1932

Abstract

The creation of a pharmacokinetic (PK) curve, which follows the plasma concentration of an administered drug as a function of time, is a critical aspect of the drug development process and includes such information as the drug's bioavailability, clearance, and elimination half-life. Prior to a drug of interest gaining clearance for use in human clinical trials, research is performed during the preclinical stages to establish drug safety and dosing metrics from data obtained from the PK studies. Both in vivo animal models and in vitro platforms have limitations in predicting human reaction to a drug due to differences in species and associated simplifications, respectively. As a result, in silico experiments using computer simulation have been implemented to accurately predict PK parameters in human studies. This review assesses these three approaches (in vitro, in vivo, and in silico) when establishing PK parameters and evaluates the potential for in silico studies to be the future gold standard of PK preclinical studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125611
2018-06-12
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-125611.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125611&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  DiMasi JA, Grabowski HG, Hansen RW 2016. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47:20–33
    [Google Scholar]
  2. 2.  Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J 2014. Clinical development success rates for investigational drugs. Nat. Biotech. 32:40–51
    [Google Scholar]
  3. 3.  Urso R, Blardi P, Giorgi G 2002. A short introduction to pharmacokinetics. Eur. Rev. Med. Pharmacol. Sci. 6:33–44
    [Google Scholar]
  4. 4.  Khojasteh SC, Wong H, Hop CECA 2011. Pharmacokinetics. Drug Metabolism and Pharmacokinetics Quick Guide SC Khojasteh, H Wong, CECA Hop 1–15 New York: Springer
    [Google Scholar]
  5. 5.  Bonate PL 2011. Pharmacokinetics. Wiley Interdiscip. Rev. Comput. Stat. 3:332–42
    [Google Scholar]
  6. 6.  Fan J, de Lannoy IAM 2014. Pharmacokinetics. Biochem. Pharmacol. 87:93–120
    [Google Scholar]
  7. 7.  Hinderliter P, Saghir SA 2014. Pharmacokinetics. Encyclopedia of Toxicology P Wexler 849–55 New York: Elsevier
    [Google Scholar]
  8. 8.  Offermanns S, Rosenthal W 2008. Encyclopedia of Molecular Pharmacology Berlin: Springer-Verlag, 2nd ed..
    [Google Scholar]
  9. 9.  DiPiro JT 2005. Concepts in Clinical Pharmacokinetics Bethesda, MD: Am. Soc. Health-Syst. Pharm, 4th ed..
    [Google Scholar]
  10. 10.  Dhillon S, Kostrzewski A 2006. Clinical Pharmacokinetics London: Pharm. Press
    [Google Scholar]
  11. 11.  Seabury R, Stork C 2014. Pharmacokinetic and toxicokinetic modeling. Encyclopedia of Toxicology P Wexler 856–61 New York: Elsevier
    [Google Scholar]
  12. 12.  Gerlowski LE, Jain RK 1983. Physiologically based pharmacokinetic modeling: principles and applications. J. Pharm. Sci. 72:1103–27
    [Google Scholar]
  13. 13.  Vaddady PK, Lee RE, Meibohm B 2010. In vitro pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB. Future Med. Chem. 2:1355–69
    [Google Scholar]
  14. 14.  Garrett ER, Wright OK, Miller GH, Smith KL 1966. Quantification and prediction of the biological activities of chloramphenicol analogs by microbial kinetics. J. Med. Chem. 9:203–8
    [Google Scholar]
  15. 15.  Nolting A, Costa TD, Rand KH, Derendorf H 1996. Pharmacokinetic-pharmacodynamic modeling of the antibiotic effect of piperacillin in vitro. Pharm. Res. 13:91–96
    [Google Scholar]
  16. 16.  Luo J-Y, Yan D, Yang M-H 2014. Study of the anti-MRSA activity of Rhizoma coptidis by chemical fingerprinting and broth microdilution methods. Chin. J. Nat. Med. 12:393–400
    [Google Scholar]
  17. 17.  Skehan P, Storeng R, Scudiero D, Monks A, McMahon J et al. 1990. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82:1107–12
    [Google Scholar]
  18. 18.  Lieberman MM, Patterson GML, Moore RE 2001. In vitro bioassays for anticancer drug screening: effects of cell concentration and other assay parameters on growth inhibitory activity. Cancer Lett 173:21–29
    [Google Scholar]
