1932

Abstract

Neuronal transmission relies on electrical signals and the transfer of chemical signals from one neuron to another. Chemical messages are transmitted from presynaptic neurons to neighboring neurons through the triggered fusion of neurotransmitter-filled vesicles with the cell plasma membrane. This process, known as exocytosis, involves the rapid release of neurotransmitter solutions that are detected with high affinity by the postsynaptic neuron. The type and number of neurotransmitters released and the frequency of vesicular events govern brain functions such as cognition, decision making, learning, and memory. Therefore, to understand neurotransmitters and neuronal function, analytical tools capable of quantitative and chemically selective detection of neurotransmitters with high spatiotemporal resolution are needed. Electrochemistry offers powerful techniques that are sufficiently rapid to allow for the detection of exocytosis activity and provides quantitative measurements of vesicle neurotransmitter content and neurotransmitter release from individual vesicle events. In this review, we provide an overview of the most commonly used electrochemical methods for monitoring single-vesicle events, including recent developments and what is needed for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-010032
2020-06-12
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-061417-010032.html?itemId=/content/journals/10.1146/annurev-anchem-061417-010032&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Albillos A, Dernick G, Horstmann H, Almers W, de Toledo GA, Lindau M 1997. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389:6650509–12
    [Google Scholar]
  2. 2. 
    Dunevall J, Fathali H, Najafinobar N, Lovric J, Wigström J et al. 2015. Characterizing the catecholamine content of single mammalian vesicles by collision-adsorption events at an electrode. J. Am. Chem. Soc. 137:134344–46
    [Google Scholar]
  3. 3. 
    Merighi A. 2018. Costorage of high molecular weight neurotransmitters in large dense core vesicles of mammalian neurons. Front. Cell. Neurosci. 12:272
    [Google Scholar]
  4. 4. 
    Winkler H, Fischer-Colbrie R. 1998. Regulation of the biosynthesis of large dense-core vesicles in chromaffin cells and neurons. Cell. Mol. Neurobiol. 18:2193–209
    [Google Scholar]
  5. 5. 
    Cortès-Saladelafont E, Tristán-Noguero A, Artuch R, Altafaj X, Bayès A, García-Cazorla A 2016. Diseases of the synaptic vesicle: a potential new group of neurometabolic disorders affecting neurotransmission. Semin. Pediatr. Neurol. 23:4306–20
    [Google Scholar]
  6. 6. 
    Chen YA, Scheller RH. 2001. SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell Biol. 2:298–106
    [Google Scholar]
  7. 7. 
    del Castillo J, Katz B 1954. Quantal components of the end-plate potential. J. Physiol. 124:3560–73
    [Google Scholar]
  8. 8. 
    Ren L, Mellander LJ, Keighron J, Cans A-S, Kurczy ME et al. 2016. The evidence for open and closed exocytosis as the primary release mechanism. Q. Rev. Biophys. 49:e12
    [Google Scholar]
  9. 9. 
    Fatt P, Katz B. 1952. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. 117:1109–28
    [Google Scholar]
  10. 10. 
    Mainen ZF, Malinow R, Svoboda K 1999. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399:6732151–55
    [Google Scholar]
  11. 11. 
    Yamashita T, Tohyama M. 2003. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat. Neurosci. 6:5461–67
    [Google Scholar]
  12. 12. 
    Amatore C, Bouret Y, Travis ER, Wightman RM 2000. Interplay between membrane dynamics, diffusion and swelling pressure governs individual vesicular exocytotic events during release of adrenaline by chromaffin cells. Biochimie 82:5481–96
    [Google Scholar]
  13. 13. 
    Artalejo CR, Elhamdani A, Palfrey HC 1998. Secretion: dense-core vesicles can kiss-and-run too. Curr. Biol. 8:2R62–65
    [Google Scholar]
  14. 14. 
    Omiatek DM, Dong Y, Heien ML, Ewing AG 2010. Only a fraction of quantal content is released during exocytosis as revealed by electrochemical cytometry of secretory vesicles. ACS Chem. Neurosci. 1:3234–45
    [Google Scholar]
  15. 15. 
    Omiatek DM, Santillo MF, Heien ML, Ewing AG 2009. Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles. Anal. Chem. 81:62294–302
    [Google Scholar]
  16. 16. 
