1932

Abstract

Boron doped diamond (BDD) is continuing to find numerous electrochemical applications across a diverse range of fields due to its unique properties, such as having a wide solvent window, low capacitance, and reduced resistance to fouling and mechanical robustness. In this review, we showcase the latest developments in the BDD electrochemical field. These are driven by a greater understanding of the relationship between material (surface) properties, required electrochemical performance, and improvements in synthetic growth/fabrication procedures, including material postprocessing. This has resulted in the production of BDD structures with the required function and geometry for the application of interest, making BDD a truly designer material. Current research areas range from in vivo bioelectrochemistry and neuronal/retinal stimulation to improved electroanalysis, advanced oxidation processes, supercapacitors, and the development of hybrid electrochemical-spectroscopic- and temperature-based technology aimed at enhancing electrochemical performance and understanding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-010107
2018-06-12
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-010107.html?itemId=/content/journals/10.1146/annurev-anchem-061417-010107&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Balmer RS, Brandon JR, Clewes SL, Dhillon HK, Dodson JM et al. 2009. Chemical vapour deposition synthetic diamond: materials, technology and applications. J. Phys. Condens. Matter 21:36364221
    [Google Scholar]
  2. 2.  Kraft A 2007. Doped diamond: a compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2:355–85
    [Google Scholar]
  3. 3.  Gicquel A, Hassouni K, Silva F, Achard J 2001. CVD diamond films: from growth to applications. Curr. Appl. Phys. 1:479–96
    [Google Scholar]
  4. 4.  Adam W, Bauer C, Berdermann E, Bergonzo P, Bogani F et al. 1999. Review of the development of diamond radiation sensors. Nucl. Instrum. Methods Phys. Res. A 434:1131–45
    [Google Scholar]
  5. 5.  Shimaoka T, Kaneko JH, Tsubota M, Shimmyo H, Watanabe H et al. 2016. High-performance diamond radiation detectors produced by lift-off method. Europhys. Lett. 113:662001
    [Google Scholar]
  6. 6.  Woerner E, Wild C, Mueller-Sebert W, Koidl P 2001. CVD-diamond optical lenses. Diam. Relat. Mater. 10:3–7557–60
    [Google Scholar]
  7. 7.  Shvyd'ko YV, Stoupin S, Cunsolo A, Said AH, Huang X 2010. High-reflectivity high-resolution X-ray crystal optics with diamonds. Nat. Phys. 6:3196–99
    [Google Scholar]
  8. 8.  Ganesan K, Garrett DJ, Ahnood A, Shivdasani MN, Tong W et al. 2014. An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. Biomaterials 35:3908–15
    [Google Scholar]
  9. 9.  Bergonzo P, Bongrain A, Scorsone E, Bendali A, Rousseau L et al. 2011. 3D shaped mechanically flexible diamond microelectrode arrays for eye implant applications: the MEDINAS project. IRBM 32:291–94
    [Google Scholar]
  10. 10.  Lagrange J-P, Deneuville A, Gheeraert E 1998. Activation energy in low compensated homoepitaxial boron-doped diamond films. Diam. Relat. Mater. 7:91390–93
    [Google Scholar]
  11. 11.  Williams AWS, Lightowlers EC, Collins AT 2001. Impurity conduction in synthetic semiconducting diamond. J. Phys. C Solid State Phys. 3:81727–35
    [Google Scholar]
  12. 12.  Bundy FP, Hall HT, Strong H., Wentorf RH 1955. Man-made diamonds. Nature 176:51–55
    [Google Scholar]
  13. 13.  Li HS, Qi YX, Gong JH, Wang M, Li MS 2009. High-pressure synthesis and characterization of thermal-stable boron-doped diamond single crystals. Int. J. Refract. Met. Hard Mater. 27:3564–70
    [Google Scholar]
  14. 14.  Ekimov EA, Sidorov VA, Bauer ED, Mel'nik NN, Curro NJ et al. 2004. Superconductivity in diamond. Nature 428:6982542–45
    [Google Scholar]
  15. 15.  Angus JC, Will HA, Stanko WS 1968. Growth of diamond seed crystals by vapor deposition. J. Appl. Phys. 39:62915–22
    [Google Scholar]
