelectron. 86:690–96
    [Google Scholar]
  37. 37.
    Cheng C, Li X, Xu G, Lu Y, Low SS et al. 2021. Battery-free, wireless, and flexible electrochemical patch for in situ analysis of sweat cortisol via near field communication. Biosens. Bioelectron. 172:112782
    [Google Scholar]
  38. 38.
    Aidukas T, Eckert R, Harvey AR, Waller L, Konda PC. 2019. Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware. Sci. Rep. 9:7457
    [Google Scholar]
  39. 39.
    Göröcs Z, Ozcan A. 2014. Biomedical imaging and sensing using flatbed scanners. Lab Chip 14:3248–57
    [Google Scholar]
  40. 40.
    Sanjay ST, Dou M, Sun J, Li X 2016. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers. Sci. Rep. 6:30474
    [Google Scholar]
  41. 41.
    Gogalic S, Sauer U, Doppler S, Preininger C 2018. Investigating colorimetric protein array assay schemes for detection of recurrence of bladder cancer. Biosensors 8:10
    [Google Scholar]
  42. 42.
    Göröcs Z, Ling Y, Yu MD, Karahalios D, Mogharabi K et al. 2013. Giga-pixel fluorescent imaging over an ultra-large field-of-view using a flatbed scanner. Lab Chip 13:4460–66
    [Google Scholar]
  43. 43.
    Aygun U, Avci O, Seymour E, Urey H, Ünlü MS, Ozkumur AY. 2017. Label-free and high-throughput detection of biomolecular interactions using a flatbed scanner biosensor. ACS Sens 2:1424–29
    [Google Scholar]
  44. 44.
    Lan T, Zhang J, Lu Y. 2016. Transforming the blood glucose meter into a general healthcare meter for in vitro diagnostics in mobile health. Biotechnol. Adv. 34:331–41
    [Google Scholar]
  45. 45.
    Lisi F, Peterson JR, Gooding JJ. 2020. The application of personal glucose meters as universal point-of-care diagnostic tools. Biosens. Bioelectron. 148:111835
    [Google Scholar]
  46. 46.
    Taebi S, Keyhanfar M, Noorbakhsh A. 2018. A novel method for sensitive, low-cost and portable detection of hepatitis B surface antigen using a personal glucose meter. J. Immunol. Methods 458:26–32
    [Google Scholar]
  47. 47.
    Sun F, Sun X, Jia Y, Hu Z, Xu S et al. 2019. Ultrasensitive detection of prostate specific antigen using a personal glucose meter based on DNA-mediated immunoreaction. Analyst 144:6019–24
    [Google Scholar]
  48. 48.
    Alshawawreh FA, Lisi F, Ariotti N, Bakthavathsalam P, Benedetti T et al. 2019. The use of a personal glucose meter for detecting procalcitonin through glucose encapsulated within liposomes. Analyst 144:6225–30
    [Google Scholar]
  49. 49.
    Kwon D, Joo J, Lee S, Jeon S 2013. Facile and sensitive method for detecting cardiac markers using ubiquitous pH meters. Anal. Chem. 85:12134–37
    [Google Scholar]
  50. 50.
    Zhang Y, Yang J, Nie J, Yang J, Gao D et al. 2016. Enhanced ELISA using a handheld pH meter and enzyme-coated microparticles for the portable, sensitive detection of proteins. Chem. Commun. 52:3474–77
    [Google Scholar]
  51. 51.
    Li B, Ge L, Lyu P, Chen M, Zhang X et al. 2021. Handheld pH meter-assisted immunoassay for C-reactive protein using glucose oxidase-conjugated dendrimer loaded with platinum nanozymes. Microchim. Acta 188:14
    [Google Scholar]
  52. 52.
    Jiang Y, Su Z, Zhang J, Cai M, Wu L. 2018. A novel electrochemical immunoassay for carcinoembryonic antigen based on glucose oxidase-encapsulated nanogold hollow spheres with a pH meter readout. Analyst 143:5271–77
    [Google Scholar]
  53. 53.
    Sun A-L, Qi Q-A, Zhi L-J. 2020. Cross-linkage urease nanoparticles: a high-efficiency signal-generation tag for portable pH meter-based electrochemical immunoassay of lipocalin-2 protein diagnostics. Microchim. Acta 187:485
    [Google Scholar]
  54. 54.
