1932

Abstract

Nonhaloaluminate ionic liquids (ILs) have received considerable attention as alternatives to molecular solvents in diverse applications spanning the fields of physical, chemical, and biological science. One important and often overlooked aspect of the implementation of these designer solvents is how the properties of the IL formulation affect (electro)chemical reactivity. This aspect is emphasized herein, where recent (voltammetric) studies on the energetics of proton (H+) transfer and electrode reaction mechanisms of the H+/H process in IL media are highlighted and discussed. The energetics of proton transfer, quantified using the p (minus logarithm of acidity equilibrium constant, ) formalism, is strongly governed by the constituent IL anion, and to a lesser extent, the IL cation. The H+/H process, a model inner-sphere reaction, also displays electrochemical characteristics that are strongly IL-dependent. Overall, these studies highlight the need to carry out systematic investigations to resolve IL structure and function relationships in order to realize the potential of these diverse and versatile solvents.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-010022
2018-06-12
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-010022.html?itemId=/content/journals/10.1146/annurev-anchem-061417-010022&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Galinski M, Lewandowski A, Stepniak I 2006. Ionic liquids as electrolytes. Electrochim. Acta 51:5567–80
    [Google Scholar]
  2. 2.  Wilkes JS 2002. A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem 4:73–80
    [Google Scholar]
  3. 3.  Dean PM, Pringle JM, MacFarlane DR 2010. Structural analysis of low melting organic salts: perspectives on ionic liquids. Phys. Chem. Chem. Phys. 12:9144–53
    [Google Scholar]
  4. 4.  Dias AP, Papageorgiou N, Kalyanasundaram K, Grätzel M 1996. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35:1168–78
    [Google Scholar]
  5. 5.  Barrosse-Antle LE, Bond AM, Compton RG, O'Mahony AM, Rogers EI, Silvester DS 2010. Voltammetry in room temperature ionic liquids: comparisons and contrasts with conventional electrochemical solvents. Chemistry Asian J 5:202–30
    [Google Scholar]
  6. 6.  Plechkova NV, Seddon KR 2008. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37:123–50
    [Google Scholar]
  7. 7.  Hapiot P, Lagrost C 2008. Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 108:2238–64
    [Google Scholar]
  8. 8.  Welton T 1999. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99:2071–83
    [Google Scholar]
  9. 9.  Hallett JP, Welton T 2011. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111:3508–76
    [Google Scholar]
  10. 10.  Sun P, Armstrong DW 2010. Ionic liquids in analytical chemistry. Anal. Chim. Acta 661:1–16
    [Google Scholar]
  11. 11.  Zhang QH, Zhang SG, Deng YQ 2011. Recent advances in ionic liquid catalysis. Green Chem 13:2619–37
    [Google Scholar]
  12. 12.  MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC et al. 2014. Energy applications of ionic liquids. Energy Environ. Sci. 7:232–50
    [Google Scholar]
  13. 13.  Fedorov MV, Kornyshev AA 2014. Ionic liquids at electrified interfaces. Chem. Rev. 114:2978–3036
    [Google Scholar]
  14. 14.  van Rantwijk F, Sheldon RA 2007. Biocatalysis in ionic liquids. Chem. Rev. 107:2757–85
    [Google Scholar]
  15. 15.  Wang H, Gurau G, Rogers RD 2012. Ionic liquid processing of cellulose. Chem. Soc. Rev. 41:1519–37
    [Google Scholar]
  16. 16.  Buzzeo MC, Evans RG, Compton RG 2004. Non-haloaluminate room-temperature ionic liquids in electrochemistry—a review. ChemPhysChem 5:1106–20
    [Google Scholar]
  17. 17.  Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD 2001. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–64
    [Google Scholar]
  18. 18.  Schmeisser M, Illner P, Puchta R, Zahl A, vanEldik R 2012. Gutmann donor and acceptor numbers for ionic liquids. Chemistry Eur. J. 18:10969–82
    [Google Scholar]
  19. 19.  Yoshizawa M, Xu W, Angell CA 2003. Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ΔpKa from aqueous solutions. J. Am. Chem. Soc. 125:15411–19
