1932

Abstract

One of the greatest and most long-lived scientific pursuits of humankind has been to discover and study the planetary objects comprising our solar system. Information gained from solar system observations, via both remote sensing and in situ measurements, is inherently constrained by the analytical (often chemical) techniques we employ in these endeavors. The past 50 years of planetary science missions have resulted in immense discoveries within and beyond our solar system, enabled by state-of-the-art analytical chemical instrument suites on board these missions. In this review, we highlight and discuss some of the most impactful analytical chemical instruments flown on planetary science missions within the last 20 years, including analytical techniques ranging from remote spectroscopy to in situ chemical separations. We first highlight mission-based remote and in situ spectroscopic techniques, followed by in situ separation and mass spectrometry analyses. The results of these investigations are discussed, and their implications examined, from worlds as close as Venus and familiar as Mars to as far away and exotic as Titan. Instruments currently in development for planetary science missions in the near future are also discussed, as are the promises their capabilities bring. Analytical chemistry is critical to understanding what lies beyond Earth in our solar system, and this review seeks to highlight how questions, analytical tools, and answers have intersected over the past 20 years and their implications for the near future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061020-125416
2022-06-13
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/anchem/15/1/annurev-anchem-061020-125416.html?itemId=/content/journals/10.1146/annurev-anchem-061020-125416&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Klein HP, Lederberg J, Rich A, Horowitz NH, Oyama VI, Levin GV. 1976. The Viking mission search for life on Mars. Nature 262:24–27
    [Google Scholar]
  2. 2.
    Kohlhase CE, Penzo PA. 1977. Voyager mission description. Space Sci. Rev. 21:77–101
    [Google Scholar]
  3. 3.
    Johnson TV, Yeates CM, Young R. 1992. Space science reviews volume on Galileo mission overview. Space Sci. Rev. 60:3–21
    [Google Scholar]
  4. 4.
    Matson DL, Spilker LJ, Lebreton J-P. 2002. The Cassini/Huygens mission to the Saturnian system. Space Sci. Rev. 104:1–58
    [Google Scholar]
  5. 5.
    Brown RH, Baines KH, Bellucci G, Bibring JP, Buratti BJ et al. 2004. The Cassini visual and infrared mapping spectrometer (VIMS) investigation. Space Sci. Rev. 115:111–68
    [Google Scholar]
  6. 6.
    Baines KH, Bellucci G, Bibring J-P, Brown RH, Buratti BJ et al. 2000. Detection of sub-micron radiation from the surface of Venus by Cassini/VIMS. Icarus 148:307–11
    [Google Scholar]
  7. 7.
    Brown RH, Baines KH, Bellucci G, Bibring JP, Buratti BJ et al. 2003. Observations with the Visual and Infrared Mapping Spectrometer (VIMS) during Cassini's flyby of Jupiter. Icarus 164:461–70
    [Google Scholar]
  8. 8.
    Nicholson PD, Hedman MM, Clark RN, Showalter MR, Cruikshank DP et al. 2008. A close look at Saturn's rings with Cassini VIMS. Icarus 193:182–212
    [Google Scholar]
  9. 9.
    Fletcher LN, Baines KH, Momary TW, Showman AP, Irwin PGJ et al. 2011. Saturn's tropospheric composition and clouds from Cassini/VIMS 4.6–5.1 μm nightside spectroscopy. Icarus 214:510–33
    [Google Scholar]
  10. 10.
    Baines KH, Delitsky ML, Momary TW, Brown RH, Buratti BJ et al. 2009. Storm clouds on Saturn: lightning-induced chemistry and associated materials consistent with Cassini/VIMS spectra. Planet. Space Sci. 57:1650–58
    [Google Scholar]
  11. 11.
    Baines KH, Momary TW, Fletcher LN, Showman AP, Roos-Serote M et al. 2009. Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS. Planet. Space Sci. 57:1671–81
    [Google Scholar]
  12. 12.
    Sromovsky LA, Baines KH, Fry PM. 2013. Saturn's great storm of 2010–2011: evidence for ammonia and water ices from analysis of VIMS spectra. Icarus 226:402–18
    [Google Scholar]
  13. 13.
    Lopes RMC, Malaska MJ, Schoenfeld AM, Solomonidou A, Birch SPD et al. 2020. A global geomorphologic map of Saturn's moon Titan. Nat. Astron. 4:228–33
    [Google Scholar]
  14. 14.