  19. 19.  Sacks T, Moldow CF, Craddock PR, Bowers TK, Jacob HS 1978. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J. Clin. Investig. 61:1161–67
    [Google Scholar]
  20. 20.  Brain RA, Johnson DJ, Richards SM, Sanderson H, Sibley PK, Solomon KR 2004. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test. Environ. Toxicol. Chem. 23:371–82
    [Google Scholar]
  21. 21.  Houdkova M, Rondevaldova J, Doskocil I, Kokoska L 2017. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia 118:56–62
    [Google Scholar]
  22. 22.  White RL 2001. What in vitro models of infection can and cannot do. Pharmacotherapy292S–301S
    [Google Scholar]
  23. 23.  Grasso S, Meinardi G, De Carneri I Tamassia V 1978. New in vitro model to study the effect of antibiotic concentration and rate of elimination on antibacterial activity. Antimicrob. Agents Chemother. 13:570–76
    [Google Scholar]
  24. 24.  Murakawa T, Sakamoto H, Hirose T, Nishida M 1980. New in vitro kinetic model for evaluating bactericidal efficacy of antibiotics. Antimicrob. Agents Chemother. 18:377–81
    [Google Scholar]
  25. 25.  Keil S, Wiedemann B 1995. Mathematical corrections for bacterial loss in pharmacodynamic in vitro dilution models. Antimicrob. Agents Chemother. 39:1054–58
    [Google Scholar]
  26. 26.  White CA, Toothaker RD, Smith AL, Slattery JT 1987. Correction for bacterial loss in in vitro dilution models. Antimicrob. Agents Chemother. 31:1859–60
    [Google Scholar]
  27. 27.  Haag R, Lexa P, Werkhäuser I 1986. Artifacts in dilution pharmacokinetic models caused by adherent bacteria. Antimicrob. Agents Chemother. 29:765–68
    [Google Scholar]
  28. 28.  Schaumann R, Goldstein EJ, Forberg J, Rodloff AC 2005. Activity of moxifloxacin against Bacteroides fragilis and Escherichia coli in an in vitro pharmacokinetic/pharmacodynamic model employing pure and mixed cultures. J. Med. Microbiol. 54:749–53
    [Google Scholar]
  29. 29.  O'Grady F, Pennington JH 1966. Bacterial growth in an in vitro system simulating conditions in the urinary bladder. Br. J. Exp. Pathol. 47:152–57
    [Google Scholar]
  30. 30.  Dalla Costa T, Nolting A, Rand K, Derendorf H 1997. Pharmacokinetic-pharmacodynamic modelling of the in vitro antiinfective effect of piperacillin-tazobactam combinations. Int. J. Clin. Pharmacol. Ther. 35:426–33
    [Google Scholar]
  31. 31.  Haller I 1982. Combined action of decreasing concentrations of azlocillin and sisomicin on Pseudomonas aeruginosa as assessed in a dynamic in vitro model. Infection 10:S229–S33
    [Google Scholar]
  32. 32.  Budha NR, Lee RB, Hurdle JG, Lee RE, Meibohm B 2009. A simple in vitro PK/PD model system to determine time-kill curves of drugs against mycobacteria. Tuberculosis 89:378–85
    [Google Scholar]
  33. 33.  Löwdin E, Odenholt I, Bengtsson S, Cars O 1996. Pharmacodynamic effects of sub-MICs of benzylpenicillin against Streptococcus pyogenes in a newly developed in vitro kinetic model. Antimicrob. Agents Chemother. 40:2478–82
    [Google Scholar]
  34. 34.  Navashin SM, Fomina IP, Firsov AA, Chernykh VM, Kuznetsova SM 1989. A dynamic model for in-vitro evaluation of antimicrobial action by simulation of the pharmacokinetic profiles of antibiotics. J. Antimicrob. Chemother. 23:389–99
    [Google Scholar]
  35. 35.  Gloede J, Scheerans C, Derendorf H, Kloft C 2010. In vitro pharmacodynamic models to determine the effect of antibacterial drugs. J. Antimicrobial. Chemother. 65:186–201
    [Google Scholar]
  36. 36.  Toothaker RD, Welling PG, Craig WA 1982. An in vitro model for the study of antibacterial dosage regimen design. J. Pharm. Sci. 71:861–64
    [Google Scholar]
  37. 37.  Shah PM 1985. Activity of imipenem in an in-vitro model simulating pharmacokinetic parameters in human blood. J. Antimicrobial. Chemother. 15:153–57
    [Google Scholar]
  38. 38.  Gumbo T, Louie A, Deziel MR, Parsons LM, Salfinger M, Drusano GL 2004. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J. Infect. Dis. 190:1642–51
    [Google Scholar]
  39. 39.  Zinner SH, Husson M, Klastersky J 1981. An artificial capillary in vitro kinetic model of antibiotic bactericidal activity. J. Infect. Dis. 144:583–87