    [Google Scholar]
  20. 20.  Xu W, Angell CA 2003. Solvent-free electrolytes with aqueous solution-like conductivities. Science 302:422–25
    [Google Scholar]
  21. 21.  Fernicola A, Scrosati B, Ohno H 2006. Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics 12:95–102
    [Google Scholar]
  22. 22.  Belieres J-P, Angell CA 2007. Protic ionic liquids: preparation, characterization, and proton free energy level representation. J. Phys. Chem. B 111:4926–37
    [Google Scholar]
  23. 23.  Greaves TL, Drummond CJ 2008. Protic ionic liquids: properties and applications. Chem. Rev. 108:206–37
    [Google Scholar]
  24. 24.  Bautista-Martinez JA, Tang L, Belieres J-P, Zeller R, Angell CA, Friesen C 2009. Hydrogen redox in protic ionic liquids and a direct measurement of proton thermodynamics. J. Phys. Chem. C 113:12586–93
    [Google Scholar]
  25. 25.  Angell CA, Ansari Y, Zhao ZF 2012. Ionic liquids: past, present and future. Faraday Discuss 154:9–27
    [Google Scholar]
  26. 26.  Greaves TL, Drummond CJ 2015. Protic ionic liquids: evolving structure-property relationships and expanding applications. Chem. Rev. 115:11379–448
    [Google Scholar]
  27. 27.  Rana UA, Forsyth M, MacFarlane DR, Pringle JM 2012. Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells. Electrochim. Acta 84:213–22
    [Google Scholar]
  28. 28.  Chen L, Guo S-X, Li F, Bentley C, Horne M et al. 2016. Electrochemical reduction of CO2 at metal electrodes in a distillable ionic liquid. ChemSusChem 9:1271–78
    [Google Scholar]
  29. 29.  Seddon KR 1997. Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68:351–56
    [Google Scholar]
  30. 30.  MacFarlane DR, Seddon KR 2007. Ionic liquids—progress on the fundamental issues. Austr. J. Chem. 60:3–5
    [Google Scholar]
  31. 31.  Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B 2009. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8:621–29
    [Google Scholar]
  32. 32.  Zhang J, Bond AM 2005. Practical considerations associated with voltammetric studies in room temperature ionic liquids. Analyst 130:1132–47
    [Google Scholar]
  33. 33.  Migliore A, Polizzi NF, Therien MJ, Beratan DN 2014. Biochemistry and theory of proton-coupled electron transfer. Chem. Rev. 114:3381–465
    [Google Scholar]
  34. 34.  Kreuer KD 1996. Proton conductivity: materials and applications. Chem. Mater. 8:610–41
    [Google Scholar]
  35. 35.  Mikkelsen M, Jørgensen M, Krebs FC 2010. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3:43–81
    [Google Scholar]
  36. 36.  Chen L, Li F, Bentley CL, Horne M, Bond AM, Zhang J 2017. Electrochemical reduction of CO2 with an oxide-derived lead nano-coralline electrode in dimcarb. ChemElectroChem 4:1402–10
    [Google Scholar]
  37. 37.  Arico AS, Srinivasan S, Antonucci V 2001. DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–61
    [Google Scholar]
  38. 38.  Bard AJ, Fox MA 1995. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28:141–45
    [Google Scholar]
  39. 39.  Lee SY, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M 2010. Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J. Am. Chem. Soc. 132:9764–73
    [Google Scholar]
  40. 40.  Susan MABH, Noda A, Mitsushima S, Watanabe M 2003. Brønsted acid-base ionic liquids and their use as new materials for anhydrous proton conductors. Chem. Commun. 8:938–39
    [Google Scholar]
  41. 41.  Nakamoto H, Watanabe M 2007. Brønsted acid-base ionic liquids for fuel cell electrolytes. Chem. Commun. 24:2539–41
    [Google Scholar]
  42. 42.  Diaz M, Ortiz A, Ortiz I 2014. Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 469:379–96
    [Google Scholar]
  43. 43.  Silvester DS, Compton RG 2006. Electrochemistry in room temperature ionic liquids: a review and some possible applications. Z. Phys. Chem. 220:1247–74
    [Google Scholar]
  44. 44.  Perrin DD, Dempsey B, Serjeant EP 1981. pKa Prediction for Organic Acids and Bases New York: Chapman & Hall
  45. 45.  Barhdadi R, Troupel M, Comminges C, Laurent M, Doherty A 2012. Electrochemical determination of pKa of N-bases in ionic liquid media. J. Phys. Chem. B 116:277–82
    [Google Scholar]