    Stofan ER, Elachi C, Lunine JI, Lorenz RD, Stiles B et al. 2007. The lakes of Titan. Nature 445:61–64
    [Google Scholar]
  15. 15.
    Hayes AG, Lorenz RD, Lunine JI. 2018. A post-Cassini view of Titan's methane-based hydrologic cycle. Nat. Geosci. 11:306–13
    [Google Scholar]
  16. 16.
    Lopes RMC, Kirk RL, Mitchell KL, LeGall A, Barnes JW et al. 2013. Cryovolcanism on Titan: new results from Cassini RADAR and VIMS. J. Geophys. Res. Planets 118:416–35
    [Google Scholar]
  17. 17.
    de Kok RJ, Teanby NA, Maltagliati L, Irwin PGJ, Vinatier S. 2014. HCN ice in Titan's high-altitude southern polar cloud. Nature 514:65–67
    [Google Scholar]
  18. 18.
    Bellucci A, Sicardy B, Drossart P, Rannou P, Nicholson PD et al. 2009. Titan solar occultation observed by Cassini/VIMS: gas absorption and constraints on aerosol composition. Icarus 201:198–216
    [Google Scholar]
  19. 19.
    Maltagliati L, Bézard B, Vinatier S, Hedman MM, Lellouch E et al. 2015. Titan's atmosphere as observed by Cassini/VIMS solar occultations: CH4, CO and evidence for C2H6 absorption. Icarus 248:1–24
    [Google Scholar]
  20. 20.
    Sim CK, Kim SJ, Courtin R, Sohn M, Lee D-H. 2013. The two-micron spectral characteristics of the Titanian haze derived from Cassini/VIMS solar occultation spectra. Planet. Space Sci. 88:93–99
    [Google Scholar]
  21. 21.
    Newman SF, Buratti BJ, Jaumann R, Bauer JM, Momary TW. 2007. Hydrogen peroxide on Enceladus. Astrophys. J. 670:L143–46
    [Google Scholar]
  22. 22.
    Porco CC, Helfenstein P, Thomas PC, Ingersoll AP, Wisdom J et al. 2006. Cassini observes the active south pole of Enceladus. Science 311:1393–401
    [Google Scholar]
  23. 23.
    Brown RH, Clark RN, Buratti BJ, Cruikshank DP, Barnes JW et al. 2006. Composition and physical properties of Enceladus’ surface. Science 311:1425–28
    [Google Scholar]
  24. 24.
    Porco C, DiNino D, Nimmo F. 2014. How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related. Astronom. J. 148:45
    [Google Scholar]
  25. 25.
    Zurek RW, Smrekar SE. 2007. An overview of the Mars Reconnaissance Orbiter (MRO) science mission. J. Geophys. Res. Planets 112:E05S01
    [Google Scholar]
  26. 26.
    Murchie S, Arvidson R, Bedini P, Beisser K, Bibring J-P et al. 2007. Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. Planets 112:E05S03
    [Google Scholar]
  27. 27.
    Noe Dobrea EZ, Wray JJ, Calef FJ 3rd, Parker TJ, Murchie SL 2012. Hydrated minerals on Endeavour crater's rim and interior, and surrounding plains: new insights from CRISM data. Geophys. Res. Lett. 39:L23201
    [Google Scholar]
  28. 28.
    Carter J, Poulet F, Bibring J-P, Murchie S 2010. Detection of hydrated silicates in crustal outcrops in the northern plains of Mars. Science 328:1682–86
    [Google Scholar]
  29. 29.
    Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE et al. 2008. Hydrated silicate minerals on Mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454:305–9
    [Google Scholar]
  30. 30.
    Ehlmann BL, Mustard JF, Murchie SL, Poulet F, Bishop JL et al. 2008. Orbital identification of carbonate-bearing rocks on Mars. Science 322:1828–32
    [Google Scholar]
  31. 31.
    Wray JJ, Murchie SL, Bishop JL, Ehlmann BL, Milliken RE et al. 2016. Orbital evidence for more widespread carbonate-bearing rocks on Mars. J. Geophys. Res. Planets 121:652–77
    [Google Scholar]
  32. 32.