  16. 16.  May P, Mankelevich Y 2008. From ultrananocrystalline diamond to single crystal diamond growth in hot filament and microwave plasma-enhanced CVD reactors: a unified model for growth rates. J. Phys. Chem. C 112:12432–41
    [Google Scholar]
  17. 17.  Macpherson JV 2015. A practical guide to using boron doped diamond in electrochemical research. Phys. Chem. Chem. Phys. 17:52935–49
    [Google Scholar]
  18. 18.  Ochiai T, Ishii Y, Tago S, Hara M, Sato T et al. 2013. Application of boron-doped diamond microelectrodes for dental treatment with pinpoint ozone-water production. ChemPhysChem 14:102094–96
    [Google Scholar]
  19. 19.  Fan B, Zhu Y, Rechenberg R, Rusinek CA, Becker MF, Li W 2017. Large-scale, all polycrystalline diamond structures transferred onto flexible Parylene-C films for neurotransmitter sensing. Lab Chip 17:3159–67
    [Google Scholar]
  20. 20.  Yanagisawa M, Jiang L, Tryk DA, Hashimoto K, Fujishima A 1999. Surface morphology and electrochemical properties of highly boron-doped homoepitaxial diamond films. Diam. Relat. Mater. 8:112059–63
    [Google Scholar]
  21. 21.  Cleri F, Keblinski P, Colombo L, Wolf D, Phillpot SR 1999. On the electrical activity of sp2-bonded grain boundaries in nanocrystalline diamond. Europhys. Lett. 46:5671–77
    [Google Scholar]
  22. 22.  Hutton LA, Iacobini JG, Bitziou E, Channon RB, Newton ME, Macpherson JV 2013. Examination of the factors affecting the electrochemical performance of oxygen-terminated polycrystalline boron-doped diamond electrodes. Anal. Chem. 85:157230–40
    [Google Scholar]
  23. 23.  Shin D, Tryk DA, Fujishima A, Merkoci A, Wang J 2005. Resistance to surfactant and protein fouling effects at conducting diamond electrodes. Electroanalysis 17:4305–11
    [Google Scholar]
  24. 24.  Trouillon R, O'Hare D 2010. Comparison of glassy carbon and boron doped diamond electrodes: resistance to biofouling. Electrochim. Acta 55:226586–95
    [Google Scholar]
  25. 25.  Bernard M, Deneuville A, Muret P 2004. Non-destructive determination of the boron concentration of heavily doped metallic diamond thin films from Raman spectroscopy. Diam. Relat. Mater. 13:2282–86
    [Google Scholar]
  26. 26.  Pruvost F, Deneuville A 2001. Analysis of the Fano in diamond. Diam. Relat. Mater. 10:3–7531–35
    [Google Scholar]
  27. 27.  Janssen G, Vanenckevort W, Vollenberg W, Giling L 1992. Characterization of single-crystal diamond grown by chemical vapour deposition processes. Diam. Relat. Mater. 1:7789–800
    [Google Scholar]
  28. 28.  Patten HV, Lai SCS, Macpherson JV, Unwin PR 2012. Active sites for outer-sphere, inner-sphere, and complex multistage electrochemical reactions at polycrystalline boron-doped diamond electrodes (pBDD) revealed with scanning electrochemical cell microscopy (SECCM). Anal. Chem. 84:125427–32
    [Google Scholar]
  29. 29.  Patten HV, Meadows KE, Hutton LA, Iacobini JG, Battistel D et al. 2012. Electrochemical mapping reveals direct correlation between heterogeneous electron-transfer kinetics and local density of states in diamond electrodes. Angew. Chem. Int. Ed. 51:287002–6
    [Google Scholar]
  30. 30.  Tomlinson LI, Patten HV, Green BL, Iacobini J, Meadows KE et al. 2016. Intermittent-contact scanning electrochemical microscopy (IC-SECM) as a quantitative probe of defects in single crystal boron doped diamond electrodes. Electroanalysis 28:102297–302
    [Google Scholar]
  31. 31.  Bard AJ 2010. Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: the challenge. J. Am. Chem. Soc. 132:227559–67
    [Google Scholar]
  32. 32.  Bennett JA, Wang J, Show Y, Swain GM 2004. Effect of sp2-bonded nondiamond carbon impurity on the response of boron-doped polycrystalline diamond thin-film electrodes. J. Electrochem. Soc. 151:9E306–13
    [Google Scholar]
  33. 33.  Garcia-Segura S, Vieira dos Santos E, Martínez-Huitle CA 2015. Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review. Electrochem. Commun. 59:52–55
    [Google Scholar]
