1932

Abstract

Surface analysis techniques have rapidly evolved in the last decade. Some of these are already routinely used in forensics, such as for the detection of gunshot residue or for glass analysis. Some surface analysis approaches are attractive for their portability to the crime scene. Others can be very helpful in forensic laboratories owing to their high spatial resolution, analyte coverage, speed, and specificity. Despite this, many proposed applications of the techniques have not yet led to operational deployment. Here, we explore the application of these techniques to the most important traces commonly found in forensic casework. We highlight where there is potential to add value and outline the progress that is needed to achieve operational deployment. We consider within the scope of this review surface mass spectrometry, surface spectroscopy, and surface X-ray spectrometry. We show how these tools show great promise for the analysis of fingerprints, hair, drugs, explosives, and microtraces.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061020-124221
2022-06-13
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/anchem/15/1/annurev-anchem-061020-124221.html?itemId=/content/journals/10.1146/annurev-anchem-061020-124221&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Vickerman JC, Gilmore IS. 2011. Surface Analysis: The Principal Techniques West Sussex, UK: Wiley
  2. 2.
    Tsuji K, Nakano K, Takahashi Y, Hayashi K, Ro C-U. 2012. X-ray spectrometry. Anal. Chem. 84:636–68
    [Google Scholar]
  3. 3.
    Buchberger AR, DeLaney K, Johnson J, Li L 2018. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90:240–65
    [Google Scholar]
  4. 4.
    Jeynes C, Bailey MJ, Bright NJ, Christopher ME, Grime GW et al. 2012.. “ Total IBA”—Where are we?. Nuclear Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 271:107–18
    [Google Scholar]
  5. 5.
    Champod C 2013. Overview and meaning of identification/individualization. Encylopedia of Forensic Sciences JA Siegel, PJ Saukko, MM Houck 303–9 Amsterdam: Elsevier
    [Google Scholar]
  6. 6.
    Cook R, Evett IW, Jackson G, Jones PJ, Lambert JA 1998. A hierarchy of propositions: deciding which level to address in casework. Sci. Justice 38:231–39
    [Google Scholar]
  7. 7.
    Bécue A. 2016. Emerging fields in fingermark (meta)detection—a critical review. Anal. Methods 8:7983–8003
    [Google Scholar]
  8. 8.
    Champod C, Lennard CJ, Stoilovic M, Margot P 2004. Fingerprints and Other Ridge Skin Impressions Boca Raton, FL: CRC Press. , 1st ed..
  9. 9.
    Neumann C, Champod C, Puch-Solis R, Egli N, Anthonioz A, Bromage-Griffiths A. 2007. Computation of likelihood ratios in fingerprint identification for configurations of any number of minutiae. J. Forensic Sci. 52:54–64
    [Google Scholar]
  10. 10.
    Girod A, Ramotowski R, Weyermann C. 2012. Composition of fingermark residue: a qualitative and quantitative review. Forensic Sci. Int. 223:10–24
    [Google Scholar]
  11. 11.
    Cadd S, Islam M, Manson P, Bleay S. 2015. Fingerprint composition and aging: a literature review. Sci. Justice 55:219–38
    [Google Scholar]
  12. 12.
    Amin MO, Al-Hetlani E, Lednev IK. 2021. Trends in vibrational spectroscopy of fingermarks for forensic purposes. Trends Anal. Chem. 143:116341
    [Google Scholar]
  13. 13.
    Ricci C, Phiriyavityopas P, Curum N, Chan KL, Jickells S, Kazarian SG 2007. Chemical imaging of latent fingerprint residues. Appl. Spectrosc. 61:514–22
    [Google Scholar]
  14. 14.
    Lin J, Zhang C, Xu M, Yuan Y, Yao J. 2018. Surface-enhanced Raman spectroscopic identification in fingerprints based on adhesive Au nanofilm. RSC Adv 8:24477–84
    [Google Scholar]
  15. 15.
    Attard-Montalto N, Ojeda JJ, Reynolds A, Ismail M, Bailey M et al. 2014. Determining the chronology of deposition of natural fingermarks and inks on paper using secondary ion mass spectrometry. Analyst 139:4641–53
    [Google Scholar]
  16. 16.
    Bailey MJ, Jones BN, Hinder S, Watts J, Bleay S, Webb RP 2010. Depth profiling of fingerprint and ink signals by SIMS and MeV SIMS. Nuclear Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 268:1929–32
    [Google Scholar]
  17. 17.
    Bright NJ, Webb RP, Bleay S, Hinder S, Ward NI et al. 2012. Determination of the deposition order of overlapping latent fingerprints and inks using secondary ion mass spectrometry. Anal. Chem. 84:4083–87
    [Google Scholar]
  18. 18.