    McEwen AS, Dundas CM, Mattson SS, Toigo AD, Ojha L et al. 2014. Recurring slope lineae in equatorial regions of Mars. Nat. Geosci. 7:53–58
    [Google Scholar]
  33. 33.
    Ojha L, Wilhelm MB, Murchie SL, McEwen AS, Wray JJ et al. 2015. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8:829–32
    [Google Scholar]
  34. 34.
    Taylor FW, Svedhem H, Head JW. 2018. Venus: the atmosphere, climate, surface, interior and near-space environment of an earth-like planet. Space Sci. Rev. 214:35
    [Google Scholar]
  35. 35.
    Svedhem H, Titov DV, McCoy D, Lebreton JP, Barabash S et al. 2007. Venus Express—the first European mission to Venus. Planet. Space Sci. 55:1636–52
    [Google Scholar]
  36. 36.
    Bertaux J-L, Nevejans D, Korablev O, Villard E, Quémerais E et al. 2007. SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55:1673–700
    [Google Scholar]
  37. 37.
    Bézard B, Fedorova A, Bertaux J-L, Rodin A, Korablev O. 2011. The 1.10- and 1.18-μm nightside windows of Venus observed by SPICAV-IR aboard Venus Express. Icarus 216:173–83
    [Google Scholar]
  38. 38.
    Fedorova A, Korablev O, Bertaux J-L, Montmessin F, Belyaev D et al. 2010. Water vapor distribution in the Venusian mesosphere from SPICAV/SOIR observations Presented at the 38th COSPAR Scientific Assembly Bremen, Germany: July 15–18
  39. 39.
    Belyaev DA, Montmessin F, Bertaux J-L, Mahieux A, Fedorova AA et al. 2012. Vertical profiling of SO2 and SO above Venus’ clouds by SPICAV/SOIR solar occultations. Icarus 217:740–51
    [Google Scholar]
  40. 40.
    Luger R, Barnes R 2015. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15:119–43
    [Google Scholar]
  41. 41.
    Zhang X, Liang M-C, Montmessin F, Bertaux J-L, Parkinson C, Yung YL. 2010. Photolysis of sulphuric acid as the source of sulphur oxides in the mesosphere of Venus. Nat. Geosci. 3:834–37
    [Google Scholar]
  42. 42.
    Drossart P, Piccioni G, Adriani A, Angrilli F, Arnold G et al. 2007. Scientific goals for the observation of Venus by VIRTIS on ESA/Venus Express mission. Planet. Space Sci. 55:1653–72
    [Google Scholar]
  43. 43.
    Irwin PGJ, de Kok R, Negrão A, Tsang CCC, Wilson CF et al. 2008. Spatial variability of carbon monoxide in Venus’ mesosphere from Venus Express/visible and infrared thermal imaging spectrometer measurements. J. Geophys. Res. Planets 113:E00B01
    [Google Scholar]
  44. 44.
    Tsang CCC, Irwin PGJ, Wilson CF, Taylor FW, Lee C et al. 2008. Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTIS-M observations. J. Geophys. Res. Planets 113:E00B08
    [Google Scholar]
  45. 45.
    Bézard B, Tsang CCC, Carlson RW, Piccioni G, Marcq E, Drossart P. 2009. Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations. J. Geophys. Res. Planets 114:E00B39
    [Google Scholar]
  46. 46.
    Cottini V, Ignatiev NI, Piccioni G, Drossart P, Grassi D, Markiewicz WJ. 2012. Water vapor near the cloud tops of Venus from Venus Express/VIRTIS dayside data. Icarus 217:561–69
    [Google Scholar]
  47. 47.
    Drossart P, Piccioni G, Gérard JC, Lopez-Valverde MA, Sanchez-Lavega A et al. 2007. A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature 450:641–45
    [Google Scholar]
  48. 48.
    Piccioni G, Drossart P, Zasova L, Migliorini A, Gérard J-C et al. 2008. First detection of hydroxyl in the atmosphere of Venus. Astron. Astrophys. 483:L29–33
    [Google Scholar]
  49. 49.
    Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton L et al. 2010. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328:605–8
    [Google Scholar]
  50. 50.
    Yung YL, Chen P, Nealson K, Atreya S, Beckett P et al. 2018. Methane on Mars and habitability: challenges and responses. Astrobiology 18:1221–42
    [Google Scholar]
  51. 51.