    Staal RGW, Mosharov EV, Sulzer D 2004. Dopamine neurons release transmitter via a flickering fusion pore. Nat. Neurosci. 7:4341–46
    [Google Scholar]
  17. 17. 
    Wu X-S, Wu L-G. 2014. The yin and yang of calcium effects on synaptic vesicle endocytosis. J. Neurosci. 34:72652–59
    [Google Scholar]
  18. 18. 
    Kissinger PT, Hart JB, Adams RN 1973. Voltammetry in brain tissue—a new neurophysiological measurement. Brain Res 55:1209–13
    [Google Scholar]
  19. 19. 
    Adams RN. 1976. Probing brain chemistry with electroanalytical techniques. Anal. Chem. 48:141126A–38A
    [Google Scholar]
  20. 20. 
    Cahill PS, Walker QD, Finnegan JM, Mickelson GE, Travis ER, Wightman RM 1996. Microelectrodes for the measurement of catecholamines in biological systems. Anal. Chem. 68:183180–86
    [Google Scholar]
  21. 21. 
    Bucher ES, Wightman RM. 2015. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. 8:239–61
    [Google Scholar]
  22. 22. 
    Ponchon JL, Cespuglio R, Gonon F, Jouvet M, Pujol JF 1979. Normal pulse polarography with carbon fiber electrodes for in vitro and in vivo determination of catecholamines. Anal. Chem. 51:91483–86
    [Google Scholar]
  23. 23. 
    Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol J-F 1980. In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC. ? Nature 286:5776902–4
    [Google Scholar]
  24. 24. 
    Leszczyszyn DJ, Jankowski JA, Viveros OH, Diliberto EJ, Near JA, Wightman RM 1991. Secretion of catecholamines from individual adrenal medullary chromaffin cells. J. Neurochem. 56:61855–63
    [Google Scholar]
  25. 25. 
    Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ et al. 1991. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. PNAS 88:2310754–58
    [Google Scholar]
  26. 26. 
    Roberts JG, Sombers LA. 2018. Fast-scan cyclic voltammetry chemical sensing in the brain and beyond. Anal. Chem. 90:1490–504
    [Google Scholar]
  27. 27. 
    Varner EL, Jaquins-Gerstl A, Michael AC 2016. Enhanced intracranial microdialysis by reduction of traumatic penetration injury at the probe track. ACS Chem. Neurosci. 7:6728–36
    [Google Scholar]
  28. 28. 
    Bath BD, Martin HB, Wightman RM, Anderson MR 2001. Dopamine adsorption at surface modified carbon-fiber electrodes. Langmuir 17:227032–39
    [Google Scholar]
  29. 29. 
    Dayton MA, Brown JC, Stutts KJ, Wightman RM 1980. Faradaic electrochemistry at microvoltammetric electrodes. Anal. Chem. 52:6946–50
    [Google Scholar]
  30. 30. 
    Strein TG, Ewing AG. 1992. Characterization of submicron-sized carbon electrodes insulated with a phenol-allylphenol copolymer. Anal. Chem. 64:131368–73
    [Google Scholar]
  31. 31. 
    Adams KL, Jena BK, Percival SJ, Zhang B 2011. Highly sensitive detection of exocytotic dopamine release using a gold-nanoparticle-network microelectrode. Anal. Chem. 83:3920–27
    [Google Scholar]
  32. 32. 
    Li Y-T, Zhang S-H, Wang L, Xiao R-R, Liu W et al. 2014. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angew. Chem. Int. Ed. 53:4612456–60
    [Google Scholar]
  33. 33. 
    Strand AM, Venton BJ. 2008. Flame etching enhances the sensitivity of carbon-fiber microelectrodes. Anal. Chem. 80:103708–15
    [Google Scholar]
  34. 34. 
    Yang C, Hu K, Wang D, Zubi Y, Lee ST et al. 2019. Cavity carbon-nanopipette electrodes for dopamine detection. Anal. Chem. 91:74618–24
    [Google Scholar]
  35. 35. 
    Arrigan DWM. 2004. Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129:121157–65
    [Google Scholar]
  36. 36. 
    Gerhardt GA, Oke AF, Nagy G, Moghaddam B, Adams RN 1984. Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res 290:2390–95
    [Google Scholar]
  37. 37. 
    Huang W-H, Pang D-W, Tong H, Wang Z-L, Cheng J-K 2001. A method for the fabrication of low-noise carbon fiber nanoelectrodes. Anal. Chem. 73:51048–52
    [Google Scholar]
  38. 38. 
