1932

Abstract

In the United States, regulatory science is the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all Food and Drug Administration–regulated products. Good regulatory science facilitates consumer access to innovative medical devices that are safe and effective throughout the Total Product Life Cycle (TPLC). Because the need to measure things is fundamental to the regulatory science of medical devices, analytical chemistry plays an important role, contributing to medical device technology in two ways: It can be an integral part of an innovative medical device (e.g., diagnostic devices), and it can be used to support medical device development throughout the TPLC. In this review, we focus on analytical chemistry as a tool for the regulatory science of medical devices. We highlight recent progress in companion diagnostics, medical devices on chips for preclinical testing, mass spectrometry for postmarket monitoring, and detection/characterization of bacterial biofilm to prevent infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125556
2018-06-12
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-125556.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125556&mimeType=html&fmt=ahah

Literature Cited

  1. 1. FDA (US Food Drug Admin.). 2010. Advancing regulatory science FDA, Silver Spring: MD. Updated Dec 6 2017. http://www.fda.gov/ScienceResearch/SpecialTopics/RegulatoryScience/default.htm?utm_campaign=Goo
    [Google Scholar]
  2. 2. FDA (US Food Drug Admin.). 2011. Medical device innovation initiative White Pap., FDA: Silver Spring, MD https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHInnovation/ucm242067.htm
    [Google Scholar]
  3. 3.  Hausman ED, Altaie SS 2004. Regulatory aspects of total product life cycle. Diabetes Technol. Ther. 6:6761–66
    [Google Scholar]
  4. 4.  Wormuth K 2010. Characterization of therapeutic coatings on medical devices. Confocal Raman Microscopy T Dieing, O Hollricher, J Toporski 203–23 Berlin: Springer
    [Google Scholar]
  5. 5.  Kingshott P, Andersson G, McArthur SL, Griesser H 2011. Surface modification and chemical surface analysis of biomaterials. Curr. Opin. Chem. Biol. 15:5667–76
    [Google Scholar]
  6. 6.  Kannan R, Salacinski H, Vara D, Odlyha M, Seifalian A 2006. Review paper: principles and applications of surface analytical techniques at the vascular interface. J. Biomater. Appl. 21:15–32
    [Google Scholar]
  7. 7.  Pidhatika B, Chen Y, Coullerez G, Al-Bataineh S, Textor M 2014. ToF-SIMS analysis of poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) ultrathin adlayers. Anal. Bioanal. Chem. 406:51509–17
    [Google Scholar]
  8. 8.  De Giglio E, Cafagna D, Cometa S, Allegretta A, Pedico A et al. 2013. An innovative, easily fabricated, silver nanoparticle-based titanium implant coating: development and analytical characterization. Anal. Bioanal. Chem. 405:1–2805–16
    [Google Scholar]
  9. 9.  Al-Bataineh SA, Jasieniak M, Britcher L, Griesser HJ 2007. TOF-SIMS and principal component analysis characterization of the multilayer surface grafting of small molecules: antibacterial furanones. Anal. Chem. 80:2430–36
    [Google Scholar]
  10. 10.  Eliades G, Mantzourani M, Labella R, Mutti B, Sharma D 2013. Interactions of dentine desensitisers with human dentine: morphology and composition. J. Dent. 41:Suppl. 4S28–39
    [Google Scholar]
  11. 11.  Fisher GL, Belu AM, Mahoney CM, Wormuth C, Sanada N 2009. Three-dimensional time-of-flight secondary ion mass spectrometry imaging of a pharmaceutical in a coronary stent coating as a function of elution time. Anal. Chem. 81:249930–40