    Katsingris P. 2018. The Nielsen total audience report: Q1 2018 Rep., July 31 Nielsen New York: https://www.nielsen.com/us/en/insights/report/2018/q1-2018-total-audience-report/#
    [Google Scholar]
  55. 55.
    Hwu EE-T, Boisen A. 2018. Hacking CD/DVD/Blu-ray for biosensing. ACS Sens 3:1222–32
    [Google Scholar]
  56. 56.
    Zhang L, Wang H, Zhang X, Li X, Yu H-Z 2020. Indirect competitive immunoassay on a Blu-ray disc for digitized quantitation of food toxins. ACS Sens 5:1239–45
    [Google Scholar]
  57. 57.
    Weng S, Li X, Niu M, Ge B, Yu H-Z. 2016. Blu-ray technology-based quantitative assays for cardiac markers: from disc activation to multiplex detection. Anal. Chem. 88:6889–96
    [Google Scholar]
  58. 58.
    Yu Z, Tang Y, Cai G, Ren R, Tang D 2019. Paper electrode-based flexible pressure sensor for point-of-care immunoassay with digital multimeter. Anal. Chem. 91:1222–26
    [Google Scholar]
  59. 59.
    Yu Z, Cai G, Tong P, Tang D. 2019. Saw-toothed microstructure-based flexible pressure sensor as the signal readout for point-of-care immunoassay. ACS Sens 4:2272–76
    [Google Scholar]
  60. 60.
    Yu Z, Cai G, Liu X, Tang D. 2020. Platinum nanozyme-triggered pressure-based immunoassay using a three-dimensional polypyrrole foam-based flexible pressure sensor. ACS Appl. Mater. Interfaces 12:40133–40
    [Google Scholar]
  61. 61.
    Zhu L, Lv Z, Yin Z, Li M, Tang D 2021. Digital multimeter-based point-of-care immunoassay of prostate- specific antigen coupling with a flexible photosensitive pressure sensor. Sens. Actuators B Chem. 343:130121
    [Google Scholar]
  62. 62.
    Bu S-J, Wang K-Y, Bai H-S, Leng Y, Ju C-J et al. 2019. Immunoassay for pathogenic bacteria using platinum nanoparticles and a hand-held hydrogen detector as transducer. Application to the detection of Escherichia coli O157:H7. Microchim. Acta 186:296
    [Google Scholar]
  63. 63.
    Yang M, Zhang W, Yang J, Hu B, Cao F et al. 2017. Skiving stacked sheets of paper into test paper for rapid and multiplexed assay. Sci. Adv. 3:eaao4862
    [Google Scholar]
  64. 64.
    Zhang Y, Sun J, Zou Y, Chen W, Zhang W et al. 2015. Barcoded microchips for biomolecular assays. Anal. Chem. 87:900–6
    [Google Scholar]
  65. 65.
    Zhang D, Gao B, Chen Y, Liu H 2018. Converting colour to length based on the coffee-ring effect for quantitative immunoassays using a ruler as readout. Lab Chip 18:271–75
    [Google Scholar]
  66. 66.
    Song Y, Zhang Y, Bernard PE, Reuben JM, Ueno NT et al. 2012. Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nat. Commun. 3:1283
    [Google Scholar]
  67. 67.
    Li Y, Xuan J, Xia T, Han X, Song Y et al. 2015. Competitive volumetric bar-chart chip with real-time internal control for point-of-care diagnostics. Anal. Chem. 87:3771–77
    [Google Scholar]
  68. 68.
    Song Y, Wang Y, Qi W, Li Y, Xuan J et al. 2016. Integrative volumetric bar-chart chip for rapid and quantitative point-of-care detection of myocardial infarction biomarkers. Lab Chip 16:2955–62
    [Google Scholar]
  69. 69.
    Li Y, Xuan J, Song Y, Wang P, Qin L 2015. A microfluidic platform with digital readout and ultra-low detection limit for quantitative point-of-care diagnostics. Lab Chip 15:3300–6
    [Google Scholar]
  70. 70.
    Sebba D, Lastovich AG, Kuroda M, Fallows E, Johnson J et al. 2018. A point-of-care diagnostic for differentiating Ebola from endemic febrile diseases. Sci. Transl. Med. 10:eaat0944
    [Google Scholar]
  71. 71.