    Ismail M, Baumert M, Stevenson D, Watts J, Webb R et al. 2017. A diagnostic test for cocaine and benzoylecgonine in urine and oral fluid using portable mass spectrometry. Anal. Methods 9:1839–47
    [Google Scholar]
  19. 19.
    Costa C, Webb R, Palitsin V, Ismail M, de Puit M et al. 2017. Rapid, secure drug testing using fingerprint development and paper spray mass spectrometry. Clin. Chem. 63:1745–52
    [Google Scholar]
  20. 20.
    Jang M, Costa C, Bunch J, Gibson B, Ismail M et al. 2020. On the relevance of cocaine detection in a fingerprint. Sci. Rep. 10:1974
    [Google Scholar]
  21. 21.
    Bailey MJ, Bradshaw R, Francese S, Salter TL, Costa C et al. 2015. Rapid detection of cocaine, benzoylecgonine and methylecgonine in fingerprints using surface mass spectrometry. Analyst 140:6254–59
    [Google Scholar]
  22. 22.
    Groeneveld G, de Puit M, Bleay S, Bradshaw R, Francese S. 2015. Detection and mapping of illicit drugs and their metabolites in fingermarks by MALDI MS and compatibility with forensic techniques. Sci. Rep. 5:11716
    [Google Scholar]
  23. 23.
    Bailey MJ, Randall EC, Costa C, Salter TL, Race AM et al. 2016. Analysis of urine, oral fluid and fingerprints by liquid extraction surface analysis coupled to high resolution MS and MS/MS—opportunities for forensic and biomedical science. Anal. Methods 8:3373–82
    [Google Scholar]
  24. 24.
    van Helmond W, Kuijpers C-J, van Diejen E, Spiering J, Maagdelijn B, de Puit M. 2017. Amino acid profiling from fingerprints, a novel methodology using UPLC-MS. Anal. Methods 9:5697–702
    [Google Scholar]
  25. 25.
    van Helmond W, van Herwijnen AW, van Riemsdijk JJH, van Bochove MA, de Poot CJ, de Puit M 2019. Chemical profiling of fingerprints using mass spectrometry. Forensic Chem 16:100183
    [Google Scholar]
  26. 26.
    Girod A, Weyermann C. 2014. Lipid composition of fingermark residue and donor classification using GC/MS. Forensic Sci. Int. 238:68–82
    [Google Scholar]
  27. 27.
    Costa C, Ismail M, Stevenson D, Gibson B, Webb R, Bailey M 2019. Distinguishing between contact and administration of heroin from a single fingerprint using high resolution mass spectrometry. J. Anal. Toxicol. 44:218–225
    [Google Scholar]
  28. 28.
    Ismail M, Stevenson D, Costa C, Webb R, de Puit M, Bailey M. 2018. Noninvasive detection of cocaine and heroin use with single fingerprints: determination of an environmental cutoff. Clin. Chem. 64:909–17
    [Google Scholar]
  29. 29.
    Girod A, Xiao L, Reedy B, Roux C, Weyermann C. 2015. Fingermark initial composition and aging using Fourier transform infrared microscopy (μ-FTIR). Forensic Sci. Int. 254:185–96
    [Google Scholar]
  30. 30.
    Williams DK, Brown CJ, Bruker J. 2011. Characterization of children's latent fingerprint residues by infrared microspectroscopy: forensic implications. Forensic Sci. Int. 206:161–65
    [Google Scholar]
  31. 31.
    Tripathi A, Emmons ED, Wilcox PG, Guicheteau JA, Emge DK et al. 2011. Semi-automated detection of trace explosives in fingerprints on strongly interfering surfaces with Raman chemical imaging. Appl. Spectrosc. 65:611–19
    [Google Scholar]
  32. 32.
    Ng PHR, Walker S, Tahtouh M, Reedy B 2009. Detection of illicit substances in fingerprints by infrared spectral imaging. Anal. Bioanal. Chem. 394:2039–48
    [Google Scholar]
  33. 33.
    Boseley RE, Dorakumbura BN, Howard DL, de Jonge MD, Tobin MJ, Vongsvivut J et al. 2019. Revealing the elemental distribution within latent fingermarks using synchrotron sourced X-ray fluorescence microscopy. Anal. Chem. 91:10622–30
    [Google Scholar]
  34. 34.
    Szynkowska MI, Czerski K, Grams J, Paryjczak T, Parczewski A 2007. Preliminary studies using imaging mass spectrometry TOF-SIMS in detection and analysis of fingerprints. Imaging Sci. J. 55:180–87
    [Google Scholar]
  35. 35.
    Ifa DR, Manicke NE, Dill AL, Cooks RG. 2008. Latent fingerprint chemical imaging by mass spectrometry. Science 321:805
    [Google Scholar]
  36. 36.