    [Google Scholar]
  12. 12.  Vertes A, Hitchins V, Phillips KS 2012. Analytical challenges of microbial biofilms on medical devices. Anal. Chem. 84:93858–66
    [Google Scholar]
  13. 13.  Takmakov P, Ruda K, Phillips KS, Isayeva IS, Krauthamer V, Welle CG 2015. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. J. Neural. Eng. 12:2026003
    [Google Scholar]
  14. 14.  Gad-McDonald S, Gad SC 2015. Leachables and extractables from medical devices. Biomaterials, Medical Devices, and Combination Products SC Gad, S Gad-Macdonald 419–68 Boca Raton, FL: CRC Press
    [Google Scholar]
  15. 15.  Szajek AY, Chess E, Johansen K, Gratzl G, Gray E et al. 2016. The US regulatory and pharmacopeia response to the global heparin contamination crisis. Nat. Biotechnol. 34:6625–30
    [Google Scholar]
  16. 16.  Gay L, Baker A-M, Graham TA 2016. Tumour cell heterogeneity. F1000Research 5:238
    [Google Scholar]
  17. 17. FDA (US Food Drug Admin.). 2016. Companion diagnostics FDA, Silver Spring: MD. Updated Dec 28 2017. https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/ucm407297.htm
    [Google Scholar]
  18. 18.  Voelkerding KV, Dames SA, Durtschi JD 2009. Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 55:4641–58
    [Google Scholar]
  19. 19.  Chen Y-C, Li H-Y, Liang J-L, Ger L-P, Chang H-T et al. 2017. CTMP, a predictive biomarker for trastuzumab resistance in HER2-enriched breast cancer patient. Oncotarget 8:1829699–710
    [Google Scholar]
  20. 20.  Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P et al. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364:262507–16
    [Google Scholar]
  21. 21.  Shaw AT, Kim D-W, Nakagawa K, Seto T, Crinó L et al. 2013. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368:252385–94
    [Google Scholar]
  22. 22.  Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM et al. 2016. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. Nat. Med 22:3262–69
    [Google Scholar]
  23. 23.  Woyach JA, Furman RR, Liu T-M, Ozer HG, Zapatka M et al. 2014. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 370:242286–94
    [Google Scholar]
  24. 24.  de Bruin EC, Cowell C, Warne PH, Jiang M, Saunders RE et al. 2014. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer. Cancer Discov 4:5606–19
    [Google Scholar]
  25. 25.  Blakely CM, Pazarentzos E, Olivas V, Asthana S, Yan JJ et al. 2015. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep 11:198–110
    [Google Scholar]
  26. 26.  Shaw AT, Friboulet L, Leshchiner I, Gainor JF, Bergqvist S et al. 2016. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F. N. Engl. J. Med. 374:154–61
    [Google Scholar]
  27. 27. NCI (Natl. Cancer Inst.). 2017. NCI-MATCH Trial (Molecular Analysis for Therapy Choice) NCI, Rockville: MD Updated June 6 2017. https://www.cancer.gov/about-cancer/treatment/clinical-trials/nci-supported/nci-match
    [Google Scholar]
  28. 28.  Ilié M, Hofman P 2016. Pros: Can tissue biopsy be replaced by liquid biopsy?. Transl. Lung Cancer Res. 5:4420–23
    [Google Scholar]
  29. 29.  Alix-Panabières C, Pantel K 2016. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 6:5479–91
    [Google Scholar]
  30. 30.  Warkiani ME, Khoo BL, Tan DS-W, Bhagat AAS, Lim W-T et al. 2014. An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst 139:133245–55
    [Google Scholar]
  31. 31.  Yeo T, Tan SJ, Lim CL, Lau DPX, Chua YW et al. 2016. Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci. Rep. 6:22076
    [Google Scholar]