    Robert S, Vandaele AC, Thomas I, Willame Y, Daerden F et al. 2016. Expected performances of the NOMAD/ExoMars instrument. Planet. Space Sci. 124:94–104
    [Google Scholar]
  52. 52.
    Korablev O, Montmessin F, Trokhimovskiy A, Fedorova AA, Shakun AV et al. 2017. The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 trace gas orbiter. Space Sci. Rev. 214:7
    [Google Scholar]
  53. 53.
    Olsen KS, Lefèvre F, Montmessin F, Fedorova AA, Trokhimovskiy A et al. 2021. The vertical structure of CO in the Martian atmosphere from the ExoMars Trace Gas Orbiter. Nat. Geosci. 14:67–71
    [Google Scholar]
  54. 54.
    Villanueva GL, Liuzzi G, Crismani MMJ, Aoki S, Vandaele AC et al. 2021. Water heavily fractionated as it ascends on Mars as revealed by ExoMars/NOMAD. Sci. Adv. 7:eabc8843
    [Google Scholar]
  55. 55.
    Vandaele AC, Korablev O, Daerden F, Aoki S, Thomas IR et al. 2019. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature 568:521–25
    [Google Scholar]
  56. 56.
    Olsen KS, Lefèvre F, Montmessin F, Trokhimovskiy A, Baggio L et al. 2020. First detection of ozone in the mid-infrared at Mars: implications for methane detection. Astron. Astrophys. 639:A141
    [Google Scholar]
  57. 57.
    Korablev O, Vandaele AC, Montmessin F, Fedorova AA, Trokhimovskiy A et al. 2019. No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature 568:517–20
    [Google Scholar]
  58. 58.
    Knutsen EW, Villanueva GL, Liuzzi G, Crismani MMJ, Mumma MJ et al. 2021. Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus 357:114266
    [Google Scholar]
  59. 59.
    Connerney JEP, Adriani A, Allegrini F, Bagenal F, Bolton SJ et al. 2017. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. Science 356:826–32
    [Google Scholar]
  60. 60.
    Gladstone GR, Persyn SC, Eterno JS, Walther BC, Slater DC et al. 2017. The ultraviolet spectrograph on NASA's Juno mission. Space Sci. Rev. 213:447–73
    [Google Scholar]
  61. 61.
    Adriani A, Filacchione G, Di Iorio T, Turrini D, Noschese R et al. 2017. JIRAM, the Jovian infrared auroral mapper. Space Sci. Rev. 213:393–446
    [Google Scholar]
  62. 62.
    Dinelli BM, Adriani A, Mura A, Altieri F, Migliorini A, Moriconi ML. 2019. JUNO/JIRAM's view of Jupiter's H3+ emissions. Philos. Trans. R. Soc. A 377:20180406
    [Google Scholar]
  63. 63.
    Mura A, Adriani A, Connerney JEP, Bolton S, Altieri F et al. 2018. Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science 361:eaat1450
    [Google Scholar]
  64. 64.
    Bolton SJ, Adriani A, Adumitroaie V, Allison M, Anderson J et al. 2017. Jupiter's interior and deep atmosphere: the initial pole-to-pole passes with the Juno spacecraft. Science 356:821–25
    [Google Scholar]
  65. 65.
    Grassi D, Mura A, Sindoni G, Adriani A, Atreya SK et al. 2021. On the clouds and ammonia in Jupiter's upper troposphere from Juno JIRAM reflectivity observations. MNRAS 503:4892–907
    [Google Scholar]
  66. 66.
    Adriani A, Mura A, Orton G, Hansen C, Altieri F et al. 2018. Clusters of cyclones encircling Jupiter's poles. Nature 555:216–19
    [Google Scholar]
  67. 67.
    Gladstone GR, Versteeg MH, Greathouse TK, Hue V, Davis MW et al. 2017. Juno-UVS approach observations of Jupiter's auroras. Geophys. Res. Lett. 44:7668–75
    [Google Scholar]
  68. 68.
    Mahaffy PR, Webster CR, Cabane M, Conrad PG, Coll P et al. 2012. The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170:401–78
    [Google Scholar]
  69. 69.
    Webster CR, Mahaffy PR, Flesch GJ, Niles PB, Jones JH et al. 2013. Isotope Ratios of H, C, and O in CO2 and H2O of the Martian atmosphere. Science 341:260–63
    [Google Scholar]
  70. 70.