    Wolstenholme R, Bradshaw R, Clench MR, Francese S. 2009. Study of latent fingermarks by matrix-assisted laser desorption/ionisation mass spectrometry imaging of endogenous lipids. Rapid Commun. Mass Spectrom. 23:3031–39
    [Google Scholar]
  37. 37.
    Francese S 2016. Techniques for fingermark analysis using MALDI MS: a practical overview. Advances in MALDI and Laser-Induced Soft Ionization Mass Spectrometry R Cramer 93–128 Cham, Switz: Springer
    [Google Scholar]
  38. 38.
    Bright NJ, Willson TR, Driscoll DJ, Reddy SM, Webb RP et al. 2013. Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions. Forensic Sci. Int. 230:81–86
    [Google Scholar]
  39. 39.
    Costa C, Jang M, de Jesus J, Steven RT, Nikula CJ et al. 2021. Imaging mass spectrometry: a new way to distinguish dermal contact from administration of cocaine, using a single fingerprint. Analyst 146:4010–21
    [Google Scholar]
  40. 40.
    Bailey MJ, Bright NJ, Croxton RS, Francese S, Ferguson LS et al. 2012. Chemical characterization of latent fingerprints by matrix-assisted laser desorption ionization, time-of-flight secondary ion mass spectrometry, mega electron volt secondary mass spectrometry, gas chromatography/mass spectrometry, X-ray photoelectron spectroscopy, and attenuated total reflection Fourier transform infrared spectroscopic imaging: an intercomparison. Anal. Chem. 84:8514–23
    [Google Scholar]
  41. 41.
    Bradshaw R, Bleay S, Clench MR, Francese S. 2014. Direct detection of blood in fingermarks by MALDI MS profiling and imaging. Sci. Justice 54:110–17
    [Google Scholar]
  42. 42.
    Bailey MJ, Ismail M, Bleay S, Bright N, Elad ML et al. 2013. Enhanced imaging of developed fingerprints using mass spectrometry imaging. Analyst 138:6246–50
    [Google Scholar]
  43. 43.
    Bradshaw R, Denison N, Francese S. 2017. Implementation of MALDI MS profiling and imaging methods for the analysis of real crime scene fingermarks. Analyst 142:1581–90
    [Google Scholar]
  44. 44.
    Kaplan-Sandquist KA, LeBeau MA, Miller ML. 2015. Evaluation of four fingerprint development methods for touch chemistry using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry. J. Forensic Sci. 60:611–18
    [Google Scholar]
  45. 45.
    Boll MS, Doty KC, Wickenheiser R, Lednev IK. 2017. Differentiation of hair using ATR FT-IR spectroscopy: a statistical classification of dyed and non-dyed hairs. Forensic Chem 6:1–9
    [Google Scholar]
  46. 46.
    Kurouski D, Van Duyne RP. 2015. In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS). Anal. Chem. 87:2901–6
    [Google Scholar]
  47. 47.
    Esparza I, Wang R, Kurouski D 2019. Surface-enhanced Raman analysis of underlaying colorants on redyed hair. Anal. Chem. 91:7313–18
    [Google Scholar]
  48. 48.
    Gerace E, Veronesi A, Martra G, Salomone A, Vincenti M 2017. Study of cocaine incorporation in hair damaged by cosmetic treatments. Forensic Chem 3:69–73
    [Google Scholar]
  49. 49.
    Porta T, Grivet C, Kraemer T, Varesio E, Hopfgartner G. 2011. Single hair cocaine consumption monitoring by mass spectrometric imaging. Anal. Chem. 83:4266–72
    [Google Scholar]
  50. 50.
    Flinders B, Cuypers E, Zeijlemaker H, Tytgat J, Heeren RMA 2015. Preparation of longitudinal sections of hair samples for the analysis of cocaine by MALDI-MS/MS and TOF-SIMS imaging. Drug Test. Anal. 7:859–65
    [Google Scholar]
  51. 51.
    Cuypers E, Flinders B, Boone CM, Bosman IJ, Lusthof KJ et al. 2016. Consequences of decontamination procedures in forensic hair analysis using metal-assisted secondary ion mass spectrometry analysis. Anal. Chem. 88:3091–97
    [Google Scholar]
  52. 52.
    Erne R, Bernard L, Steuer AE, Baumgartner MR, Kraemer T. 2019. Hair analysis: contamination versus incorporation from the circulatory system-investigations on single hair samples using time-of-flight secondary ion mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 91:4132–39
    [Google Scholar]
  53. 53.
    Erne R, Bernhard L, Kawecki M, Baumgartner MR, Kraemer T. 2020. Using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for investigations on single hair samples to solve the contamination versus incorporation issue of hair analysis in the case of cocaine and methadone. Analyst 145:4906–19
    [Google Scholar]
  54. 54.
    Audinot JN, Schneider S, Yegles M, Hallegot P, Wennig R, Migeon HN 2004. Imaging of arsenic traces in human hair by nano-SIMS 50. Appl. Surf. Sci. 231–232:490–96
    [Google Scholar]
  55. 55.