  34. 34.  Martin H, Argoitia A, Landau U, Anderson A, Angus J 1996. Hydrogen and oxygen evolution on boron-doped diamond electrodes. J. Electrochem. Soc. 143:6L133–36
    [Google Scholar]
  35. 35.  Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y 2014. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem. Int. Ed. 53:3871–74
    [Google Scholar]
  36. 36.  Birdja YY, Koper MTM 2017. The importance of cannizzaro-type reactions during electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 139:52030–34
    [Google Scholar]
  37. 37.  Fujishima A 2005. Diamond Electrochemistry Amsterdam: Elsevier
  38. 38.  Prawer S, Nemanich RJ 2004. Raman spectroscopy of diamond and doped diamond. Philos. Trans. A Math. Phys. Eng. Sci. 362:18242537–65
    [Google Scholar]
  39. 39.  Cuesta A, Dhamelincourt P, Laureyns J, Martínez-Alonso A, Tascón JMD 1994. Raman microprobe studies on carbon materials. Carbon 3281523–32
  40. 40.  Ferreira NG, Abramof E, Corat EJ, Trava-Airoldi VJ 2003. Residual stresses and crystalline quality of heavily boron doped diamond films analysed by micro-Raman spectroscopy and X-ray diffraction. Carbon. 411301–8
  41. 41.  Fujimoto A, Yamada Y, Koinuma M, Sato S 2016. Origins of sp3C peaks in C1s X-ray photoelectron spectra of carbon materials. Anal. Chem. 88:126110–14
    [Google Scholar]
  42. 42.  Ayres ZJ, Cobb SJ, Newton ME, Macpherson JV 2016. Quinone electrochemistry for the comparative assessment of sp2 surface content of boron doped diamond electrodes. Electrochem. Commun. 72:59–63
    [Google Scholar]
  43. 43.  Ayres ZJ, Newland JC, Newton ME, Mandal S, Williams OA, Macpherson JV 2017. Impact of chemical vapour deposition plasma inhomogeneity on the spatial variation of sp2 carbon in boron doped diamond electrodes. Carbon 121434–42
  44. 44.  Yagi I, Notsu H, Kondo T, Tryk DA, Fujishima A 1999. Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. J. Electroanal. Chem. 473:1–2173–78
    [Google Scholar]
  45. 45.  Boukherroub R, Wallart X, Szunerits S, Marcus B, Bouvier P, Mermoux M 2005. Photochemical oxidation of hydrogenated boron-doped diamond surfaces. Electrochem. Commun. 7:9937–40
    [Google Scholar]
  46. 46.  Patten H V, Hutton LA, Webb JR, Newton ME, Unwin PR, Macpherson JV 2015. Electrochemical “read-write” microscale patterning of boron doped diamond electrodes. Chem. Commun. 51:1164–67
    [Google Scholar]
  47. 47.  Notsu H, Yagi I, Tatsuma T, Tryk DA, Fujishima A 1999. Introduction of oxygen-containing functional groups onto diamond electrode surfaces by oxygen plasma and anodic polarization. Electrochem. Solid State Lett. 2:10522–24
    [Google Scholar]
  48. 48.  Wang X, Ruslinda AR, Ishiyama Y, Ishii Y, Kawarada H 2011. Higher coverage of carboxylic acid groups on oxidized single crystal diamond (001). Diam. Relat. Mater. 20:101319–24
    [Google Scholar]
  49. 49.  Maier F, Ristein J, Ley L 2001. Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys. Rev. B 64:16165411
    [Google Scholar]
  50. 50.  Hoffmann R, Kriele A, Obloh H, Hees J, Wolfer M et al. 2010. Electrochemical hydrogen termination of boron-doped diamond. Appl. Phys. Lett. 97:5052103
    [Google Scholar]
  51. 51.  Kasahara S, Natsui K, Watanabe T, Yokota Y, Kim Y et al. 2017. Surface hydrogenation of boron-doped diamond electrodes by cathodic reduction. Anal. Chem. 89:2111341–47
    [Google Scholar]
  52. 52.  Strobel P, Riedel M, Ristein J, Ley L 2004. Surface transfer doping of diamond. Nature 430:6998439–41
    [Google Scholar]
  53. 53.  Holt KB, Bard AJ, Show Y, Swain GM 2004. Scanning electrochemical microscopy and conductive probe atomic force microscopy studies of hydrogen-terminated boron-doped diamond electrodes with different doping levels. J. Phys. Chem. B 108:3915117–27
    [Google Scholar]
  54. 54.  Diederich L, Küttel O, Aebi P, Schlapbach L 1998. Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy. Surf. Sci. 418:1219–39
    [Google Scholar]