    [Google Scholar]
  40. 40.  Haller I 1985. Penetration of antibiotics through cell culture monolayers. J. Antimicrob. Chemother. 15:Suppl. A197–99
    [Google Scholar]
  41. 41.  Hulten K, Rigo R, Gustafsson I, Engstrand L 1996. New pharmacokinetic in vitro model for studies of antibiotic activity against intracellular microorganisms. Antimicrob. Agents Chemother. 40:2727–31
    [Google Scholar]
  42. 42.  Sung JH, Kam C, Shuler ML 2010. A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip 10:446–55
    [Google Scholar]
  43. 43.  Novik E, Maguire TJ, Chao P, Cheng KC, Yarmush ML 2010. A microfluidic hepatic coculture platform for cell-based drug metabolism studies. Biochem. Pharmacol. 79:1036–44
    [Google Scholar]
  44. 44.  Booth R, Kim H 2014. Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood–brain barrier model. Ann. Biomed. Eng. 42:2379–91
    [Google Scholar]
  45. 45.  Lockwood SY, Meisel JE, Monsma FJ, Spence DM 2016. A diffusion-based and dynamic 3D-printed device that enables parallel in vitro pharmacokinetic profiling of molecules. Anal. Chem. 88:1864–70
    [Google Scholar]
  46. 46.  LaBonia GJ, Lockwood SY, Heller AA, Spence DM, Hummon AB 2016. Drug penetration and metabolism in 3D cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry. Proteomics 16:1814–21
    [Google Scholar]
  47. 47.  Pinger CW, Heller AA, Spence DM 2017. A printed equilibrium dialysis device with integrated membranes for improved binding affinity measurements. Anal. Chem. 89:7302–6
    [Google Scholar]
  48. 48.  Chang R, Nam J, Sun W 2008. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng. C 14:157–66
    [Google Scholar]
  49. 49.  Murphy SV, Atala A 2014. 3D bioprinting of tissues and organs. Nat. Biotech. 32:773–85
    [Google Scholar]
  50. 50.  Huh D, Torisawa Y, Hamilton GA, Kim HJ, Ingber DE 2012. Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12:2156–64
    [Google Scholar]
  51. 51.  Wikswo JP 2014. The relevance and potential roles of microphysiological systems in biology and medicine. Exp. Biol. Med. 239:1061–72
    [Google Scholar]
  52. 52.  Kim HJ, Ingber DE 2013. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 5:1130–40
    [Google Scholar]
  53. 53.  Tsamandouras N, Chen WLK, Edington CD, Stokes CL, Griffith LG, Cirit M 2017. Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J 19:1499–512
    [Google Scholar]
  54. 54.  Godin B, Touitou E 2007. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv. Drug Deliv. Rev. 59:1152–61
    [Google Scholar]
  55. 55.  Le Ferrec E, Chesne C, Artusson P, Brayden D, Fabre G et al. 2001. In vitro models of the intestinal barrier. The report and recommendations of ECVAM Workshop 46. Altern. Lab. Anim. 29:649–68
    [Google Scholar]
  56. 56.  Zhang D, Luo G, Ding X, Lu C 2012. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm. Sin. B 2:549–61
    [Google Scholar]
  57. 57.  Cryan S-A, Sivadas N, Garcia-Contreras L 2007. In vivo animal models for drug delivery across the lung mucosal barrier. Adv. Drug Deliv. Rev. 59:1133–51
    [Google Scholar]
  58. 58.  Wood MW, Hart LA 2007. Selecting appropriate animal models and strains: making the best use of research, information and outreach. AATEX 14:303–6
    [Google Scholar]
  59. 59.  Uno S, Dalton TP, Dragin N, Curran CP, Derkenne S et al. 2006. Oral benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body burden and clearance rate. Mol. Pharmacol. 69:1103–14
    [Google Scholar]
  60. 60.  Zhang QY, Gu J, Su T, Cui H, Zhang X et al. 2005. Generation and characterization of a transgenic mouse model with hepatic expression of human CYP2A6. Biochem. Biophys. Res. Commun. 338:318–24
    [Google Scholar]
  61. 61.  Cheung C, Yu AM, Chen CS, Krausz KW, Byrd LG et al. 2006. Growth hormone determines sexual dimorphism of hepatic cytochrome P450 3A4 expression in transgenic mice. J. Pharmacol. Exp. Ther. 316:1328–34
    [Google Scholar]
  62. 62.  Tang C, Prueksaritanont T 2010. Use of in vivo animal models to assess pharmacokinetic drug-drug interactions. Pharm. Res. 27:1772–87
    [Google Scholar]