    Kempson IM, Henry D, Francis J 2009. Characterizing arsenic in preserved hair for assessing exposure potential and discriminating poisoning. J. Synchrotron Radiat. 16:422–27
    [Google Scholar]
  56. 56.
    Kučera J, Kameník J, Havránek V. 2018. Hair elemental analysis for forensic science using nuclear and related analytical methods. Forensic Chem 7:65–74
    [Google Scholar]
  57. 57.
    Sato T, Suzuki K 2019. Biomarkers for “cause of death. .” In Forensic Medicine and Human Cell Research: New Perspective and Bioethics T Ishikawa 1–11 Singapore: Springer
    [Google Scholar]
  58. 58.
    Li C, Li Z, Tuo Y, Ma D, Shi Y et al. 2017. MALDI-TOF MS as a novel tool for the estimation of postmortem interval in liver tissue samples. Sci. Rep. 7:4887
    [Google Scholar]
  59. 59.
    Lauer E, Villa M, Jotterand M, Vilarino R, Bollmann M et al. 2017. Imaging mass spectrometry of elements in forensic cases by LA-ICP-MS. Int. J. Legal Med. 131:497–500
    [Google Scholar]
  60. 60.
    Dettmeyer RB, Verhoff MA, Schütz HF 2014. Thanatology. Forensic Medicine: Fundamentals and Perspectives RB Dettmeyer, MA Verhoff, HF Schütz 33–55 Berlin/Heidelberg: Springer
    [Google Scholar]
  61. 61.
    Eberlin LS, Dill AL, Costa AB, Ifa DR, Cheng L et al. 2010. Cholesterol sulfate imaging in human prostate cancer tissue by desorption electrospray ionization mass spectrometry. Anal. Chem. 82:3430–34
    [Google Scholar]
  62. 62.
    Eberlin LS, Norton I, Orringer D, Dunn IF, Liu X et al. 2013. Ambient mass spectrometry for the intraoperative molecular diagnosis of human brain tumors. PNAS 110:1611–16
    [Google Scholar]
  63. 63.
    Leung F, Eberlin LS, Schwamborn K, Heeren RMA, Winograd N, Cooks RG 2019. Mass spectrometry-based tissue imaging: The next frontier in clinical diagnostics?. Clin. Chem. 65:510–13
    [Google Scholar]
  64. 64.
    Gilmore IS, Heiles S, Pieterse CL. 2019. Metabolic imaging at the single-cell scale: recent advances in mass spectrometry imaging. Annu. Rev. Anal. Chem. 12:201–24
    [Google Scholar]
  65. 65.
    Karlsson O, Hanrieder J. 2017. Imaging mass spectrometry in drug development and toxicology. Arch. Toxicol. 91:2283–94
    [Google Scholar]
  66. 66.
    Chan W-S, Wong GF, Hung C-W, Wong Y-N, Fung K-M et al. 2020. Interpol review of toxicology 2016–2019. Forensic Sci. Int. Synergy 2:563–607
    [Google Scholar]
  67. 67.
    Harper L, Powell J, Pijl EM 2017. An overview of forensic drug testing methods and their suitability for harm reduction point-of-care services. Harm Reduct. J. 14:52
    [Google Scholar]
  68. 68.
    Guinan T, Kirkbride P, Pigou PE, Ronci M, Kobus H, Voelcker NH. 2015. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics. Mass Spectrom. Rev. 34:627–40
    [Google Scholar]
  69. 69.
    Leuthold LA, Mandscheff JF, Fathi M, Giroud C, Augsburger M et al. 2006. Desorption electrospray ionization mass spectrometry: direct toxicological screening and analysis of illicit Ecstasy tablets. Rapid Commun. Mass Spectrom. 20:103–10
    [Google Scholar]
  70. 70.
    Peacock A, Bruno R, Gisev N, Degenhardt L, Hall W et al. 2019. New psychoactive substances: challenges for drug surveillance, control, and public health responses. Lancet 394:1668–84
    [Google Scholar]
  71. 71.
    Almuzaini T, Choonara I, Sammons H 2013. Substandard and counterfeit medicines: a systematic review of the literature. BMJ Open 3:e002923
    [Google Scholar]
  72. 72.
    OECD/EUIPO (Organ. Econ. Co-op. Dev./Eur. Union Intellect. Prop. Off.) 2020. Illicit Trade: Trade in Counterfeit Pharmaceutical Products Paris: OECD Publ.
  73. 73.
    United Nations Off. Drugs Crime 2005. Methods for Impurity Profiling of Heroin and Cocaine. Manual for Use by National Drug Testing Laboratories New York: United Nations https://www.unodc.org/pdf/publications/report_st-nar-35.pdf
    [Google Scholar]
  74. 74.