    Mahaffy PR, Webster CR, Stern JC, Brunner AE, Atreya SK et al. 2015. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347:412–14
    [Google Scholar]
  71. 71.
    Gillen E, Rimmer PB, Catling DC. 2020. Statistical analysis of Curiosity data shows no evidence for a strong seasonal cycle of Martian methane. Icarus 336:113407
    [Google Scholar]
  72. 72.
    Webster CR, Mahaffy PR, Atreya SK, Flesch GJ, Mischna MA et al. 2015. Mars methane detection and variability at Gale crater. Science 347:415–17
    [Google Scholar]
  73. 73.
    Webster CR, Mahaffy PR, Atreya SK, Flesch GJ, Farley KA. 2013. Low upper limit to methane abundance on Mars. Science 342:355–57
    [Google Scholar]
  74. 74.
    Giuranna M, Viscardy S, Daerden F, Neary L, Etiope G et al. 2019. Independent confirmation of a methane spike on Mars and a source region east of Gale Crater. Nat. Geosci. 12:326–32
    [Google Scholar]
  75. 75.
    Moores JE, King PL, Smith CL, Martinez GM, Newman CE et al. 2019. The methane diurnal variation and microseepage flux at Gale Crater, Mars as constrained by the ExoMars Trace Gas Orbiter and Curiosity observations. Geophys. Res. Lett. 46:9430–38
    [Google Scholar]
  76. 76.
    Webster CR, Mahaffy PR, Pla-Garcia J, Rafkin SCR, Moores JE et al. 2021. Day-night differences in Mars methane suggest nighttime containment at Gale Crater. Astron. Astrophys. 650:A166
    [Google Scholar]
  77. 77.
    Maurice S, Wiens RC, Saccoccio M, Barraclough B, Gasnault O et al. 2012. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: science objectives and mast unit description. Space Sci. Rev. 170:95–166
    [Google Scholar]
  78. 78.
    Thomas NH, Ehlmann BL, Meslin PY, Rapin W, Anderson DE et al. 2019. Mars science laboratory observations of chloride salts in Gale crater, Mars.. Geophys. Res. Lett. 46:10754–63
    [Google Scholar]
  79. 79.
    Nachon M, Clegg SM, Mangold N, Schröder S, Kah LC et al. 2014. Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. J. Geophys. Res. Planets 119:1991–2016
    [Google Scholar]
  80. 80.
    Gasda PJ, Haldeman EB, Wiens RC, Rapin W, Bristow TF et al. 2017. In situ detection of boron by ChemCam on Mars. Geophys. Res. Lett. 44:8739–48
    [Google Scholar]
  81. 81.
    Rapin W, Ehlmann BL, Dromart G, Schieber J, Thomas NH et al. 2019. An interval of high salinity in ancient Gale Crater Lake on Mars. Nat. Geosci. 12:889–95
    [Google Scholar]
  82. 82.
    Bhartia R, Beegle LW, DeFlores L, Abbey W, Razzell Hollis J et al. 2021. Perseverance's Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) investigation. Space Sci. Rev. 217:58
    [Google Scholar]
  83. 83.
    Maurice S, Wiens RC, Bernardi P, Caïs P, Robinson S et al. 2021. The SuperCam instrument suite on the Mars 2020 Rover: science objectives and mast-unit description. Space Sci. Rev. 217:47
    [Google Scholar]
  84. 84.
    Perez R, Parès L, Newell R, Robinson S, Bernardi P et al. 2017. The supercam instrument on the NASA Mars 2020 mission: optical design and performance Presented at the International Conference on Space Optics Biarritz, France: Oct. 18–21
  85. 85.
    Abrahamsson V, Henderson BL, Herman J, Zhong F, Lin Y et al. 2021. Extraction and separation of chiral amino acids for life detection on ocean worlds without using organic solvents or derivatization. Astrobiology 21:575–86
    [Google Scholar]
  86. 86.
    Mathies RA, Razu ME, Kim J, Stockton AM, Turin P, Butterworth A. 2017. Feasibility of detecting bioorganic compounds in Enceladus plumes with the Enceladus Organic Analyzer. Astrobiology 17:902–12
    [Google Scholar]
  87. 87.