    Chen L, Zhang X, Zhou G, Xiang X, Ji X et al. 2012. Simultaneous determination of human Enterovirus 71 and Coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay. Anal. Chem. 84:3200–7
    [Google Scholar]
  72. 72.
    Akama K, Noji H. 2020. Multiplexed homogeneous digital immunoassay based on single-particle motion analysis. Lab Chip 20:2113–21
    [Google Scholar]
  73. 73.
    Takkinen K, Zvirbliene A. 2019. Recent advances in homogenous immunoassays based on resonance energy transfer. Curr. Opin. Biotechnol. 55:16–22
    [Google Scholar]
  74. 74.
    Huang Z, Li Z, Jiang M, Liu R, Lv Y. 2020. Homogeneous multiplex immunoassay for one-step pancreatic cancer biomarker evaluation. Anal. Chem. 92:16105–12
    [Google Scholar]
  75. 75.
    Arts R, den Hartog I, Zijlema SE, Thijssen V, van der Beelen SH, Merkx M. 2016. Detection of antibodies in blood plasma using bioluminescent sensor proteins and a smartphone. Anal. Chem. 88:4525–32
    [Google Scholar]
  76. 76.
    van Rosmalen M, Ni Y, Vervoort DFM, Arts R, Ludwig SKJ, Merkx M 2018. Dual-color bioluminescent sensor proteins for therapeutic drug monitoring of antitumor antibodies. Anal. Chem. 90:3592–99
    [Google Scholar]
  77. 77.
    Tenda K, van Gerven B, Arts R, Hiruta Y, Merkx M, Citterio D. 2018. Paper-based antibody detection devices using bioluminescent BRET-switching sensor proteins. Angew. Chem. Int. Ed. 57:15369–73
    [Google Scholar]
  78. 78.
    Xue L, Yu Q, Griss R, Schena A, Johnsson K. 2017. Bioluminescent antibodies for point-of-care diagnostics. Angew. Chem. Int. Ed. 56:7112–16
    [Google Scholar]
  79. 79.
    Arts R, Ludwig SKJ, van Gerven BCB, Estirado EM, Milroy LG, Merkx M. 2017. Semisynthetic bioluminescent sensor proteins for direct detection of antibodies and small molecules in solution. ACS Sens 2:1730–36
    [Google Scholar]
  80. 80.
    Ni Y, Arts R, Merkx M 2019. Ratiometric bioluminescent sensor proteins based on intramolecular split luciferase complementation. ACS Sens 4:20–25
    [Google Scholar]
  81. 81.
    Dixon AS, Schwinn MK, Hall MP, Zimmerman K, Otto P et al. 2016. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11:400–8
    [Google Scholar]
  82. 82.
    Hall MP, Kincaid VA, Jost EA, Smith TP, Hurst R et al. 2021. Toward a point-of-need bioluminescence-based immunoassay utilizing a complete shelf-stable reagent. Anal. Chem. 93:5177–84
    [Google Scholar]
  83. 83.
    Ni Y, Rosier B, van Aalen EA, Hanckmann ETL, Biewenga L et al. 2021. A plug-and-play platform of ratiometric bioluminescent sensors for homogeneous immunoassays. Nat. Commun. 12:4586
    [Google Scholar]
  84. 84.
    Yao Z, Drecun L, Aboualizadeh F, Kim SJ, Li Z et al. 2021. A homogeneous split-luciferase assay for rapid and sensitive detection of anti-SARS CoV-2 antibodies. Nat. Commun. 12:1806
    [Google Scholar]
  85. 85.
    Dixon AS, Kim SJ, Baumgartner BK, Krippner S, Owen SC. 2017. A tri-part protein complementation system using antibody-small peptide fusions enables homogeneous immunoassays. Sci. Rep. 7:8186
    [Google Scholar]
  86. 86.
    Kim SJ, Dixon AS, Adamovich PC, Robinson PD, Owen SC 2021. Homogeneous immunoassay using a tri-part split-luciferase for rapid quantification of anti-TNF therapeutic antibodies. ACS Sens 6:1807–14
    [Google Scholar]
  87. 87.
    Elledge SK, Zhou XX, Byrnes JR, Martinko AJ, Lui I et al. 2021. Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection. Nat. Biotechnol. 39:928–35
    [Google Scholar]
  88. 88.