    Lopatka M, van Houten W. 2013. Automated shape annotation for illicit tablet preparations: a contour angle based classification from digital images. Sci. Justice 53:60–66
    [Google Scholar]
  75. 75.
    Jung CR, Ortiz RS, Limberger R, Mayorga P. 2012. A new methodology for detection of counterfeit Viagra® and Cialis® tablets by image processing and statistical analysis. Forensic Sci. Int. 216:92–96
    [Google Scholar]
  76. 76.
    Materazzi S, Gregori A, Ripani L, Apriceno A, Risoluti R 2017. Cocaine profiling: implementation of a predictive model by ATR-FTIR coupled with chemometrics in forensic chemistry. Talanta 166:328–35
    [Google Scholar]
  77. 77.
    Deconinck E, Van Campenhout R, Aouadi C, Canfyn M, Bothy JL et al. 2019. Combining attenuated total reflectance-infrared spectroscopy and chemometrics for the identification and the dosage estimation of MDMA tablets. Talanta 195:142–51
    [Google Scholar]
  78. 78.
    Ortiz RS, Mariotti Kde C, Fank B, Limberger RP, Anzanello MJ, Mayorga P. 2013. Counterfeit Cialis and Viagra fingerprinting by ATR-FTIR spectroscopy with chemometry: Can the same pharmaceutical powder mixture be used to falsify two medicines?. Forensic Sci. Int. 226:282–89
    [Google Scholar]
  79. 79.
    de Oliveira Penido CAF, Pacheco MTT, Lednev IK, Silveira L Jr 2016. Raman spectroscopy in forensic analysis: identification of cocaine and other illegal drugs of abuse. J. Raman Spectrosc. 47:28–38
    [Google Scholar]
  80. 80.
    Kranenburg RF, Verduin J, de Ridder R, Weesepoel Y, Alewijn M et al. 2021. Performance evaluation of handheld Raman spectroscopy for cocaine detection in forensic case samples. Drug Test. Anal. 13:1054–67
    [Google Scholar]
  81. 81.
    Sacré PY, Deconinck E, Saerens L, De Beer T, Courselle P et al. 2011. Detection of counterfeit Viagra® by Raman microspectroscopy imaging and multivariate analysis. J. Pharm. Biomed. Anal. 56:454–61
    [Google Scholar]
  82. 82.
    Shende C, Farquharson A, Brouillette C, Smith W, Farquharson S 2019. Quantitative measurements of codeine and fentanyl on a surface-enhanced Raman-active pad test. Molecules 24:2578
    [Google Scholar]
  83. 83.
    Haddad A, Comanescu MA, Green O, Kubic TA, Lombardi JR. 2018. Detection and quantitation of trace fentanyl in heroin by surface-enhanced Raman spectroscopy. Anal. Chem. 90:12678–85
    [Google Scholar]
  84. 84.
    Cui X, Wang R, Lian R, Liang C, Chen G, Zhang Y 2019. Correlation analysis between cocaine samples seized in China by the rapid detection of organic impurities using direct analysis in real time coupled with high-resolution mass spectrometry. Int. J. Mass Spectrom. 444:116188
    [Google Scholar]
  85. 85.
    Cunningham DD. 2018. Analysis of trace drugs of abuse by direct analysis in real time (DART) mass spectrometry. Methods Mol. Biol. 1810:193–205
    [Google Scholar]
  86. 86.
    Romolo FS, Sarilar M, Antoine J, Mestria S, Strano Rossi S et al. 2021. Ion beam analysis (IBA) and instrumental neutron activation analysis (INAA) for forensic characterisation of authentic Viagra® and of sildenafil-based illegal products. Talanta 224:121829
    [Google Scholar]
  87. 87.
    US Dep. Justice/Bur. Alcohol Tob. Firearms Explos 2020. Commerce in Explosives; 2020 Annual List of Explosive Materials. Fed. Regist. 85:247 Dec. 23. https://www.govinfo.gov/content/pkg/FR-2020-12-23/pdf/2020-28404.pdf
    [Google Scholar]
  88. 88.
    Carter JC, Angel SM, Lawrence-Snyder M, Scaffidi J, Whipple RE, Reynolds JG. 2005. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument. Appl. Spectrosc. 59:769–75
    [Google Scholar]
  89. 89.
    Gaft M, Nagli L. 2008. UV gated Raman spectroscopy for standoff detection of explosives. Opt. Mater. 30:1739–46
    [Google Scholar]
  90. 90.
    Wallin S, Pettersson A, Ostmark H, Hobro A. 2009. Laser-based standoff detection of explosives: a critical review. Anal. Bioanal. Chem. 395:259–74
    [Google Scholar]
  91. 91.
    Cogen M. 2016. An Introduction to European Intergovernmental Organizations London/New York: Routledge
  92. 92.