    Aubrey AD, Chalmers JH, Bada JL, Grunthaner FJ, Amashukeli X et al. 2008. The Urey instrument: an advanced in situ organic and oxidant detector for Mars exploration. Astrobiology 8:583–95
    [Google Scholar]
  88. 88.
    Sims MR, Cullen DC, Rix CS, Buckley A, Derveni M et al. 2012. Development status of the life marker chip instrument for ExoMars. Planet. Space Sci. 72:129–37
    [Google Scholar]
  89. 89.
    Waite JH, Lewis WS, Kasprzak WT, Anicich VG, Block BP et al. 2004. The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation. Space Sci. Rev. 114:113–231
    [Google Scholar]
  90. 90.
    Waite JH, Niemann H, Yelle RV, Kasprzak WT, Cravens TE et al. 2005. Ion neutral mass spectrometer results from the first flyby of Titan. Science 308:982–86
    [Google Scholar]
  91. 91.
    Waite JH, Young DT, Cravens TE, Coates AJ, Crary FJ et al. 2007. The process of tholin formation in Titan's upper atmosphere. Science 316:870–75
    [Google Scholar]
  92. 92.
    Vuitton V, Yelle RV, Lavvas P. 2009. Composition and chemistry of Titan's thermosphere and ionosphere. Philos. Trans. R. Soc. A 367:729–41
    [Google Scholar]
  93. 93.
    Cravens TE, Robertson IP, Waite JH Jr., Yelle RV, Kasprzak WT et al. 2006. Composition of Titan's ionosphere. Geophys. Res. Lett. 33:L07105
    [Google Scholar]
  94. 94.
    Waite JH, Glein CR, Perryman RS, Teolis BD, Magee BA et al. 2017. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356:155–59
    [Google Scholar]
  95. 95.
    Waite JH, Combi MR, Ip W-H, Cravens TE, McNutt RL et al. 2006. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311:1419–22
    [Google Scholar]
  96. 96.
    Waite JH Jr., Lewis WS, Magee BA, Lunine JI, McKinnon WB et al. 2009. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460:487–90
    [Google Scholar]
  97. 97.
    Zolotov MY. 2007. An oceanic composition on early and today's Enceladus. Geophys. Res. Lett. 34:L23203
    [Google Scholar]
  98. 98.
    Srama R, Ahrens TJ, Altobelli N, Auer S, Bradley JG et al. 2004. The Cassini cosmic dust analyzer. Space Sci. Rev. 114:465–518
    [Google Scholar]
  99. 99.
    Srama R, Kempf S, Moragas-Klostermeyer G, Altobelli N, Auer S et al. 2011. The cosmic dust analyser onboard Cassini: ten years of discoveries. CEAS Space J 2:3–16
    [Google Scholar]
  100. 100.
    Postberg F, Kempf S, Schmidt J, Brilliantov N, Beinsen A et al. 2009. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459:1098–101
    [Google Scholar]
  101. 101.
    Postberg F, Schmidt J, Hillier J, Kempf S, Srama R. 2011. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–22
    [Google Scholar]
  102. 102.
    Hsu H-W, Postberg F, Sekine Y, Shibuya T, Kempf S et al. 2015. Ongoing hydrothermal activities within Enceladus. Nature 519:207–10
    [Google Scholar]
  103. 103.
    Postberg F, Khawaja N, Abel B, Choblet G, Glein CR et al. 2018. Macromolecular organic compounds from the depths of Enceladus. Nature 558:564–68
    [Google Scholar]
  104. 104.
    Lebreton J-P, Witasse O, Sollazzo C, Blancquaert T, Couzin P et al. 2005. An overview of the descent and landing of the Huygens probe on Titan. Nature 438:758–64
    [Google Scholar]
  105. 105.
    Niemann HB, Atreya SK, Bauer SJ, Biemann K, Block B et al. 2002. The gas chromatograph mass spectrometer for the Huygens probe. Space Sci. Rev. 104:553–91
    [Google Scholar]
  106. 106.
    Niemann HB, Atreya SK, Bauer SJ, Carignan GR, Demick JE et al. 2005. The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–84
    [Google Scholar]
  107. 107.
    Niemann HB, Atreya SK, Demick JE, Gautier D, Haberman JA et al. 2010. Composition of Titan's lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res. Planets 115:E12006
    [Google Scholar]
  108. 108.