    Borrebaeck CA. 2017. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat. Rev. Cancer 17:199–204
    [Google Scholar]
  89. 89.
    Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. 2017. Multiplexed point-of-care testing—xPOCT. Trends Biotechnol 35:728–42
    [Google Scholar]
  90. 90.
    Yager P, Domingo GJ, Gerdes J. 2008. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10:107–44
    [Google Scholar]
  91. 91.
    Takaloo S, Zand MM. 2021. Wearable electrochemical flexible biosensors: with the focus on affinity biosensors. Sens. Bio-Sens. Res. 32:100403
    [Google Scholar]
  92. 92.
    Upasham S, Prasad S. 2020. SLOCK (sensor for circadian clock): passive sweat-based chronobiology tracker. Lab Chip 20:1947–60
    [Google Scholar]
  93. 93.
    Kinnamon D, Ghanta R, Lin K-C, Muthukumar S, Prasad S 2017. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci. Rep. 7:13312
    [Google Scholar]
  94. 94.
    Grieshaber D, MacKenzie R, Vörös J, Reimhult E. 2008. Electrochemical biosensors—sensor principles and architectures. Sensors 8:1400–58
    [Google Scholar]
  95. 95.
    Mahshid SS, Flynn SE, Mahshid S 2021. The potential application of electrochemical biosensors in the COVID-19 pandemic: a perspective on the rapid diagnostics of SARS-CoV-2. Biosens. Bioelectron. 176:112905
    [Google Scholar]
  96. 96.
    Wehmeyer KR, White RJ, Kissinger PT, Heineman WR. 2021. Electrochemical affinity assays/sensors: brief history and current status. Annu. Rev. Anal. Chem. 14:109–31
    [Google Scholar]
  97. 97.
    Mathew M, Radhakrishnan S, Vaidyanathan A, Chakraborty B, Rout CS. 2021. Flexible and wearable electrochemical biosensors based on two-dimensional materials: recent developments. Anal. Bioanal. Chem. 413:727–62
    [Google Scholar]
  98. 98.
    Gao Y, Nguyen DT, Yeo T, Lim SB, Tan WX et al. 2021. A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7:eabg9614
    [Google Scholar]
  99. 99.
    Cho I-H, Lee J, Kim J, Kang MS, Paik JK et al. 2018. Current technologies of electrochemical immunosensors: perspective on signal amplification. Sensors 18:207
    [Google Scholar]
  100. 100.
    Zupančič U, Jolly P, Estrela P, Moschou D, Ingber DE 2021. Graphene enabled low-noise surface chemistry for multiplexed sepsis biomarker detection in whole blood. Adv. Funct. Mater. 31:2010638
    [Google Scholar]
  101. 101.
    Sabaté del Río J, Henry OYF, Jolly P, Ingber DE. 2019. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol. 14:1143–49
    [Google Scholar]
  102. 102.
    Timilsina SS, Durr N, Yafia M, Sallum H, Jolly P, Ingber DE. 2021. Rapid antifouling nanocomposite coating enables highly sensitive multiplexed electrochemical detection of myocardial infarction and concussion markers. medRxiv 2021.06.13.21258856
  103. 103.
    Guo K, Wustoni S, Koklu A, Díaz-Galicia E, Moser M et al. 2021. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng. 5:666–77
    [Google Scholar]
  104. 104.
    Romanov V, Davidoff SN, Miles AR, Grainger DW, Gale BK, Brooks BD 2014. A critical comparison of protein microarray fabrication technologies. Analyst 139:1303–26
    [Google Scholar]
  105. 105.
    Barbulovic-Nad I, Lucente M, Sun Y, Zhang M, Wheeler AR, Bussmann M. 2006. Bio-microarray fabrication techniques—a review. Crit. Rev. Biotechnol. 26:237–59
    [Google Scholar]
  106. 106.
    Joh DY, Hucknall AM, Wei Q, Mason KA, Lund ML et al. 2017. Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. PNAS 114:E7054–62
    [Google Scholar]
  107. 107.
    Heggestad JT, Fontes CM, Joh DY, Hucknall AM, Chilkoti A. 2020. In pursuit of zero 2.0: recent developments in nonfouling polymer brushes for immunoassays. Adv. Mater. 32:e1903285
    [Google Scholar]
  108. 108.