    Francese S. 2019. Emerging Technologies for the Analysis of Forensic Traces Basingstoke, UK: Springer
  93. 93.
    NATO (N. Atl. Treaty Organ.) 2013. Detecting suicide attacks – from research to reality Updated Oct. 30, 2013. https://www.nato.int/cps/en/natohq/news_104536.htm
  94. 94.
    Pettersson A, Johansson I, Wallin S, Nordberg M, Östmark H. 2009. Near real-time standoff detection of explosives in a realistic outdoor environment at 55m distance. Propellants Explos. Pyrotechn. 34:297–306
    [Google Scholar]
  95. 95.
    Gottfried JL, De Lucia JFC, Munson CA, Miziolek AW. 2008. Strategies for residue explosives detection using laser-induced breakdown spectroscopy. J. Anal. Atom. Spectrom. 23:205–16
    [Google Scholar]
  96. 96.
    López-Moreno C, Palanco S, Laserna JJ, DeLucia F Jr., Miziolek AW et al. 2006. Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of explosive residues on solid surfaces. J. Anal. Atom. Spectrom. 21:55–60
    [Google Scholar]
  97. 97.
    Winefordner JD, Gornushkin IB, Correll T, Gibb E, Smith BW, Omenetto N 2004. Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star. J. Anal. Atom. Spectrom. 19:1061–83
    [Google Scholar]
  98. 98.
    Hakonen A, Andersson PO, Stenbæk Schmidt M, Rindzevicius T, Käll M 2015. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Anal. Chim. Acta 893:1–13
    [Google Scholar]
  99. 99.
    Wackerbarth H, Salb C, Gundrum L, Niederkrüger M, Christou K et al. 2010. Detection of explosives based on surface-enhanced Raman spectroscopy. Appl. Opt. 49:4362–66
    [Google Scholar]
  100. 100.
    Wackerbarth H, Gundrum L, Salb C, Christou K, Viöl W 2010. Challenge of false alarms in nitroaromatic explosive detection—a detection device based on surface-enhanced Raman spectroscopy. Appl. Opt. 49:4367–71
    [Google Scholar]
  101. 101.
    Huang Y, Liu W, Gong Z, Wu W, Fan M et al. 2020. Detection of buried explosives using a surface-enhanced Raman scattering (SERS) substrate tailored for miniaturized spectrometers. ACS Sens. 5:2933–39
    [Google Scholar]
  102. 102.
    Soparawalla S, Salazar GA, Sokol E, Perry RH, Cooks RG 2010. Trace detection of non-uniformly distributed analytes on surfaces using mass transfer and large-area desorption electrospray ionization (DESI) mass spectrometry. Analyst 135:1953–60
    [Google Scholar]
  103. 103.
    Cotte-Rodríguez I, Takáts Z, Talaty N, Chen H, Cooks RG 2005. Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Anal. Chem. 77:6755–64
    [Google Scholar]
  104. 104.
    Kauppila TJ, Flink A, Pukkila J, Ketola RA. 2016. Analysis of nitrogen-based explosives with desorption atmospheric pressure photoionization mass spectrometry. Rapid Commun. Mass Spectrom. 30:467–75
    [Google Scholar]
  105. 105.
    Ehlert S, Hölzer J, Rittgen J, Pütz M, Schulte-Ladbeck R, Zimmermann R. 2013. Rapid on-site detection of explosives on surfaces by ambient pressure laser desorption and direct inlet single photon ionization or chemical ionization mass spectrometry. Anal. Bioanal. Chem. 405:6979–93
    [Google Scholar]
  106. 106.
    Na N, Zhang C, Zhao M, Zhang S, Yang C et al. 2007. Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. J. Mass Spectrom. 42:1079–85
    [Google Scholar]
  107. 107.
    Tang S, Vinerot N, Fisher D, Bulatov V, Yavetz-Chen Y, Schechter I. 2016. Detection and mapping of trace explosives on surfaces under ambient conditions using multiphoton electron extraction spectroscopy (MEES). Talanta 155:235–44
    [Google Scholar]
  108. 108.
    Charles S, Geusens N, Vergalito E, Nys B 2020. Interpol review of gunshot residue 2016–2019. Forensic Sci. Int. Synergy 2:416–28
    [Google Scholar]
  109. 109.
    Langstraat K, Knijnenberg A, Edelman G, van de Merwe L, van Loon A et al. 2017. Large area imaging of forensic evidence with MA-XRF. Sci. Rep. 7:15056
    [Google Scholar]
  110. 110.
    Khandasammy SR, Rzhevskii A, Lednev IK 2019. A novel two-step method for the detection of organic gunshot residue for forensic purposes: fast fluorescence imaging followed by Raman microspectroscopic identification. Anal. Chem. 91:11731–37
    [Google Scholar]
  111. 111.