    Zhang B, Galusha J, Shiozawa PG, Wang G, Bergren AJ et al. 2007. Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Anal. Chem. 79:134778–87
    [Google Scholar]
  39. 39. 
    Wang Y, Mishra D, Bergman J, Keighron JD, Skibicka KP, Cans A-S 2019. Ultrafast glutamate biosensor recordings in brain slices reveal complex single exocytosis transients. ACS Chem. Neurosci. 10:31744–52
    [Google Scholar]
  40. 40. 
    Pothos EN, Davila V, Sulzer D 1998. Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci. 18:114106–18
    [Google Scholar]
  41. 41. 
    Zhou Z, Misler S. 1995. Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons. PNAS 92:156938–42
    [Google Scholar]
  42. 42. 
    Chen G, Ewing AG. 1995. Multiple classes of catecholamine vesicles observed during exocytosis from the Planorbis cell body. Brain Res 701:1–2167–74
    [Google Scholar]
  43. 43. 
    Bruns D, Jahn R. 1995. Real-time measurement of transmitter release from single synaptic vesicles. Nature 377:654462–65
    [Google Scholar]
  44. 44. 
    Finnegan JM, Pihel K, Cahill PS, Huang L, Zerby SE et al. 2002. Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic β-cells. J. Neurochem. 66:51914–23
    [Google Scholar]
  45. 45. 
    Borisovska M, Zhao Y, Tsytsyura Y, Glyvuk N, Takamori S et al. 2005. v-SNAREs control exocytosis of vesicles from priming to fusion. EMBO J 24:122114–26
    [Google Scholar]
  46. 46. 
    Archer DA, Graham ME, Burgoyne RD 2002. Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis. J. Biol. Chem. 277:2118249–52
    [Google Scholar]
  47. 47. 
    Ngatchou AN, Kisler K, Fang Q, Walter AM, Zhao Y et al. 2010. Role of the synaptobrevin C terminus in fusion pore formation. PNAS 107:4318463–68
    [Google Scholar]
  48. 48. 
    Hochstetler SE, Puopolo M, Gustincich S, Raviola E, Wightman RM 2000. Real-time amperometric measurements of zeptomole quantities of dopamine released from neurons. Anal. Chem. 72:3489–96
    [Google Scholar]
  49. 49. 
    Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M et al. 2006. Molecular anatomy of a trafficking organelle. Cell 127:4831–46
    [Google Scholar]
  50. 50. 
    Mosharov EV, Sulzer D. 2005. Analysis of exocytotic events recorded by amperometry. Nat. Methods 2:9651–58
    [Google Scholar]
  51. 51. 
    Amatore C, Arbault S, Bonifas I, Bouret Y, Erard M et al. 2005. Correlation between vesicle quantal size and fusion pore release in chromaffin cell exocytosis. Biophys. J. 88:64411–20
    [Google Scholar]
  52. 52. 
    Amatore C, Arbault S, Bonifas I, Guille M 2009. Quantitative investigations of amperometric spike feet suggest different controlling factors of the fusion pore in exocytosis at chromaffin cells. Biophys. Chem. 143:3124–31
    [Google Scholar]
  53. 53. 
    Heuser JE. 1981. Structural changes after transmitter release at the frog neuromuscular junction. J. Cell Biol. 88:3564–80
    [Google Scholar]
  54. 54. 
    de Toledo GA, Fernández-Chacón R, Fernández JM 1993. Release of secretory products during transient vesicle fusion. Nature 363:6429554–58
    [Google Scholar]
  55. 55. 
    Alés E, Tabares L, Poyato JM, Valero V, Lindau M, de Toledo GA 1999. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat. Cell Biol. 1:140–44
    [Google Scholar]
  56. 56. 
    Amatore C, Oleinick AI, Svir I 2010. Reconstruction of aperture functions during full fusion in vesicular exocytosis of neurotransmitters. Chem. Phys. Chem. 11:1159–74
    [Google Scholar]
  57. 57. 
    Neher E, Marty A. 1982. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. PNAS 79:216712–16
    [Google Scholar]
  58. 58. 
    Omiatek DM, Bressler AJ, Cans A-S, Andrews AM, Heien ML, Ewing AG 2013. The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci. Rep. 3:1447
    [Google Scholar]
  59. 59. 