  32. 32.  Kim J, Cho H, Han S-I, Han K-H 2016. Single-cell isolation of circulating tumor cells from whole blood by lateral magnetophoretic microseparation and microfluidic dispensing. Anal. Chem. 88:94857–63
    [Google Scholar]
  33. 33.  Lapin M, Tjensvoll K, Oltedal S, Buhl T, Gilje B et al. 2016. MINDEC—an enhanced negative depletion strategy for circulating tumour cell enrichment. Sci. Rep. 6:28929
    [Google Scholar]
  34. 34.  Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O'Connell A et al. 2014. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin. Cancer Res. 20:61698–705
    [Google Scholar]
  35. 35.  Chang-Hao Tsao S, Weiss J, Hudson C, Christophi C, Cebon J et al. 2015. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci. Rep. 5:11198
    [Google Scholar]
  36. 36. Dana-Farber Cancer Inst. 2014. A prospective study of plasma genotyping as a noninvasive biomarker for genotype-directed cancer care Dana-Farber Cancer Inst Boston, MA: Updated Dec. 7, 2017. https://clinicaltrials.gov/ct2/show/NCT02279004
    [Google Scholar]
  37. 37.  Villaflor V, Won B, Nagy R, Banks K, Lanman RB et al. 2016. Biopsy-free circulating tumor DNA assay identifies actionable mutations in lung cancer. Oncotarget 7:4166880–91
    [Google Scholar]
  38. 38.  Hsu C-C, Dorrestein PC 2015. Visualizing life with ambient mass spectrometry. Curr. Opin. Biotechnol. 31:24–34
    [Google Scholar]
  39. 39.  Watrous J, Alexandrov T, Dorrestein PC 2011. The evolving field of imaging mass spectrometry and its impact on future biological research. J. Mass Spectrom. 46:2209–22
    [Google Scholar]
  40. 40.  Balog J, Sasi-Szabó L, Kinross J, Lewis MR, Muirhead LJ et al. 2013. Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Sci. Transl. Med. 5:194194ra93
    [Google Scholar]
  41. 41.  Guan A, Hamilton P, Wang Y, Gorbet M, Li Z, Phillips KS 2017. Medical devices on chips. Nat. Biomed. Eng. 1:30045
    [Google Scholar]
  42. 42.  Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S et al. 2016. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 33:3272–321
    [Google Scholar]
  43. 43.  Bhatia SN, Ingber DE 2014. Microfluidic organs-on-chips. Nat. Biotechnol. 32:8760–72
    [Google Scholar]
  44. 44. EPA (US Environ. Prot. Agency). 2015. Cardiotoxicity adverse outcome pathway: organotypic culture model and in vitro-to-in vivo extrapolation for high-throughput hazard, dose-response and variability assessments EPA Washington, DC: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.highlight/abstract/10446
    [Google Scholar]
  45. 45.  Guan A, Li Z, Phillips KS 2014. The effect of fluorescent labels on protein sorption in polymer hydrogels. J. Fluoresc. 24:61639–50
    [Google Scholar]
  46. 46.  Tworkoski E, Dorris E, Shin D, Phillips KS 2014. A high-throughput method for testing biofouling and cleaning of polymer hydrogel materials used in medical devices. Anal. Methods 6:134521–29
    [Google Scholar]
  47. 47.  Guan A, Li Z, Phillips KS 2015. The effects of non-ionic polymeric surfactants on the cleaning of biofouled hydrogel materials. Biofouling 31:9689–97
    [Google Scholar]
  48. 48.  Guan A, Wang Y, Phillips KS, Li Z 2016. A contact-lens-on-a-chip companion diagnostic tool for personalized medicine. Lab Chip 16:71152–56
    [Google Scholar]
  49. 49.  Wang Y, Guan A, Isayeva I, Vorvolakos K, Das S et al. 2016. Interactions of Staphylococcus aureus with ultrasoft hydrogel biomaterials. Biomaterials 95:74–85
    [Google Scholar]
  50. 50.  Mohammadi S, Jones L, Gorbet M 2014. Extended latanoprost release from commercial contact lenses: in vitro studies using corneal models. PLOS ONE 9:9e106653