  46. 46.  Campbell ML, Waite BA 1990. The Ka values of water and the hydronium ion for comparison with other acids. J. Chem. Educ. 67:386
    [Google Scholar]
  47. 47.  Deng H, Li X, Chu Y, He J, Cheng J-P 2012. Standard pKa scales of carbon-centered indicator acids in ionic liquids: effect of media and structural implication. J. Org. Chem. 77:7291–98
    [Google Scholar]
  48. 48.  Wang Z, Deng H, Li X, Ji PJ, Cheng JP 2013. Standard and absolute pKa scales of substituted benzoic acids in room temperature ionic liquids. J. Org. Chem. 78:12487–93
    [Google Scholar]
  49. 49.  Bordwell FG 1988. Equilibrium acidities in dimethyl sulfoxide solution. Acc. Chem. Res. 21:456–63
    [Google Scholar]
  50. 50.  Barrette WC, Johnson HW, Sawyer DT 1984. Voltammetric evaluation of the effective acidities (pKa′) for Brønsted acids in aprotic-solvents. Anal. Chem. 56:1890–98
    [Google Scholar]
  51. 51.  Slater AM 2014. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases. J. Comput.-Aided Mol. Des. 28:1031–34
    [Google Scholar]
  52. 52.  Haynes W 2014. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data Boca Raton, FL: CRC Press
  53. 53.  Kütt A, Leito I, Kaljurand I, Sooväli L, Vlasov VM et al. 2006. A comprehensive self-consistent spectrophotometric acidity scale of neutral Brønsted acids in acetonitrile. J. Org. Chem. 71:2829–38
    [Google Scholar]
  54. 54.  Treimer SE, Evans DH 1998. Electrochemical reduction of acids in dimethyl sulfoxide. CE mechanisms and beyond. J. Electroanal. Chem. 449:39–48
    [Google Scholar]
  55. 55.  Treimer SE, Evans DH 1998. Electrochemical reduction of acids in dimethyl sulfoxide. Comparison of weak C-H, N-H and O-H acids. J. Electroanal. Chem. 455:19–28
    [Google Scholar]
  56. 56.  Serjeant EP, Dempsey B 1979. Ionisation Constants of Organic Acids in Aqueous Solution Oxford, UK: Pergamon
  57. 57.  Qiang Z, Adams C 2004. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res 38:2874–90
    [Google Scholar]
  58. 58.  Kütt A, Rodima T, Saame J, Raamat E, Mäemets V et al. 2010. Equilibrium acidities of superacids. J. Org. Chem. 76:391–95
    [Google Scholar]
  59. 59.  Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J 2014. Mass transport studies and hydrogen evolution at a platinum electrode using bis(trifluoromethanesulfonyl)imide as the proton source in ionic liquids and conventional solvents. J. Phys. Chem. C 118:22439–49
    [Google Scholar]
  60. 60.  Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J 2015. Electrochemical proton reduction and equilibrium acidity (pKa) in aprotic ionic liquids: protonated amines and sulfonamide acids. J. Phys. Chem. C 119:21828–39
    [Google Scholar]
  61. 61.  Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J 2015. Electrochemical proton reduction and equilibrium acidity (pKa) in aprotic ionic liquids: phenols, carboxylic acids, and sulfonic acids. J. Phys. Chem. C 119:21840–51
    [Google Scholar]
  62. 62.  Mao C, Wang Z, Ji P, Cheng J-P 2015. Is amine a stronger base in ionic liquid than in common molecular solvent? An accurate basicity scale of amines. J. Org. Chem. 80:8384–89
    [Google Scholar]
  63. 63.  Wang Z, Li X, Ji P, Cheng JP 2016. Absolute pKas of sulfonamides in ionic liquids: comparisons to molecular solvents. J. Org. Chem. 81:11195–200
    [Google Scholar]
  64. 64.  Kanzaki R, Doi H, Song X, Hara S, Ishiguro S, Umebayashi Y 2012. Acid-base property of N-methylimidazolium-based protic ionic liquids depending on anion. J. Phys. Chem. B 116:14146–52
    [Google Scholar]
  65. 65.  Kanzaki R, Kodamatani H, Tomiyasu T, Watanabe H, Umebayashi Y 2016. A pH scale for the protic ionic liquid ethylammonium nitrate. Angew. Chem. Int. Ed. 55:6266–69
    [Google Scholar]
  66. 66.  Kanzaki R, Uchida K, Hara S, Umebayashi Y, Ishiguro S, Nomura S 2007. Acid-base property of ethylammonium nitrate ionic liquid directly obtained using ion-selective field effect transistor electrode. Chem. Lett. 36:684–85
    [Google Scholar]
  67. 67.  Bard AJ, Faulkner LR 2001. Electrochemical Methods: Fundamentals and Applications New York: Wiley
  68. 68.  Compton RG, Banks CE 2007. Understanding Voltammetry London: World Sci.