  55. 55.  Koeck FAM, Garguilo JM, Nemanich RJ 2004. On the thermionic emission from nitrogen-doped diamond films with respect to energy conversion. Diam. Relat. Mater. 13:11–122052–55
    [Google Scholar]
  56. 56.  Bandis C, Pate B 1995. Photoelectric emission from negative-electron affinity diamond (111) surfaces: exciton breakup versus conduction-band emission. Phys. Rev. B 52:1612056–71
    [Google Scholar]
  57. 57.  Zhu D, Zhang LH, Ruther RE, Hamers RJ 2013. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12:9836–41
    [Google Scholar]
  58. 58.  Granger MC, Witek M, Xu J, Wang J, Hupert M et al. 2000. Standard electrochemical behavior of high-quality, boron-doped polycrystalline diamond thin-film electrodes. Anal. Chem. 72:163793–804
    [Google Scholar]
  59. 59.  Hutton L, Newton ME, Unwin PR, Macpherson JV 2009. Amperometric oxygen sensor based on a platinum nanoparticle-modified polycrystalline boron doped diamond disk electrode. Anal. Chem. 81:31023–32
    [Google Scholar]
  60. 60.  Wakerley D, Güell AG, Hutton LA, Miller TS, Bard AJ, Macpherson JV 2013. Boron doped diamond ultramicroelectrodes: a generic platform for sensing single nanoparticle electrocatalytic collisions. Chem. Commun. 49:505657–59
    [Google Scholar]
  61. 61.  Pagels M, Hall CE, Lawrence NS, Meredith A, Jones TGJ et al. 2005. All-diamond microelectrode array device. Anal. Chem. 77:113705–8
    [Google Scholar]
  62. 62.  Takahashi Y, Shevchuk AI, Novak P, Babakinejad B, Macpherson J et al. 2012. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy. PNAS 109:2911540–45
    [Google Scholar]
  63. 63.  Huang X-J, O'Mahony AM, Compton RG 2009. Microelectrode arrays for electrochemistry: approaches to fabrication. Small 5:7776–88
    [Google Scholar]
  64. 64.  Channon RB, Joseph MB, Bitziou E, Bristow AWT, Ray AD, Macpherson JV 2015. Electrochemical flow injection analysis of hydrazine in an excess of an active pharmaceutical ingredient: achieving pharmaceutical detection limits electrochemically. Anal. Chem. 87:1910064–71
    [Google Scholar]
  65. 65.  Hutton LA, Vidotti M, Iacobini JG, Kelly C, Newton ME et al. 2011. Fabrication and characterization of an all-diamond tubular flow microelectrode for electroanalysis. Anal. Chem. 83:145804–8
    [Google Scholar]
  66. 66.  Yang N, Hees J, Nebel CE 2015. Diamond ultramicro- and nano-electrode arrays. Novel Aspects of Diamond: From Growth to Applications N Yang 273–93 Cham, Switz.:: Springer Int.
    [Google Scholar]
  67. 67.  Halpern JM, Cullins MJ, Chiel HJ, Martin HB 2010. Chronic in vivo nerve electrical recordings of Aplysia californica using a boron-doped polycrystalline diamond electrode. Diam. Relat. Mater. 19:2–3178–81
    [Google Scholar]
  68. 68.  Hara SA, Moen TR, Bennet K, Lee KH, Tomshine JR 2017. Removal and evaluation of non-diamond carbon on boron-doped diamond electrodes Presented at IEEE Int. Symp. Med. Meas. Appl Rochester, MN:
  69. 69.  Holt KB, Hu J, Foord JS 2007. Fabrication of boron-doped diamond ultramicroelectrodes for use in scanning electrochemical microscopy experiments. Anal. Chem. 79:62556–61
    [Google Scholar]
  70. 70.  Sarada BV 1999. Electrochemical characterization of highly boron-doped diamond microelectrodes in aqueous electrolyte. J. Electrochem. Soc. 146:41469
    [Google Scholar]
  71. 71.  Hu J, Holt KB, Foord JS 2009. Focused ion beam fabrication of boron-doped diamond ultramicroelectrodes. Anal. Chem. 81:145663–70
    [Google Scholar]
  72. 72.  Bonnauron M, Saada S, Mer C, Gesset C, Williams OA et al. 2008. Transparent diamond-on-glass micro-electrode arrays for ex-vivo neuronal study. Phys. Status Solidi Appl. Mater. Sci. 205:92126–29
    [Google Scholar]
  73. 73.  Chan HY, Aslam DM, Wiler JA, Casey B 2009. A novel diamond microprobe for neuro-chemical and -electrical recording in neural prosthesis. J. Microelectromech. Syst. 18:3511–21
    [Google Scholar]
  74. 74.  Provent C, Haenni W, Santoli E, Rychen P 2004. Boron-doped diamond electrodes and microelectrode-arrays for the measurement of sulfate and peroxodisulfate. Electrochim. Acta 49:22–233737–44