    Singh S, McCord TB, Combe JP, Rodriguez S, Cornet T et al. 2016. Acetylene on Titan's surface. Astrophys. J. 828:55
    [Google Scholar]
  109. 109.
    Boynton WV, Bailey SH, Hamara DK, Williams MS, Bode RC et al. 2001. Thermal and evolved gas analyzer: part of the Mars volatile and climate surveyor integrated payload. J. Geophys. Res. Planets 106:17683–98
    [Google Scholar]
  110. 110.
    Hoffman JH, Chaney RC, Hammack H. 2008. Phoenix Mars mission—the thermal evolved gas analyzer. J. Am. Soc. Mass Spectrom. 19:1377–83
    [Google Scholar]
  111. 111.
    Boynton WV, Ming DW, Kounaves SP, Young SMM, Arvidson RE et al. 2009. Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325:61–64
    [Google Scholar]
  112. 112.
    Cannon KM, Sutter B, Ming DW, Boynton WV, Quinn R. 2012. Perchlorate induced low temperature carbonate decomposition in the Mars Phoenix thermal and evolved gas analyzer (TEGA). Geophys. Res. Lett. 39:L13203
    [Google Scholar]
  113. 113.
    Hecht MH, Kounaves SP, Quinn RC, West SJ, Young SMM et al. 2009. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325:64–67
    [Google Scholar]
  114. 114.
    Navarro-González R, Navarro KF, de la Rosa J, Iñiguez E, Molina P et al. 2006. The limitations on organic detection in Mars-like soils by thermal volatilization–gas chromatography–MS and their implications for the Viking results. PNAS 103:16089
    [Google Scholar]
  115. 115.
    Zent AP, McKay CP. 1994. The chemical reactivity of the Martian soil and implications for future missions. Icarus 108:146–57
    [Google Scholar]
  116. 116.
    Yen AS, Kim SS, Hecht MH, Frant MS, Murray B. 2000. Evidence that the reactivity of the Martian soil is due to superoxide ions. Science 289:1909
    [Google Scholar]
  117. 117.
    ten Kate IL, Garry JRC, Peeters Z, Quinn R, Foing B, Ehrenfreund P. 2005. Amino acid photostability on the Martian surface. Meteorit. Planet. Sci. 40:1185–93
    [Google Scholar]
  118. 118.
    Klein HP. 1978. The Viking biological experiments on Mars. Icarus 34:666–74
    [Google Scholar]
  119. 119.
    Navarro-González R, Vargas E, de la Rosa J, Raga AC, McKay CP. 2010. Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. Planets 115:E12010
    [Google Scholar]
  120. 120.
    Leshin LA, Mahaffy PR, Webster CR, Cabane M, Coll P et al. 2013. Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover. Science 341:1238937
    [Google Scholar]
  121. 121.
    Ming DW, Archer PD, Glavin DP, Eigenbrode JL, Franz HB et al. 2014. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science 343:1245267
    [Google Scholar]
  122. 122.
    Eigenbrode JL, Summons RE, Steele A, Freissinet C, Millan M et al. 2018. Organic matter preserved in 3-billion-year-old mudstones at Gale Crater, Mars. Science 360:1096–101
    [Google Scholar]
  123. 123.
    Stalport F, Glavin DP, Eigenbrode JL, Bish D, Blake D et al. 2012. The influence of mineralogy on recovering organic acids from Mars analogue materials using the “one-pot” derivatization experiment on the sample analysis at Mars (SAM) instrument suite. Planet. Space Sci. 67:1–13
    [Google Scholar]
  124. 124.
    Vago JL, Westall F, Coates AJ, Jaumann R, Korablev O et al. 2017. Habitability on early Mars and the search for biosignatures with the ExoMars rover. Astrobiology 17:471–510
    [Google Scholar]
  125. 125.
    Hendrix AR, Hurford TA, Barge LM, Bland MT, Bowman JS et al. 2018. The NASA roadmap to ocean worlds. Astrobiology 19:1–27
    [Google Scholar]
  126. 126.
    Hand KP, Murray AE, Garvin JB, Brinckerhoff WB, Christner BC et al. 2016. Europa Lander Study 2016 Report: Europa Lander Mission. Rep. JPL D-97667, Natl. Aeronaut. Space Admin. Washington, DC: https://europa.nasa.gov/resources/58/europa-lander-study-2016-report/
  127. 127.