    Robitaille R, Tremblay JP. 1987. Non-uniform release at the frog neuromuscular junction: evidence of morphological and physiological plasticity. Brain Res. Rev. 12:195–116
    [Google Scholar]
  60. 60. 
    Zhang Q, Cao Y-Q, Tsien RW 2007. Quantum dots provide an optical signal specific to full collapse fusion of synaptic vesicles. PNAS 104:4517843–48
    [Google Scholar]
  61. 61. 
    Ryan TA. 2003. Kiss-and-run, fuse-pinch-and-linger, fuse-and-collapse: the life and times of a neurosecretory granule. PNAS 100:52171–73
    [Google Scholar]
  62. 62. 
    Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W 2003. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. PNAS 100:42070–75
    [Google Scholar]
  63. 63. 
    Alabi AA, Tsien RW. 2013. Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu. Rev. Physiol. 75:393–422
    [Google Scholar]
  64. 64. 
    Mellander LJ, Trouillon R, Svensson MI, Ewing AG 2012. Amperometric post spike feet reveal most exocytosis is via extended kiss-and-run fusion. Sci. Rep. 2:1907
    [Google Scholar]
  65. 65. 
    van Kempen GTH, VanderLeest HT, van den Berg RJ, Eilers P, Westerink RHS 2011. Three distinct modes of exocytosis revealed by amperometry in neuroendocrine cells. Biophys. J. 100:4968–77
    [Google Scholar]
  66. 66. 
    Zhou Z, Misler S, Chow RH 1996. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys. J. 70:31543–52
    [Google Scholar]
  67. 67. 
    Li X, Majdi S, Dunevall J, Fathali H, Ewing AG 2015. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes. Angew. Chem. Int. Ed. 54:4111978–82
    [Google Scholar]
  68. 68. 
    Kozminski KD, Gutman DA, Davila V, Sulzer D, Ewing AG 1998. Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells. Anal. Chem. 70:153123–30
    [Google Scholar]
  69. 69. 
    Pothos EN, Przedborski S, Davila V, Schmitz Y, Sulzer D 1998. D2-like dopamine autoreceptor activation reduces quantal size in PC12 cells. J. Neurosci. 18:155575–85
    [Google Scholar]
  70. 70. 
    Pothos EN, Larsen KE, Krantz DE, Liu Y, Haycock JW et al. 2000. Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. J. Neurosci. 20:197297–306
    [Google Scholar]
  71. 71. 
    Colliver TL, Pyott SJ, Achalabun M, Ewing AG 2000. VMAT-mediated changes in quantal size and vesicular volume. J. Neurosci. 20:145276–82
    [Google Scholar]
  72. 72. 
    Oberhauser AF, Robinson IM, Fernandez JM 1996. Simultaneous capacitance and amperometric measurements of exocytosis: a comparison. Biophys. J. 71:21131–39
    [Google Scholar]
  73. 73. 
    Dernick G, Gong L-W, Tabares L, de Toledo GA, Lindau M 2005. Patch amperometry: high-resolution measurements of single-vesicle fusion and release. Nat. Methods 2:9699–708
    [Google Scholar]
  74. 74. 
    Borges R, Camacho M, Gillis KD 2007. Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods. Acta Physiol 192:2173–84
    [Google Scholar]
  75. 75. 
    Gong L-W, de Toledo GA, Lindau M 2007. Exocytotic catecholamine release is not associated with cation flux through channels in the vesicle membrane but Na+ influx through the fusion pore. Nat. Cell Biol. 9:8915–22
    [Google Scholar]
  76. 76. 
    Najafinobar N, Lovrić J, Majdi S, Dunevall J, Cans A-S, Ewing A 2016. Excited fluorophores enhance the opening of vesicles at electrode surfaces in vesicle electrochemical cytometry. Angew. Chem. Int. Ed. 55:4815081–85
    [Google Scholar]
  77. 77. 
    Wang Y, Fathali H, Mishra D, Olsson T, Keighron JD et al. 2019. Counting the number of glutamate molecules in single synaptic vesicles. J. Am. Chem. Soc. 141:4417507–11
    [Google Scholar]
  78. 78. 
    Lovrić J, Najafinobar N, Dunevall J, Majdi S, Svir I et al. 2016. On the mechanism of electrochemical vesicle cytometry: chromaffin cell vesicles and liposomes. Faraday Discuss 193:65–79
    [Google Scholar]
  79. 79. 