    [Google Scholar]
  51. 51.  Mohammadi S, Postnikoff C, Wright A, Gorbet M 2014. Design and development of an in vitro tear replenishment system. Ann. Biomed. Eng. 42:91923–31
    [Google Scholar]
  52. 52.  Pavesi A, Adriani G, Tay A, Warkiani ME, Yeap WH et al. 2015. Engineering a 3D microfluidic culture platform for tumor-treating field application. Sci. Rep. 6:26584
    [Google Scholar]
  53. 53.  Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K et al. 2008. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat. Biotechnol. 26:6669–75
    [Google Scholar]
  54. 54.  Guerrini M, Shriver Z, Naggi A, Casu B, Sasisekharan R, Torri G 2009. The tainted heparin story: an update. Thromb. Haemost. 102:5907–11
    [Google Scholar]
  55. 55.  Li H, Wickramasekara S, Nemes P 2015. One-hour screening of adulterated heparin by simplified peroxide digestion and fast RPIP-LC-MS2. Anal. Chem. 87:168424–32
    [Google Scholar]
  56. 56.  Nemes P, Hoover WJ, Keire DA 2013. High-throughput differentiation of heparin from other glycosaminoglycans by pyrolysis mass spectrometry. Anal. Chem. 85:157405–12
    [Google Scholar]
  57. 57.  Li H, Hitchins VM, Wickramasekara S 2016. Rapid detection of bacterial endotoxins in ophthalmic viscosurgical device materials by direct analysis in real time mass spectrometry. Anal. Chim. Acta 943:98–105
    [Google Scholar]
  58. 58.  Boutrand J-P 2012. Biocompatibility and Performance of Medical Devices Cambridge, UK: Woodhead
    [Google Scholar]
  59. 59.  Dorival-García N, Larsson I, Bones J 2017. Non-volatile extractable analysis of prefilled syringes for parenteral administration of drug products. J. Pharm. Biomed. Anal. 142:337–42
    [Google Scholar]
  60. 60.  Liu D, Nashed-Samuel Y, Bondarenko PV, Brems DN, Ren D 2012. Interactions between therapeutic proteins and acrylic acid leachable. PDA J. Pharm. Sci. Technol. 66:112–19
    [Google Scholar]
  61. 61.  Cho S, Choi YS, Luu HMD, Guo J 2012. Determination of total leachable bisphenol A from polysulfone membranes based on multiple consecutive extractions. Talanta 101:Suppl. C537–40
    [Google Scholar]
  62. 62. FDA (US Food Drug Admin.). 2014. The 510(k) program: evaluating substantial equivalence in premarket notifications [510(k)]. Guidance for industry and Food and Drug Administration staff Rep., US Food Drug Admin Silver Spring, MD: https://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm404770.htm
    [Google Scholar]
  63. [Google Scholar]
  64. 64. Eur. Med. Agency. 2005. Guideline on plastic immediate packaging materials Guidel., Eur. Med. Agency London: http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000743.jsp&mid=
    [Google Scholar]
  65. 65.  Norwood DL, Nagao LM, Stults CLM 2013. Perspectives on the PQRI extractables and leachables “safety thresholds and best practices” recommendations for inhalation drug products. PDA J. Pharm. Sci. Technol. 67:5413–29
    [Google Scholar]
  66. 66.  Norwood DL, Paskiet D, Ruberto M, Feinberg T, Schroeder A et al. 2008. Best practices for extractables and leachables in orally inhaled and nasal drug products: an overview of the PQRI recommendations. Pharm. Res. 25:4727–39
    [Google Scholar]
  67. 67. ISO (Int. Organ. Stand.). 2009. Biological evaluation of medical devices—Part 1: Evaluation and testing within a risk management process Rep. 10993-1, ISO Geneva: https://dgn.isolutions.iso.org/obp/ui#iso:std:iso:10993:-1:dis:ed-5:v1
    [Google Scholar]