    ASTM (Am. Soc. Test. Mater.) 2020. Standard practice for gunshot residue analysis by scanning electron microscopy/energy dispersive X-ray spectrometry Standard E1588. ASTM West Conshohocken, PA:
  112. 112.
    Romolo FS, Margot P. 2001. Identification of gunshot residue: a critical review. Forensic Sci. Int. 119:195–211
    [Google Scholar]
  113. 113.
    Dalby O, Butler D, Birkett JW 2010. Analysis of gunshot residue and associated materials—a review. J. Forensic Sci. 55:924–43
    [Google Scholar]
  114. 114.
    Romolo FS, Stamouli A, Romeo M, Cook M, Orsenigo S, Donghi M 2017. An experimental study about the presence of selenium in inorganic gunshot residues (GSR). Forensic Chem. 4:51–60
    [Google Scholar]
  115. 115.
    Nunziata F, Romolo FS, Burnett B, Manna L, Orsenigo S, Donghi M 2021. Molybdenum in gunshot residue: experimental evidences and detection challenges in the presence of lead and sulfur. Microsc. Microanal. 27:666–77
    [Google Scholar]
  116. 116.
    Spathis V. 2017. Impact-disrupted gunshot residue: a sub-micron analysis using a novel collection protocol. Def. Technol. 13:143–49
    [Google Scholar]
  117. 117.
    Lucas N, Seyfang KE, Plummer A, Cook M, Kirkbride KP, Kobus H. 2019. Evaluation of the sub-surface morphology and composition of gunshot residue using focussed ion beam analysis. Forensic Sci. Int. 297:100–10
    [Google Scholar]
  118. 118.
    Bailey M, Kirkby K, Jeynes C 2009. Trace element profiling of gunshot residues by PIXE and SEM-EDS: a feasibility study. X-Ray Spectrom. 38:190–94
    [Google Scholar]
  119. 119.
    Bailey M, Jeynes C. 2009. Characterisation of gunshot residue particles using self-consistent ion beam analysis. Nuclear Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 267:2265–68
    [Google Scholar]
  120. 120.
    Romolo FS, Christopher ME, Donghi M, Ripani L, Jeynes C et al. 2013. Integrated ion beam analysis (IBA) in gunshot residue (GSR) characterisation. Forensic Sci. Int. 231:219–28
    [Google Scholar]
  121. 121.
    Christopher ME, Warmenhoeven J-W, Romolo FS, Donghi M, Webb RP et al. 2013. A new quantitative method for gunshot residue analysis by ion beam analysis. Analyst 138:4649–55
    [Google Scholar]
  122. 122.
    Duarte A, Silva LM, de Souza CT, Stori EM, Boufleur LA et al. 2015. Elemental quantification of large gunshot residues. Nuclear Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 348:170–73
    [Google Scholar]
  123. 123.
    Duarte A, Silva LM, de Souza CT, Stori EM, Niekraszewicz LAB et al. 2018. Characterization of Brazilian ammunitions and their respective gunshot residues with ion beam techniques. Forensic Chem 7:94–102
    [Google Scholar]
  124. 124.
    Romolo FS, Bailey MJ, De Jesus J, Manna L, Donghi M 2019. Unusual sources of Sn in GSR. An experimental study by SEM and IBA. Sci. Justice 59:181–89
    [Google Scholar]
  125. 125.
    Aliste M, Arranz S, Sánchez-Ortega A, Sampedro MC, Unceta N et al. 2020. Particle analysis for the detection of gunshot residue (GSR) in nasal samples using scanning laser ablation and inductively coupled plasma-mass spectrometry (SLA-ICPMS). J. Forensic Sci. 65:1094–101
    [Google Scholar]
  126. 126.
    Szynkowska MI, Parczewski A, Szajdak K, Rogowski J. 2013. Examination of gunshot residues transfer using ToF-SIMS. Surf. Interface Anal. 45:596–600
    [Google Scholar]
  127. 127.
    Castellanos A, Bell S, Fernandez-Lima F. 2016. Characterization of firearm discharge residues recovered from skin swabs using sub-micrometric mass spectrometry imaging. Anal. Methods 8:4300–5
    [Google Scholar]
  128. 128.
    Álvarez Á, Yáñez J. 2020. Screening of gunshot residue in skin using attenuated total reflection Fourier transform infrared (ATR FT-IR) hyperspectral microscopy. Appl. Spectrosc. 74:400–7
    [Google Scholar]
  129. 129.
    Bueno J, Lednev IK. 2014. Attenuated total reflectance-FT-IR imaging for rapid and automated detection of gunshot residue. Anal. Chem. 86:3389–96
    [Google Scholar]
  130. 130.
    Bueno J, Halámková L, Rzhevskii A, Lednev IK 2018. Raman microspectroscopic mapping as a tool for detection of gunshot residue on adhesive tape. Anal. Bioanal. Chem. 410:7295–303
    [Google Scholar]
  131. 131.