    [Google Scholar]
  75. 75.  Rusinek CA, Becker MF, Rechenberg R, Schuelke T 2016. Fabrication and characterization of boron doped diamond microelectrode arrays of varied geometry. Electrochem. Commun. 73:10–14
    [Google Scholar]
  76. 76.  Hees J, Hoffmann R, Kriele A, Smirnov W, Obloh H et al. 2011. Nanocrystalline diamond nanoelectrode arrays and ensembles. ACS Nano 5:43339–46
    [Google Scholar]
  77. 77.  Joseph MB, Bitziou E, Read TL, Meng L, Palmer NL et al. 2014. Fabrication route for the production of coplanar, diamond insulated, boron doped diamond macro- and microelectrodes of any geometry. Anal. Chem. 86:115238–44
    [Google Scholar]
  78. 78.  Meng L 2016. Thermo-electrochemistry of boron doped diamond from fundamentals to application PhD thesis, Univ. Warwick
  79. 79.  Metters JP, Kadara RO, Banks CE 2011. New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136:61067–76
    [Google Scholar]
  80. 80.  Hayat A, Marty JL 2014. Disposable screen printed electrochemical sensors: tools for environmental monitoring. Sensors 14:610432–53
    [Google Scholar]
  81. 81.  Fischer AE, Swain GM 2005. Preparation and characterization of boron-doped diamond powder. J. Electrochem. Soc. 152:9B369–75
    [Google Scholar]
  82. 82.  Kondo T, Sakamoto H, Kato T, Horitani M, Shitanda I et al. 2011. Screen-printed diamond electrode: a disposable sensitive electrochemical electrode. Electrochem. Commun. 13:121546–49
    [Google Scholar]
  83. 83.  Kondo T, Horitani M, Sakamoto H, Shitanda I, Hoshi Y et al. 2013. Screen-printed modified diamond electrode for glucose detection. Chem. Lett. 42:4352–54
    [Google Scholar]
  84. 84.  Nantaphol S, Channon RB, Kondo T, Siangproh W, Chailapakul O, Henry CS 2017. Boron doped diamond paste electrodes for microfluidic paper-based analytical devices. Anal. Chem. 89:74100–7
    [Google Scholar]
  85. 85.  Güell AG, Meadows KE, Unwin PR, Macpherson JV 2010. Trace voltammetric detection of serotonin at carbon electrodes: comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes. Phys. Chem. Chem. Phys. 12:3410108–14
    [Google Scholar]
  86. 86.  Gao F, Lewes-Malandrakis G, Wolfer MT, Müller-Sebert W, Gentile P et al. 2015. Diamond-coated silicon wires for supercapacitor applications in ionic liquids. Diam. Relat. Mater. 51:1–6
    [Google Scholar]
  87. 87.  Petrák V, Vlčková Živcová Z, Krýsová H, Frank O, Zukal A et al. 2017. Fabrication of porous boron-doped diamond on SiO2 fiber templates. Carbon 114457–64
  88. 88.  Aradilla D, Gao F, Lewes-Malandrakis G, Müller-Sebert W, Gentile P et al. 2017. Powering electrodes for high performance aqueous micro-supercapacitors: diamond-coated silicon nanowires operating at a wide cell voltage of 3 V. Electrochim. Acta 242:173–79
    [Google Scholar]
  89. 89.  Kondo T, Lee S, Honda K, Kawai T 2009. Conductive diamond hollow fiber membranes. Electrochem. Commun. 11:81688–91
    [Google Scholar]
  90. 90.  Kondo T, Kodama Y, Yuasa M 2012. Fabrication and electrochemical properties of boron-doped diamond hollow fiber wool. Trans. Mat. Res. Soc. Jpn. 37:4503–6
    [Google Scholar]
  91. 91.  Kato H, Hees J, Hoffmann R, Wolfer M, Yang N et al. 2013. Diamond foam electrodes for electrochemical applications. Electrochem. Commun. 33:88–91
    [Google Scholar]
  92. 92.  Gao F, Wolfer MT, Nebel CE 2014. Highly porous diamond foam as a thin-film micro-supercapacitor material. Carbon 80:1833–40
    [Google Scholar]
  93. 93.  Hébert C, Scorsone E, Mermoux M, Bergonzo P 2015. Porous diamond with high electrochemical performance. Carbon 90:102–9
    [Google Scholar]
  94. 94.  Scorsone E, Gattout N, Rousseau L, Lissorgues G 2017. Porous diamond pouch cell supercapacitors. Diam. Relat. Mater. 76:31–37
    [Google Scholar]
  95. 95.  Piret G, Hébert C, Mazellier JP, Rousseau L, Scorsone E et al. 2015. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 53:173–83