  68. 68. ISO (Int. Organ. Stand.). 2012. Biological evaluation of medical devices—Part 12: Sample preparation and reference materials Rep. 10993-12, ISO Geneva: https://www.iso.org/standard/53468.html
    [Google Scholar]
  69. 69. ISO (Int. Organ. Stand.). 2005. Biological evaluation of medical devices—Part 18: Chemical characterization of materials Rep. 10993-18, ISO Geneva: https://www.iso.org/standard/41106.html
    [Google Scholar]
  70. 70.  Li J, Nemes P, Guo J 2018. Mapping intermediate degradation products of poly(lactic-co-glycolic acid) in vitro. . J. Biomed. Mater Res. B 106:1129–37
    [Google Scholar]
  71. 71.  Phillips SK, Patwardhan D, Jayan G 2015. Biofilms, medical devices, and antibiofilm technology: key messages from a recent public workshop. Am. J. Infect. Control 43:12–3
    [Google Scholar]
  72. 72.  Cho W 2013. Knee Joint Arthroplasty Berlin, Ger: Springer Sci. Bus. Media
    [Google Scholar]
  73. 73.  Loch-Wilkinson A, Beath K, Knight RJW, Wessels WLF, Maqnusson M et al. 2017. Breast implant associated anaplastic large cell lymphoma in Australia and New Zealand: high surface area textured implants are associated with increased risk. Plast. Reconstr. Surg. 140:4645–54
    [Google Scholar]
  74. 74.  Characklis WG, Marshall KC 1990. Biofilms Hoboken, NJ: Wiley
    [Google Scholar]
  75. 75.  Wang Y, Jayan G, Patwardhan D, Phillips KS 2017. Antimicrobial and anti-biofilm medical devices: public health and regulatory science challenges. Antimicrobial Coatings and Modifications on Medical Devices Z Zhang, VE Wagner 37–66 Cham, Switz: Springer
    [Google Scholar]
  76. 76.  Donlan RM, Piede JA, Heyes CD, Sanii L, Murga R et al. 2004. Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl. Environ. Microbiol. 70:84980–88
    [Google Scholar]
  77. 77.  Wang Y, Subbiahdoss G, Swartjes J, van der Mei HC, Busscher HJ, Libera M 2011. Length-scale mediated differential adhesion of mammalian cells and microbes. Adv. Funct. Mater. 21:203916–23
    [Google Scholar]
  78. 78.  Goreres D, Hamilton MA, Beck NA, Buckingham-Meyer K, Hilyard JD et al. 2009. A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. Nat. Protoc. 4:787–88
    [Google Scholar]
  79. 79.  da Silva Domingues JF, Roest S, Wang Y, van der Mei HC, Libera M et al. 2015. Macrophage phagocytic activity toward adhering staphylococci on cationic and patterned hydrogel coatings versus common biomaterials. Acta Biomater 18:Suppl. C1–8
    [Google Scholar]
  80. 80.  Zhong N, Liao Q, Zhu X, Chen R 2014. A fiber-optic sensor for accurately monitoring biofilm growth in a hydrogen production photobioreactor. Anal. Chem. 86:83994–4001
    [Google Scholar]
  81. 81.  Baird FJ, Wadsworth MP, Hill JE 2012. Evaluation and optimization of multiple fluorophore analysis of a Pseudomonas aeruginosa biofilm. J. Microbiol. Methods 90:3192–96
    [Google Scholar]
  82. 82.  Wang Y, Leng V, Patel V, Phillips KS 2017. Injections through skin colonized with Staphylococcus aureus biofilm introduce contamination despite standard antimicrobial preparation procedures. Sci. Rep. 7:45070
    [Google Scholar]
  83. 83.  Møller S, Pedersen AR, Poulsen LK, Arvin E, Molin S 1996. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl. Environ. Microbiol. 62:124632–40
    [Google Scholar]
  84. 84.  Wu Y, Liang J, Rensing K, Chou T-M, Libera M 2014. Extracellular matrix reorganization during cryo preparation for scanning electron microscope imaging of Staphylococcus aureus biofilms. Microsc. Microanal. 20:51348–55
    [Google Scholar]
  85. 85.  Abucayon E, Ke N, Cornut R, Patelunas A, Miller D et al. 2014. Investigating catalase activity through hydrogen peroxide decomposition by bacteria biofilms in real time using scanning electrochemical microscopy. Anal. Chem. 86:1498–505