  69. 69.  Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J 2012. Advantages available in the application of the semi-integral electroanalysis technique for the determination of diffusion coefficients in the highly viscous ionic liquid 1-methyl-3-octylimidazolium hexafluorophosphate. Anal. Chem. 85:2239–45
    [Google Scholar]
  70. 70.  Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J 2014. Applications of convolution voltammetry in electroanalytical chemistry. Anal. Chem. 86:2073–81
    [Google Scholar]
  71. 71.  Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J 2015. Electroanalytical applications of semiintegral and convolution voltammetry in room-temperature ionic liquids. Electrochemistry in Ionic Liquids AAJ Torriero 143–67 Berlin: Springer Int.
    [Google Scholar]
  72. 72.  Rogers EI, Silvester DS, Poole DL, Aldous L, Hardacre C, Compton RG 2008. Voltammetric characterization of the ferrocene|ferrocenium and cobaltocenium|cobaltocene redox couples in RTILs. J. Phys. Chem. C 112:2729–35
    [Google Scholar]
  73. 73.  Gritzner G, Kuta J 1984. Recommendations on reporting electrode-potentials in nonaqueous solvents. Pure Appl. Chem. 56:461–66
    [Google Scholar]
  74. 74.  Stojanovic RS, Bond AM 1993. Examination of conditions under which the reduction of the cobaltocenium cation can be used as a standard voltammetric reference process in organic and aqueous solvents. Anal. Chem. 65:56–64
    [Google Scholar]
  75. 75.  Bentley CL, Li J, Bond AM, Zhang J 2016. Mass-transport and heterogeneous electron-transfer kinetics associated with the ferrocene/ferrocenium process in ionic liquids. J. Phys. Chem. C 120:16516–25
    [Google Scholar]
  76. 76.  Jaworski A, Donten M, Stojek Z, Osteryoung JG 1999. Conditions of strict voltammetric reversibility of the H+/H2 couple at platinum electrodes. Anal. Chem. 71:243–46
    [Google Scholar]
  77. 77.  Shuman MS 1969. Nonunity electrode reaction orders and stationary electrode polarography. Anal. Chem. 41:142–46
    [Google Scholar]
  78. 78.  Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J 2015. Voltammetric determination of the iodide/iodine formal potential and triiodide stability constant in conventional and ionic liquid media. J. Phys. Chem. C 119:22392–403
    [Google Scholar]
  79. 79.  Barrette WC, Sawyer DT 1984. Determination of dissolved hydrogen and effects of media and electrode materials on the electrochemical oxidation of molecular-hydrogen. Anal. Chem. 56:653–57
    [Google Scholar]
  80. 80.  Meng Y, Aldous L, Belding SR, Compton RG 2012. The hydrogen evolution reaction in a room temperature ionic liquid: mechanism and electrocatalyst trends. Phys. Chem. Chem. Phys. 14:5222–28
    [Google Scholar]
  81. 81.  Meng Y, Aldous L, Belding SR, Compton RG 2012. The formal potentials and electrode kinetics of the proton/hydrogen couple in various room temperature ionic liquids. Chem. Commun. 48:5572–74
    [Google Scholar]
  82. 82.  Kibler LA 2006. Hydrogen electrocatalysis. ChemPhysChem 7:985–91
    [Google Scholar]
  83. 83.  Conway BE, Tilak BV 2002. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47:3571–94
    [Google Scholar]
  84. 84.  Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK 2006. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5:909–13
    [Google Scholar]
  85. 85.  Trasatti S 1972. Work function, electronegativity, and electrochemical behavior of metals. III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. 39:163–84
    [Google Scholar]
  86. 86.  Rieger PH 1994. Electrochemistry New York: Chapman & Hall
  87. 87.  Silvester DS, Aldous L, Hardacre C, Compton RG 2007. An electrochemical study of the oxidation of hydrogen at platinum electrodes in several room temperature ionic liquids. J. Phys. Chem. B 111:5000–7
    [Google Scholar]