    Fathali H, Dunevall J, Majdi S, Cans A-S 2017. Extracellular osmotic stress reduces the vesicle size while keeping a constant neurotransmitter concentration. ACS Chem. Neurosci. 8:2368–75
    [Google Scholar]
  80. 80. 
    Li X, Dunevall J, Ewing AG 2016. Quantitative chemical measurements of vesicular transmitters with electrochemical cytometry. Acc. Chem. Res. 49:102347–54
    [Google Scholar]
  81. 81. 
    Lovrić J, Dunevall J, Larsson A, Ren L, Andersson S et al. 2017. Nano secondary ion mass spectrometry imaging of dopamine distribution across nanometer vesicles. ACS Nano 11:43446–55
    [Google Scholar]
  82. 82. 
    Li X, Dunevall J, Ewing AG 2016. Using single-cell amperometry to reveal how cisplatin treatment modulates the release of catecholamine transmitters during exocytosis. Angew. Chem. Int. Ed. 55:319041–44
    [Google Scholar]
  83. 83. 
    Ren L, Pour MD, Majdi S, Li X, Malmberg P, Ewing AG 2017. Zinc regulates chemical-transmitter storage in nanometer vesicles and exocytosis dynamics as measured by amperometry. Angew. Chem. Int. Ed. 56:184970–75
    [Google Scholar]
  84. 84. 
    Ye D, Ewing A. 2018. On the action of general anesthetics on cellular function: barbiturate alters the exocytosis of catecholamines in a model cell system. Chem. Phys. Chem. 19:101173–79
    [Google Scholar]
  85. 85. 
    Li X, Mohammadi AS, Ewing AG 2016. Single cell amperometry reveals curcuminoids modulate the release of neurotransmitters during exocytosis from PC12 cells. J. Electroanal. Chem. 781:30–35
    [Google Scholar]
  86. 86. 
    Deleted in proof
  87. 87. 
    Fathali H, Dunevall J, Majdi S, Cans A-S 2018. Monitoring the effect of osmotic stress on secretory vesicles and exocytosis. J. Vis. Exp. 132:e56537
    [Google Scholar]
  88. 88. 
    Tamiya E, Karube I. 1992. Ultramicrobiosensors for monitoring of neurotransmitters. Ann. N. Y. Acad. Sci. 672:1272–77
    [Google Scholar]
  89. 89. 
    Sassolas A, Blum LJ, Leca-Bouvier BD 2012. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30:3489–511
    [Google Scholar]
  90. 90. 
    Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A 2013. Nanomaterials for bio-functionalized electrodes: recent trends. J. Mater. Chem. B 1:384878–908
    [Google Scholar]
  91. 91. 
    Sapountzi E, Braiek M, Chateaux J-F, Jaffrezic-Renault N, Lagarde F 2017. Recent advances in electrospun nanofiber interfaces for biosensing devices. Sensors 17:81887
    [Google Scholar]
  92. 92. 
    Wallace GG, Smyth M, Zhao H 1999. Conducting electroactive polymer-based biosensors. Trends Anal. Chem. 18:4245–51
    [Google Scholar]
  93. 93. 
    Weltin A, Kieninger J, Urban GA 2016. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications. Anal. Bioanal. Chem. 408:174503–21
    [Google Scholar]
  94. 94. 
    Burmeister JJ, Palmer M, Gerhardt GA 2003. Ceramic-based multisite microelectrode array for rapid choline measures in brain tissue. Anal. Chim. Acta 481:165–74
    [Google Scholar]
  95. 95. 
    Burmeister JJ, Pomerleau F, Huettl P, Gash CR, Werner CE et al. 2008. Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS. Biosens. Bioelectron. 23:91382–89
    [Google Scholar]
  96. 96. 
    Burmeister JJ, Moxon K, Gerhardt GA 2000. Ceramic-based multisite microelectrodes for electrochemical recordings. Anal. Chem. 72:1187–92
    [Google Scholar]
  97. 97. 
    Wassum KM, Tolosa VM, Tseng TC, Balleine BW, Monbouquette HG, Maidment NT 2012. Transient extracellular glutamate events in the basolateral amygdala track reward-seeking actions. J. Neurosci. 32:82734–46
    [Google Scholar]
  98. 98. 