    [Google Scholar]
  96. 96.  Seyock S, Maybeck V, Scorsone E, Rousseau L, Hébert C et al. 2017. Interfacing neurons on carbon nanotubes covered with diamond. RSC Adv 7:1153–60
    [Google Scholar]
  97. 97.  Toghill KE, Compton RG 2010. Metal nanoparticle modified boron doped diamond electrodes for use in electroanalysis. Electroanalysis 22:17–181947–56
    [Google Scholar]
  98. 98.  Garrett DJ, Tong W, Simpson DA, Meffin H 2016. Diamond for neural interfacing: a review. Carbon 102:437–54
    [Google Scholar]
  99. 99.  Zhou Y, Zhi J 2009. The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79:51189–96
    [Google Scholar]
  100. 100.  Compton RG, Foord JS, Marken F 2003. Electroanalysis at diamond-like and doped-diamond electrodes. Electroanalysis 15:171349–63
    [Google Scholar]
  101. 101.  Pecková K, Musilová J, Barek J 2009. Boron-doped diamond film electrodes—new tool for voltammetric determination of organic substances. Crit. Rev. Anal. Chem. 39:3148–72
    [Google Scholar]
  102. 102.  Yang N, Foord JS, Jiang X 2016. Diamond electrochemistry at the nanoscale: a review. Carbon 99:90–110
    [Google Scholar]
  103. 103.  Pleskov YV 2002. Electrochemistry of diamond: a review. Russ. J. Electrochem. 38:121275–91
    [Google Scholar]
  104. 104.  O'Neill RD 1994. Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo. A review. Analyst 119:5767–79
    [Google Scholar]
  105. 105.  Park J, Galligan JJ, Fink GD, Swain GM 2006. In vitro continuous amperometry with a diamond microelectrode coupled with video microscopy for simultaneously monitoring endogenous norepinephrine and its effect on the contractile response of a rat mesenteric artery. Anal. Chem. 78:196756–64
    [Google Scholar]
  106. 106.  Vahidpour F, Curley L, Biró I, McDonald M, Croux D et al. 2017. All-diamond functional surface micro-electrode arrays for brain-slice neural analysis. Phys. Status Solidi Appl. Mater. Sci. 214:21532347
    [Google Scholar]
  107. 107.  Ogata G, Ishii Y, Asai K, Sano Y, Nin F et al. 2017. A microsensing system for the in vivo real-time detection of local drug kinetics. Nat. Biomed. Eng. 1:8654–66
    [Google Scholar]
  108. 108.  Garrett DJ, Saunders AL, McGowan C, Specks J, Ganesan K et al. 2016. In vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants. J. Biomed. Mater. Res. B Appl. Biomater. 104:119–26
    [Google Scholar]
  109. 109.  Meijs S, Alcaide M, Sørensen C, McDonald M, Sørensen S et al. 2016. Biofouling resistance of boron-doped diamond neural stimulation electrodes is superior to titanium nitride electrodes in vivo. J. Neural Eng. 13:556011
    [Google Scholar]
  110. 110.  Alcaide M, Taylor A, Fjorback M, Zachar V, Pennisi CP 2016. Boron-doped nanocrystalline diamond electrodes for neural interfaces: in vivo biocompatibility evaluation. Front. Neurosci. 10:87
    [Google Scholar]
  111. 111.  Hébert C, Warnking J, Depaulis A, Garçon LA, Mermoux M et al. 2015. Microfabrication, characterization and in vivo MRI compatibility of diamond microelectrodes array for neural interfacing. Mater. Sci. Eng. C 46:25–31
    [Google Scholar]
  112. 112.  Fierro S, Mitani N, Comninellis C, Einaga Y 2011. pH sensing using boron doped diamond electrodes. Phys. Chem. Chem. Phys. 13:3716795–99
    [Google Scholar]
  113. 113.  Fierro S, Seishima R, Nagano O, Saya H, Einaga Y 2013. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: application to stomach disorder diagnosis. Sci. Rep. 3:13257
    [Google Scholar]
  114. 114.  Fierro S, Yoshikawa M, Nagano O, Yoshimi K, Saya H, Einaga Y 2012. In vivo assessment of cancerous tumors using boron doped diamond microelectrode. Sci. Rep. 2:1901
    [Google Scholar]
  115. 115.  Watanabe T, Shimizu TK, Tateyama Y, Kim Y, Kawai M, Einaga Y 2010. Giant electric double-layer capacitance of heavily boron-doped diamond electrode. Diam. Relat. Mater. 19:7–9772–77
    [Google Scholar]