    Pappalardo RT, Vance S, Bagenal F, Bills BG, Blaney DL et al. 2013. Science potential from a Europa lander. Astrobiology 13:740–73
    [Google Scholar]
  128. 128.
    Goesmann F, Brinckerhoff WB, Raulin F, Goetz W, Danell RM et al. 2017. The Mars Organic Molecule Analyzer (MOMA) instrument: characterization of organic material in Martian sediments. Astrobiology 17:655–85
    [Google Scholar]
  129. 129.
    Li X, Danell RM, Brinckerhoff WB, Pinnick VT, van Amerom F et al. 2015. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry. Astrobiology 15:104–10
    [Google Scholar]
  130. 130.
    Khurana KK, Kivelson MG, Stevenson DJ, Schubert G, Russell CT et al. 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:777–80
    [Google Scholar]
  131. 131.
    Kivelson MG, Khurana KK, Russell CT, Volwerk M, Walker RJ, Zimmer C. 2000. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289:1340–43
    [Google Scholar]
  132. 132.
    Anderson JD, Lau EL, Sjogren WL, Schubert G, Moore WB. 1997. Europa's differentiated internal structure: inferences from two Galileo encounters. Science 276:1236–39
    [Google Scholar]
  133. 133.
    Ross MN, Schubert G. 1987. Tidal heating in an internal ocean model of Europa. Nature 325:133–34
    [Google Scholar]
  134. 134.
    Howell SM, Pappalardo RT. 2020. NASA's Europa Clipper—a mission to a potentially habitable ocean world. Nat. Commun. 11:1311
    [Google Scholar]
  135. 135.
    Blaney D, Hibbitts C, Green R, Clark R, Dalton J et al. 2019. The Europa Clipper mapping imaging spectrometer for Europa (MISE): using compositional mapping to understand Europa Presented at the 50th Lunar and Planetary Science Conference The Woodlands, Texas: March 18–22
    [Google Scholar]
  136. 136.
    Brockwell T, Meech K, Pickens K, Waite J, Miller G et al. 2016. The mass spectrometer for planetary exploration (MASPEX). 2016 IEEE Aerospace Conference1–17 New York: IEEE
    [Google Scholar]
  137. 137.
    Kempf S, Altobelli N, Briois C, Grün E, Horanyi M et al. 2014. SUDA: a dust mass spectrometer for compositional surface mapping for a mission to Europa Presented at the 2014 European Planetary Science Congress Cascais, Portugal: Sept. 7–12
  138. 138.
    Roth L, Saur J, Retherford KD, Strobel DF, Feldman PD et al. 2014. Transient water vapor at Europa's south pole. Science 343:171–74
    [Google Scholar]
  139. 139.
    Buffo JJ, Schmidt BE, Huber C, Meyer CR. 2021. Characterizing the ice-ocean interface of icy worlds: a theoretical approach. Icarus 360:114318
    [Google Scholar]
  140. 140.
    Lorenz RD, Turtle EP, Barnes JW, Trainer MG, Adams DS et al. 2018. Dragonfly: a rotorcraft lander concept for scientific exploration of Titan. Johns Hopkins APL Tech. Digest 34:374–87
    [Google Scholar]
  141. 141.
    Barnes JW, Turtle EP, Trainer MG, Lorenz RD, MacKenzie SM et al. 2021. Science goals and objectives for the Dragonfly Titan rotorcraft relocatable lander. Planet. Sci. J. 2:130
    [Google Scholar]
  142. 142.
    Atreya SK, Adams EY, Niemann HB, Demick-Montelara JE, Owen TC et al. 2006. Titan's methane cycle. Planet. Space Sci. 54:1177–87
    [Google Scholar]
  143. 143.
    Turtle Z, Trainer M, Barnes J, Lorenz R, Hibbard K et al. 2018. In situ exploration of Titan's organic chemistry and habitability Presented at the 49th Lunar and Planetary Science Conference The Woodlands, Texas: March 19–23
  144. 144.
    Yuan X, Oleschuk RD. 2018. Advances in microchip liquid chromatography. Anal. Chem. 90:283–301
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061020-125416
Loading
/content/journals/10.1146/annurev-anchem-061020-125416
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error