    Karahacane DS, Dahmani A, Khimeche K 2019. Raman spectroscopy analysis and chemometric study of organic gunshot residues originating from two types of ammunition. Forensic Sci. Int. 301:129–36
    [Google Scholar]
  132. 132.
    Donghi M, Mason K, Romolo FS 2019. Detecting gunshot residue from Sellier & Bellot nontox heavy metal-free primer by in situ cathodoluminescence. J. Forensic Sci. 64:1658–67
    [Google Scholar]
  133. 133.
    Orellana FA, Gálvez CG, Orellana FA, Gálvez CG, Roldán MT et al. 2013. Applications of laser-ablation-inductively-coupled plasma-mass spectrometry in chemical analysis of forensic evidence. Trends Anal. Chem. 42:1–34
    [Google Scholar]
  134. 134.
    Duarte JM, Sales NGS, Sousa MH, Bridge C, Maric M, Gomes JdA 2020. Automotive paint analysis: How far has science advanced in the last ten years?. Trends Anal. Chem. 132:116061
    [Google Scholar]
  135. 135.
    Massonnet G, Stoecklein W. 1999. Identification of organic pigments in coatings: applications to red automotive topcoats: Part II: infrared spectroscopy. Sci. Justice 39:135–40
    [Google Scholar]
  136. 136.
    Bell SEJ, Stewart SP, Armstrong WJ Raman spectroscopy for forensic analysis of household and automotive paints. Infrared and Raman Spectroscopy in Forensic Science JM Chalmers, HGM Edwards, MD Hargreaves 121–35 Wess Sussex, UK: John Wiley & Sons
    [Google Scholar]
  137. 137.
    Muramoto S, Gillen G, Windsor ES. 2018. Chemical discrimination of multilayered paint cross sections for potential forensic applications using time-of-flight secondary ion mass spectrometry. Surf. Interface Anal. 50:889–96
    [Google Scholar]
  138. 138.
    Marić M, Marano J, Cody RB, Bridge C 2018. DART-MS: A new analytical technique for forensic paint analysis. Anal. Chem. 90:6877–84
    [Google Scholar]
  139. 139.
    ASTM (Am. Soc. Test. Mater.) 2013. Standard guide for using scanning electron microscopy/X-ray spectrometry in forensic paint examinations Standard E2809. ASTM West Conshohocken, PA:
    [Google Scholar]
  140. 140.
    Chen R, Lv J, Feng J. 2015. Characterization of paint by Fourier-transform infrared spectroscopy, Raman microscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy. Anal. Lett. 48:1502–10
    [Google Scholar]
  141. 141.
    Suzuki EM. 2014. Infrared spectra of U.S. automobile original finishes (1998–2000). IX. Identification of bismuth oxychloride and silver/white mica pearlescent pigments using extended range FT-IR Spectroscopy, XRF spectrometry, and SEM/EDS analysis. J. Forensic Sci. 59:1205–25
    [Google Scholar]
  142. 142.
    ASTM (Am. Soc. Test. Mater.) 2017. Standard test method for forensic comparison of glass using micro X-ray fluorescence (μ-XRF) spectrometry Standard E2926. ASTM West Conshohocken, PA:
  143. 143.
    ASTM (Am. Soc. Test. Mater.) 2019. Standard test method for determination of concentrations of elements in glass samples using inductively coupled plasma mass spectrometry (ICP-MS) for forensic comparisons Standard E2330. ASTM West Conshohocken, PA:
  144. 144.
    ASTM (Am. Soc. Test. Mater.) 2016. Standard test method for determination of trace elements in soda-lime glass samples using laser ablation inductively coupled plasma mass spectrometry for forensic comparisons Standard E2927. ASTM West Conshohocken, PA:
  145. 145.
    van Es A, Wiarda W, Hordijk M, Alberink I, Vergeer P 2017. Implementation and assessment of a likelihood ratio approach for the evaluation of LA-ICP-MS evidence in forensic glass analysis. Sci. Justice 57:181–92
    [Google Scholar]
  146. 146.
    Park S, Tyner S 2019. Evaluation and comparison of methods for forensic glass source conclusions. Forensic Sci. Int. 305:110003
    [Google Scholar]
  147. 147.
    Akmeemana A, Weis P, Corzo R, Ramos D, Zoon P et al. 2021. Interpretation of chemical data from glass analysis for forensic purposes. J. Chemom. 35:e3267
    [Google Scholar]
  148. 148.
    El-Deftar MM, Speers N, Eggins S, Foster S, Robertson J, Lennard C. 2014. Assessment and forensic application of laser-induced breakdown spectroscopy (LIBS) for the discrimination of Australian window glass. Forensic Sci. Int. 241:46–54
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061020-124221
Loading
/content/journals/10.1146/annurev-anchem-061020-124221
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error