    Ma H, Li D, Sheng X, Zhao B, Chilkoti A. 2006. Protein-resistant polymer coatings on silicon oxide by surface-initiated atom transfer radical polymerization. Langmuir 22:3751–56
    [Google Scholar]
  109. 109.
    Hucknall A, Rangarajan S, Chilkoti A 2009. In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv. Mater. 21:2441–46
    [Google Scholar]
  110. 110.
    Hucknall A, Kim D-H, Rangarajan S, Hill RT, Reichert WM, Chilkoti A. 2009. Simple fabrication of antibody microarrays on nonfouling polymer brushes with femtomolar sensitivity for protein analytes in serum and blood. Adv. Mater. 21:1968–71
    [Google Scholar]
  111. 111.
    Ma H, Hyun J, Stiller P, Chilkoti A. 2004.. “ Non-fouling” oligo(ethylene glycol)- functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv. Mater. 16:338–41
    [Google Scholar]
  112. 112.
    Joh DY, Heggestad JT, Zhang S, Anderson GR, Bhattacharyya J et al. 2021. Cellphone enabled point-of-care assessment of breast tumor cytology and molecular HER2 expression from fine-needle aspirates. NPJ Breast Cancer 7:85
    [Google Scholar]
  113. 113.
    Fontes CM, Lipes BD, Liu J, Agans KN, Yan A et al. 2021. Ultrasensitive point-of-care immunoassay for secreted glycoprotein detects Ebola infection earlier than PCR. Sci. Transl. Med. 13:eabd9696
    [Google Scholar]
  114. 114.
    Cross RW, Boisen ML, Millett MM, Nelson DS, Oottamasathien D et al. 2016. Analytical validation of the ReEBOV antigen rapid test for point-of-care diagnosis of Ebola virus infection. J. Infect. Dis. 214:S210–17
    [Google Scholar]
  115. 115.
    Boisen ML, Cross RW, Hartnett JN, Goba A, Momoh M et al. 2016. Field validation of the ReEBOV antigen rapid test for point-of-care diagnosis of Ebola virus infection. J. Infect. Dis. 214:S203–09
    [Google Scholar]
  116. 116.
    Heggestad JT, Kinnamon DS, Olson LB, Liu J, Kelly G et al. 2021. Multiplexed, quantitative serological profiling of COVID-19 from blood by a point-of-care test. Sci. Adv. 7:eabg4901
    [Google Scholar]
  117. 117.
    Samiei E, Tabrizian M, Hoorfar M. 2016. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 16:2376–96
    [Google Scholar]
  118. 118.
    Ng AHC, Fobel R, Fobel C, Lamanna J, Rackus DG et al. 2018. A digital microfluidic system for serological immunoassays in remote settings. Sci. Transl. Med. 10:eaar6076
    [Google Scholar]
  119. 119.
    Ng AHC, Lee M, Choi K, Fischer AT, Robinson JM, Wheeler AR 2015. Digital microfluidic platform for the detection of rubella infection and immunity: a proof of concept. Clin. Chem. 61:420–29
    [Google Scholar]
  120. 120.
    Choi K, Ng AH, Fobel R, Chang-Yen DA, Yarnell LE et al. 2013. Automated digital microfluidic platform for magnetic-particle-based immunoassays with optimization by design of experiments. Anal. Chem. 85:9638–46
    [Google Scholar]
  121. 121.
    Yelleswarapu V, Buser JR, Haber M, Baron J, Inapuri E, Issadore D 2019. Mobile platform for rapid sub-picogram-per-milliliter, multiplexed, digital droplet detection of proteins. PNAS 116:4489–95
    [Google Scholar]
  122. 122.
    Wilson DH, Rissin DM, Kan CW, Fournier DR, Piech T et al. 2016. The Simoa HD-1 analyzer: a novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. J. Lab. Autom. 21:533–47
    [Google Scholar]
  123. 123.
    Cohen L, Cui N, Cai Y, Garden PM, Li X et al. 2020. Single molecule protein detection with attomolar sensitivity using droplet digital enzyme-linked immunosorbent assay. ACS Nano 14:9491–501
    [Google Scholar]
  124. 124.
    Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S et al. 2015. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci. Transl. Med. 7:273re1
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061020-123817
Loading
/content/journals/10.1146/annurev-anchem-061020-123817
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error