    Bruno JP, Gash C, Martin B, Zmarowski A, Pomerleau F et al. 2006. Second-by-second measurement of acetylcholine release in prefrontal cortex. Eur. J. Neurosci. 24:102749–57
    [Google Scholar]
  99. 99. 
    Wilson GS, Gifford R. 2005. Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20:122388–403
    [Google Scholar]
  100. 100. 
    Hascup ER, Pomerleau F, Huettl P, Gerhardt GA, Hascup KN 2008. Second-by-second measures of l-glutamate in the prefrontal cortex and striatum of freely moving mice. J. Pharmacol. Exp. Ther. 324:2725–31
    [Google Scholar]
  101. 101. 
    Parikh V, Pomerleau F, Huettl P, Gerhardt GA, Sarter M, Bruno JP 2004. Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels. Eur. J. Neurosci. 20:61545–54
    [Google Scholar]
  102. 102. 
    Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S et al. 2001. Neuroscience Sunderland, MA: Sinauer Assoc. , 2nd ed.. https://www.ncbi.nlm.nih.gov/books/NBK10807/
    [Google Scholar]
  103. 103. 
    Zhou Y, Danbolt NC. 2014. Glutamate as a neurotransmitter in the healthy brain. J. Neur. Transm. 121:8799–817
    [Google Scholar]
  104. 104. 
    Quintero JE, Pomerleau F, Huettl P, Johnson KW, Offord J, Gerhardt GA 2011. Methodology for rapid measures of glutamate release in rat brain slices using ceramic-based microelectrode arrays: basic characterization and drug pharmacology. Brain Res 1401:1–9
    [Google Scholar]
  105. 105. 
    Keighron JD, Åkesson S, Cans A-S 2014. Coimmobilization of acetylcholinesterase and choline oxidase on gold nanoparticles: stoichiometry, activity, and reaction efficiency. Langmuir 30:3811348–55
    [Google Scholar]
  106. 106. 
    Wang Y, Jonkute R, Lindmark H, Keighron JD, Cans A-S 2020. Molecular crowding and a minimal footprint at a gold nanoparticle support stabilize glucose oxidase and boost its activity. Langmuir 36:137–46
    [Google Scholar]
  107. 107. 
    Keighron JD, Wigström J, Kurczy ME, Bergman J, Wang Y, Cans A-S 2015. Amperometric detection of single vesicle acetylcholine release events from an artificial cell. ACS Chem. Neurosci. 6:1181–88
    [Google Scholar]
  108. 108. 
    Clay M, Monbouquette HG. 2018. A detailed model of electroenzymatic glutamate biosensors to aid in sensor optimization and in applications in vivo. ACS Chem. Neurosci. 9:2241–51
    [Google Scholar]
  109. 109. 
    Schroeder TJ, Jankowski JA, Senyshyn J, Holz RW, Wightman RM 1994. Zones of exocytotic release on bovine adrenal medullary cells in culture. J. Biol. Chem. 269:2517215–20
    [Google Scholar]
  110. 110. 
    Zhang B, Adams KL, Luber SJ, Eves DJ, Heien ML, Ewing AG 2008. Spatially and temporally resolved single-cell exocytosis utilizing individually addressable carbon microelectrode arrays. Anal. Chem. 80:51394–400
    [Google Scholar]
  111. 111. 
    Lin Y, Trouillon R, Svensson MI, Keighron JD, Cans A-S, Ewing AG 2012. Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis: fabrication and characterization. Anal. Chem. 84:62949–54
    [Google Scholar]
  112. 112. 
    Hafez I, Kisler K, Berberian K, Dernick G, Valero V et al. 2005. Electrochemical imaging of fusion pore openings by electrochemical detector arrays. PNAS 102:3913879–84
    [Google Scholar]
  113. 113. 
    Gosso S, Turturici M, Franchino C, Colombo E, Pasquarelli A et al. 2014. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays. J. Physiol. 592:153215–30
    [Google Scholar]
  114. 114. 
    Wang J, Ewing AG. 2014. Simultaneous study of subcellular exocytosis with individually addressable multiple microelectrodes. Analyst 139:133290–95
    [Google Scholar]
  115. 115. 
    Wang J, Trouillon R, Lin Y, Svensson MI, Ewing AG 2013. Individually addressable thin-film ultramicroelectrode array for spatial measurements of single vesicle release. Anal. Chem. 85:115600–8
    [Google Scholar]
  116. 116. 