  116. 116.  Rousseau L, Scorsone E, Bendali A, Djilas M, Girard H et al. 2013. Soft 3D retinal implants with diamond electrode a way for focal stimulation Presented at Int. Conf. Transducers Eurosens., 17th, Barcelona
  117. 117.  Bendali A, Rousseau L, Lissorgues G, Scorsone E, Djilas M et al. 2015. Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: model, production and in vivo biocompatibility. Biomaterials 67:73–83
    [Google Scholar]
  118. 118.  Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M 2014. Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ. Sci. Pollut. Res. 21:148336–67
    [Google Scholar]
  119. 119.  Jiang Y, Zhu X, Xing X 2017. Electrochemical oxidation of phenolic compounds at boron-doped diamond anodes: structure-reactivity relationships. J. Phys. Chem. A 121:224326–33
    [Google Scholar]
  120. 120.  Marselli B, Garcia-Gomez J, Michaud P-A, Rodrigo MA, Comninellis C 2003. Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 150:3D79–83
    [Google Scholar]
  121. 121.  Zhu X, Tong M, Shi S, Zhao H, Ni J 2008. Essential explanation of the strong mineralization performance of boron-doped diamond electrodes. Environ. Sci. Technol. 42:134914–20
    [Google Scholar]
  122. 122.  Medeiros De Araújo D, Cañizares P, Martínez-Huitle CA, Rodrigo MA 2014. Electrochemical conversion/combustion of a model organic pollutant on BDD anode: role of sp3/sp2 ratio. Electrochem. Commun. 47:37–40
    [Google Scholar]
  123. 123.  Raut AS, Cunningham GB, Parker CB, Klem EJD, Stoner BR et al. 2014. Disinfection of E. coli contaminated urine using boron-doped diamond electrodes. J. Electrochem. Soc. 161:12G81–85
    [Google Scholar]
  124. 124.  Gayen P, Chaplin BP 2017. Fluorination of boron-doped diamond film electrodes for minimization of perchlorate formation. ACS Appl. Mater. Interfaces 9:3327638–48
    [Google Scholar]
  125. 125.  Taylor A, Fekete L, Hubík P, Jäger A, Janíček P et al. 2014. Large area deposition of boron doped nano-crystalline diamond films at low temperatures using microwave plasma enhanced chemical vapour deposition with linear antenna delivery. Diam. Relat. Mater. 47:27–34
    [Google Scholar]
  126. 126.  Chaplin BP, Wyle I, Zeng H, Carlisle JA, Farrell J 2011. Characterization of the performance and failure mechanisms of boron-doped ultrananocrystalline diamond electrodes. J. Appl. Electrochem. 41:111329–40
    [Google Scholar]
  127. 127.  Chaplin BP, Hubler DK, Farrell J 2013. Understanding anodic wear at boron doped diamond film electrodes. Electrochim. Acta 89:122–31
    [Google Scholar]
  128. 128.  Watanabe T, Honda Y, Kanda K, Einaga Y 2014. Tailored design of boron-doped diamond electrodes for various electrochemical applications with boron-doping level and sp2-bonded carbon impurities. Phys. Status Solidi Appl. Mater. Sci. 211:122709–17
    [Google Scholar]
  129. 129.  Irkham Watanabe T, Fiorani A, Valenti G, Paolucci F, Einaga Y 2016. Co-reactant-on-demand ECL: electrogenerated chemiluminescence by the in situ production of S2O82− at boron-doped diamond electrodes. J. Am. Chem. Soc. 138:4815636–41
    [Google Scholar]
  130. 130.  Hájková A, Barek J, Vyskočil V 2017. Electrochemical DNA biosensor for detection of DNA damage induced by hydroxyl radicals. Bioelectrochemistry 116:1–9
    [Google Scholar]
  131. 131.  Ochiai T, Tago S, Hayashi M, Hirota K, Kondo T et al. 2016. Boron-doped diamond powder (BDDP)-based polymer composites for dental treatment using flexible pinpoint electrolysis unit. Electrochem. Commun. 68:49–53
    [Google Scholar]
  132. 132.  Ivandini TA, Einaga Y 2017. Polycrystalline boron-doped diamond electrodes for electrocatalytic and electrosynthetic applications. Chem. Commun. 53:81338–47
    [Google Scholar]
  133. 133.  Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y 2006. Electrochemical detection of arsenic(III) using iridium-implanted boron-doped diamond electrodes. Anal. Chem. 78:186291–98
    [Google Scholar]