  88. 88.  Silvester DS, Ward KR, Aldous L, Hardacre C, Compton RG 2008. The electrochemical oxidation of hydrogen at activated platinum electrodes in room temperature ionic liquids as solvents. J. Electroanal. Chem. 618:53–60
    [Google Scholar]
  89. 89.  Del Popolo MG, Kohanoff J, Lynden-Bell RM 2006. Solvation structure and transport of acidic protons in ionic liquids: a first-principles simulation study. J. Phys. Chem. B 110:8798–803
    [Google Scholar]
  90. 90.  Navarro-Suárez AM, Hidalgo-Acosta JC, Fadini L, Feliu JM, Suárez-Herrera MF 2011. Electrochemical oxidation of hydrogen on basal plane platinum electrodes in imidazolium ionic liquids. J. Phys. Chem. C 115:11147–55
    [Google Scholar]
  91. 91.  Tang YA, Lin L, Kumar A, Guo M, Sevilla M, Zeng XQ 2017. Hydrogen electrooxidation in ionic liquids catalyzed by the NTf2 radical. J. Phys. Chem. C 121:5161–67
    [Google Scholar]
  92. 92.  Johnson L, Ejigu A, Licence P, Walsh DA 2012. Hydrogen oxidation and oxygen reduction at platinum in protic ionic liquids. J. Phys. Chem. C 116:18048–56
    [Google Scholar]
  93. 93.  Ejigu A, Walsh DA 2014. The role of adsorbed ions during electrocatalysis in ionic liquids. J. Phys. Chem. C 118:7414–22
    [Google Scholar]
  94. 94.  Goodwin SE, Walsh DA 2016. Hydrogen electrooxidation under conditions of high mass transport in room-temperature ionic liquids and the role of underpotential-deposited hydrogen. J. Phys. Chem. C 120:11498–507
    [Google Scholar]
  95. 95.  Aldous L, Silvester DS, Pitner WR, Compton RG, Lagunas MC, Hardacre C 2007. Voltammetric studies of gold, protons, and HCl2 in ionic liquids. J. Phys. Chem. C 111:8496–503
    [Google Scholar]
  96. 96.  Meng Y, Aldous L, Compton RG 2011. Electrochemistry of hydrogen in the room temperature ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide: dissolved hydrogen “lubricates” diffusional transport. J. Phys. Chem. C 115:14334–40
    [Google Scholar]
  97. 97.  He W, Silvester DS, Streeter I, Aldous L, Hardacre C, Compton RG 2009. Measuring the solubility of benzoic acid in room temperature ionic liquids using chronoamperometric techniques. J. Phys. Org. Chem. 22:69–76
    [Google Scholar]
  98. 98.  Silvester DS, He W, Aldous L, Hardacre C, Compton RG 2008. Electrochemical reduction of benzoic acid and substituted benzoic acids in some room temperature ionic liquids. J. Phys. Chem. C 112:12966–73
    [Google Scholar]
  99. 99.  Meng Y, Norman S, Hardacre C, Compton RG 2013. The electroreduction of benzoic acid: voltammetric observation of adsorbed hydrogen at a platinum microelectrode in room temperature ionic liquids. Phys. Chem. Chem. Phys. 15:2031–36
    [Google Scholar]
  100. 100.  Goodwin SE, Smith DE, Gibson JS, Jones RG, Walsh DA 2017. Electroanalysis of neutral precursors in protic ionic liquids and synthesis of high-ionicity ionic liquids. Langmuir 33:8436–46
    [Google Scholar]
  101. 101.  Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J 2014. Electrode reaction and mass-transport mechanisms associated with the iodide/triiodide couple in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide. J. Phys. Chem. C 118:29663–73
    [Google Scholar]
  102. 102.  Grenness M, Oldham KB 1972. Semiintegral electroanalysis: theory and verification. Anal. Chem. 44:1121–29
    [Google Scholar]
  103. 103.  Bordwell FG, McCallum RJ, Olmstead WN 1984. Acidities and hydrogen-bonding of phenols in dimethylsulfoxide. J. Org. Chem. 49:1424–27
    [Google Scholar]
  104. 104.  Roses M 1994. Ionic equilibria in nonaqueous solvents. 3. Effect of homoconjugation. Anal. Chim. Acta 285:391–99
    [Google Scholar]
  105. 105.  Zielinska J, Makowski M, Maj K, Liwo A, Chmurzynski L 1999. Acid-base and hydrogen-bonding equilibria in aliphatic amine and carboxylic acid systems in non-aqueous solutions. Anal. Chim. Acta 401:317–21
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-010022
Loading
/content/journals/10.1146/annurev-anchem-061417-010022
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error