    Tomagra G, Picollo F, Battiato A, Picconi B, De Marchis S et al. 2019. Quantal release of dopamine and action potential firing detected in midbrain neurons by multifunctional diamond-based microarrays. Front. Neurosci. 13:288
    [Google Scholar]
  117. 117. 
    Picollo F, Battiato A, Bernardi E, Marcantoni A, Pasquarelli A et al. 2016. Microelectrode arrays of diamond-insulated graphitic channels for real-time detection of exocytotic events from cultured chromaffin cells and slices of adrenal glands. Anal. Chem. 88:7493–99
    [Google Scholar]
  118. 118. 
    Picollo F, Battiato A, Bernardi E, Plaitano M, Franchino C et al. 2016. All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters. Sci. Rep. 6:120682
    [Google Scholar]
  119. 119. 
    Carabelli V, Gosso S, Marcantoni A, Xu Y, Colombo E et al. 2010. Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells. Biosens. Bioelectron. 26:192–98
    [Google Scholar]
  120. 120. 
    Wigström J, Dunevall J, Najafinobar N, Lovrić J, Wang J et al. 2016. Lithographic microfabrication of a 16-electrode array on a probe tip for high spatial resolution electrochemical localization of exocytosis. Anal. Chem. 88:42080–87
    [Google Scholar]
  121. 121. 
    Granado TC, Neusser G, Kranz C, Filho JBD, Carabelli V et al. 2015. Progress in transparent diamond microelectrode arrays. Phys. Status Solidi 212:112445–53
    [Google Scholar]
  122. 122. 
    Picollo F, Battiato A, Bernardi E, Boarino L, Enrico E et al. 2015. Realization of a diamond based high density multi electrode array by means of deep ion beam lithography. Nucl. Instrum. Methods Phys. Res. B 348:199–202
    [Google Scholar]
  123. 123. 
    Zachek MK, Park J, Takmakov P, Wightman RM, McCarty GS 2010. Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release. Analyst 135:71556–63
    [Google Scholar]
  124. 124. 
    Urbina FL, Gomez SM, Gupton SL 2018. Spatiotemporal organization of exocytosis emerges during neuronal shape change. J. Cell Biol. 217:31113–28
    [Google Scholar]
  125. 125. 
    Keighron JD, Ewing AG, Cans A-S 2012. Analytical tools to monitor exocytosis: a focus on new fluorescent probes and methods. Analyst 137:81755–63
    [Google Scholar]
  126. 126. 
    Meunier A, Jouannot O, Fulcrand R, Fanget I, Bretou M et al. 2011. Coupling amperometry and total internal reflection fluorescence microscopy at ITO surfaces for monitoring exocytosis of single vesicles. Angew. Chem. Int. Ed. 50:225081–84
    [Google Scholar]
  127. 127. 
    Camacho M, Machado JD, Alvarez J, Borges R 2008. Intravesicular calcium release mediates the motion and exocytosis of secretory organelles. J. Biol. Chem. 283:3322383–89
    [Google Scholar]
  128. 128. 
    Kisler K, Kim BN, Liu X, Berberian K, Fang Q et al. 2012. Transparent electrode materials for simultaneous amperometric detection of exocytosis and fluorescence microscopy. J. Biomater. Nanobiotechnol. 3:2243–53
    [Google Scholar]
  129. 129. 
    Zhang L, Liu XA, Gillis KD, Glass TE 2019. A high-affinity fluorescent sensor for catecholamine: application to monitoring norepinephrine exocytosis. Angew. Chem. Int. Ed. 58:237611–14
    [Google Scholar]
  130. 130. 
    Zhao Y, Fang Q, Herbst AD, Berberian KN, Almers W, Lindau M 2013. Rapid structural change in synaptosomal-associated protein 25 (SNAP25) precedes the fusion of single vesicles with the plasma membrane in live chromaffin cells. PNAS 110:3514249–54
    [Google Scholar]
  131. 131. 
    Liu X, Hu L, Pan N, Grimaud L, Labbé E et al. 2018. Coupling electrochemistry and TIRF-microscopy with the fluorescent false neurotransmitter FFN102 supports the fluorescence signals during single vesicle exocytosis detection. Biophys. Chem. 235:48–55
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-010032
Loading
/content/journals/10.1146/annurev-anchem-061417-010032
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error