  134. 134.  Ayres ZJ, Borrill AJ, Newland JC, Newton ME, Macpherson JV 2016. Controlled sp2 functionalization of boron doped diamond as a route for the fabrication of robust and Nernstian pH electrodes. Anal. Chem. 88:1974–80
    [Google Scholar]
  135. 135.  May PW 2000. Diamond thin films: a 21st-century material. Philos. Trans. Math. Phys. Eng. Sci. 358:1766473–95
    [Google Scholar]
  136. 136.  Sun B, Salter PS, Booth MJ 2014. High conductivity micro-wires in diamond following arbitrary paths. Appl. Phys. Lett. 105:231105
    [Google Scholar]
  137. 137.  Picollo F, Battiato A, Carbone E, Croin L, Enrico E et al. 2015. Development and characterization of a diamond-insulated graphitic multi electrode array realized with ion beam lithography. Sensors 15:515–28
    [Google Scholar]
  138. 138.  Picollo F, Battiato A, Bernardi E, Marcantoni A, Pasquarelli A et al. 2016. Microelectrode arrays of diamond-insulated graphitic channels for real-time detection of exocytotic events from cultured chromaffin cells and slices of adrenal glands. Anal. Chem. 88:7493–99
    [Google Scholar]
  139. 139.  McGaw EA, Swain GM 2006. A comparison of boron-doped diamond thin-film and Hg-coated glassy carbon electrodes for anodic stripping voltammetric determination of heavy metal ions in aqueous media. Anal. Chim. Acta 575:180–89
    [Google Scholar]
  140. 140.  Hutton L, O'Neil G, Read TL, Ayres ZJ, Newton ME, Macpherson JV 2014. Electrochemical X-ray fluorescence spectroscopy (EC-XRF) for trace heavy metal analysis: enhancing XRF detection capabilities by four orders of magnitude. Anal. Chem. 86:4566–72
    [Google Scholar]
  141. 141.  O'Neil GD, Newton ME, Macpherson JV 2015. Direct identification and analysis of heavy metals in solution (Hg, Cu, Pb, Zn, Ni) by use of in situ electrochemical X-ray fluorescence. Anal. Chem. 87:94933–40
    [Google Scholar]
  142. 142.  Wächter N, Berkun I, Hogan T, Munson C, Jarošová R et al. 2016. Structure, electronic properties and electrochemical behavior of a boron-doped diamond/quartz optically transparent electrode. ACS Appl. Mater. Interfaces 8:4228325–37
    [Google Scholar]
  143. 143.  Rusinek CA, Becker MF, Rechenberg R, Kaval N, Ojo K, Heineman WR 2016. Polymer-coated boron doped diamond optically transparent electrodes for spectroelectrochemical sensors. Electroanalysis 28:92228–36
    [Google Scholar]
  144. 144.  Dai Y, Proshlyakov DA, Zak JK, Swain GM 2007. Optically transparent diamond electrode for use in IR transmission spectroelectrochemical measurements. 13:197526–33
    [Google Scholar]
  145. 145.  Ashcheulov P, Taylor A, More-Chevalier J, Kovalenko A, Remeš Z et al. 2017. Optically transparent composite diamond/Ti electrodes. Carbon 119:179–89
    [Google Scholar]
  146. 146.  Neubauer D, Scharpf J, Pasquarelli A, Mizaikoff B, Kranz C 2013. Combined in situ atomic force microscopy and infrared attenuated total reflection spectroelectrochemistry. Analyst 138:226746–52
    [Google Scholar]
  147. 147.  Izquierdo J, Mizaikoff B, Kranz C 2016. Surface-enhanced infrared spectroscopy on boron-doped diamond modified with gold nanoparticles for spectroelectrochemical analysis. Phys. Status Solidi Appl. Mater. Sci. 213:82056–62
    [Google Scholar]
  148. 148.  Meng L, Iacobini JG, Joseph MB, Macpherson JV, Newton ME 2014. Laser heated boron doped diamond electrodes: effect of temperature on outer sphere electron transfer processes. Faraday Discuss 172:421–38
    [Google Scholar]
  149. 149.  Hussein HEM, Amari H, Macpherson JV 2017. Electrochemical synthesis of nanoporous platinum nanoparticles using laser pulse heating: application to methanol oxidation. ACS Catal 7:7388–98
    [Google Scholar]
  150. 150.  Meng L, Ustarroz J, Newton ME, Macpherson JV 2017. Elucidating the cathodic electrodeposition mechanism of lead/lead oxide formation in nitrate solutions. J. Phys. Chem. C 121:126835–43
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-010107
Loading
/content/journals/10.1146/annurev-anchem-061417-010107
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error