    [Google Scholar]
  86. 86.  Danin P-E, Girou E, Legrand P, Louis B, Fodil R et al. 2015. Description and microbiology of endotracheal tube biofilm in mechanically ventilated subjects. Respir. Care 60:121–29
    [Google Scholar]
  87. 87.  Wang Y, Subbiahdoss G, de Vries J, Libera M, van der Mei HC, Busscher HJ 2012. Effect of adsorbed fibronectin on the differential adhesion of osteoblast-like cells and Staphylococcus aureus with and without fibronectin-binding proteins. Biofouling 28:91011–21
    [Google Scholar]
  88. 88.  Ding Y, Zhou Y, Yao J, Szymanski C, Fredrickson J et al. 2016. In situ molecular imaging of the biofilm and its matrix. Anal. Chem. 88:2211244–52
    [Google Scholar]
  89. 89.  Zhang B, Powers R 2012. Analysis of bacterial biofilms using NMR-based metabolomics. Future Med. Chem. 4:101273–306
    [Google Scholar]
  90. 90.  Franklin MJ, Chang C, Akiyama T, Bothner B 2015. New technologies for studying biofilms. Microbiol. Spectr. 3:4 https://doi.org/10.1128/microbiolspec.MB-0016-2014
    [Crossref] [Google Scholar]
  91. 91.  Schmiemann G, Kniehl E, Gebhardt K, Matejczyk MM, Hummers-Pradier E 2010. The diagnosis of urinary tract infection: a systematic review. Dtsch. Ärztebl. Intl. 107:21361–67
    [Google Scholar]
  92. 92.  Fujitani S, Yu VL 2006. Quantitative cultures for diagnosing ventilator-associated pneumonia: a critique. Clin. Infect. Dis. 43:Suppl. 2S106–13
    [Google Scholar]
  93. 93.  Parvizi J, Alijanipour P, Barberi EF, Hickok NJ, Phillips KS et al. 2015. Novel developments in the prevention, diagnosis, and treatment of periprosthetic joint infections. J. Am. Acad. Orthop. Surg. 23:Suppl.S32–43
    [Google Scholar]
  94. 94.  Jacob J 2010. The Systemic Practice of Misinterpretation of Scientific Data: The Case of Persisters, Small Colony Variants, Viable but Non-Culturable Bacteria, and Senescent Bacteria in Microbiology Irvine, CA: Universal
    [Google Scholar]
  95. 95.  Christensen L, Breiting V, Bjarnsholt T, Eickhardt S, Høgdall E et al. 2013. Bacterial infection as a likely cause of adverse reactions to polyacrylamide hydrogel fillers in cosmetic surgery. Clin. Infect. Dis. 56:101438–44
    [Google Scholar]
  96. 96.  Lemperle G, Nicolau P, Scheiermann N 2011. Is there any evidence for biofilms in dermal fillers?. Plast. Reconstr. Surg. 128:284–85
    [Google Scholar]
  97. 97.  Ajdic D, Zoghbi Y, Gerth D, Panthaki ZJ, Thaller S 2016. The relationship of bacterial biofilms and capsular contracture in breast implants. Aesthet. Surg. J. 36:3297–309
    [Google Scholar]
  98. 98.  Xi C, Marks D, Schlachter S, Luo W, Boppart SA 2006. High-resolution three-dimensional imaging of biofilm development using optical coherence tomography. J. Biomed. Opt. 11:3034001
    [Google Scholar]
  99. 99.  Li X, Kong H, Mout R, Saha K, Moyano DF et al. 2014. Rapid identification of bacterial biofilms and biofilm wound models using a multichannel nanosensor. ACS Nano 8:1212014–19
    [Google Scholar]
  100. 100.  Kipp BR 2016. The next generation of cancer testing: a quickly changing landscape fuels both optimism and pessimism. Clin. Lab. News 10:42 https://www.aacc.org/publications/cln/articles/2016/october/the-next-generation-of-cancer-testing-a-quickly-changing-landscape-fuels-both-optimism-and-pessimism
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125556
Loading
/content/journals/10.1146/annurev-anchem-061417-125556
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error