  63. 63.  Mak IWY, Evaniew N, Ghert M 2014. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6:114–18
    [Google Scholar]
  64. 64.  Webb DR 2014. Animal models of human disease: inflammation. Biochem. Pharmacol. 87:121–30
    [Google Scholar]
  65. 65.  Rubio C, Rubio-Osornio M, Retana-Marquez S, Lopez M, Custodio V, Paz C 2010. In vivo experimental models of epilepsy. Cent. Nerv. Syst. Agents Med. Chem. 10:298–309
    [Google Scholar]
  66. 66.  Selbie FR, Simon RD 1952. Virulence to mice of Staphylococcus pyogenes: its measurement and its relation to certain in vitro properties. Br. J. Exp. Pathol. 33:315–26
    [Google Scholar]
  67. 67.  Selbie FR 1954. Comparison of sodium and procaine penicillin in treatment of experimental staphylococcal infection in mice. Br. Med. J. 1:1350–53
    [Google Scholar]
  68. 68.  Hunter PA, Rolinson G, Witting DA 1973. Comparative activity of amoxycillin and ampicillin in an experimental bacterial infection in mice. Antimicrob. Agents Chemother. 4:285–93
    [Google Scholar]
  69. 69.  Kunst MW, Mattie H 1978. Cefazolin and cephradine: relationship between antibacterial activity in vitro and in mice experimentally infected with Escherichia coli. . J. Infect. Dis. 137:391–402
    [Google Scholar]
  70. 70.  Gerber AU, Craig WA, Brugger HP, Feller C, Vastola AP, Brandel J 1983. Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice. J. Infect. Dis. 147:910–17
    [Google Scholar]
  71. 71.  Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA 1988. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J. Infect. Dis. 158:831–47
    [Google Scholar]
  72. 72.  Craig WA 2014. In vitro and animal PK/PD models. Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics A Vinks, H Derendorf, J Mouton 23–44 New York: Springer-Verlag
    [Google Scholar]
  73. 73.  Nielsen EI, Friberg LE 2013. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol. Rev. 65:1053–90
    [Google Scholar]
  74. 74.  Zhao M, Lepak AJ, Andes DR 2016. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg. Med. Chem. 24:6390–400
    [Google Scholar]
  75. 75.  Zhao M, Lepak AJ, Marchillo K, VanHecker J, Andes DR 2017. In vivo pharmacodynamic target assessment of eravacycline against Escherichia coli in a murine thigh infection model. Antimicrob. Agents Chemother. 51:e00250
    [Google Scholar]
  76. 76.  Hagihara M, Kato H, Hirai J, Nishiyama N, Koizumi Y et al. 2017. Colistin loading dose enhanced antimicrobial activity for in vivo mouse thigh infection model with Pseudomonas aeruginosa with highly antimicrobial resistant. J. Infect. Chemother. 23:189–92
    [Google Scholar]
  77. 77.  Hagberg L, Engberg I, Freter R, Lam J, Olling S, Svanborg Edén C 1983. Ascending, unobstructed urinary tract infection in mice caused by pyelonephritogenic Escherichia coli of human origin. Infect. Immun. 40:273–83
    [Google Scholar]
  78. 78.  Hvidberg H, Struve C, Krogfelt KA, Christensen N, Rasmussen SN, Frimodt-Møller N 2000. Development of a long-term ascending urinary tract infection mouse model for antibiotic treatment studies. Antimicrob. Agents Chemother. 44:156–63
    [Google Scholar]
  79. 79.  Velkov T, Bergen PJ, Lora-Tamayo J, Landersdorfer CB, Li J 2013. PK/PD models in antibacterial development. Curr. Opin. Microbiol. 16:573–79
    [Google Scholar]
  80. 80.  Tsuchimori N, Yamazaki T, Okonogi K 1997. Therapeutic effects of cefozopran against experimental mixed urinary tract infection with Enterococcus faecalis and Pseudomonas aeruginosa in mice. J. Antimicrob. Chemother. 39:423–25
    [Google Scholar]
  81. 81.  Frimodt-Møller N 2002. Correlation between pharmacokinetic/pharmacodynamic parameters and efficacy for antibiotics in the treatment of urinary tract infection. Int. J. Antimicrob. Agents 19:546–53
    [Google Scholar]
  82. 82.  Lefort A, Chau F, Lepeule R, Dubée V, Kitzis M-D et al. 2014. Activity of fosfomycin alone or combined with cefoxitin in vitro and in vivo in a murine model of urinary tract infection due to Escherichia coli harbouring CTX-M-15-type extended-spectrum β-lactamase. Int. J. Antimicrob. Agents 43:366–69
    [Google Scholar]
  83. 83.  Soubirou J, Rossi B, Couffignal C, Ruppé E, Chau F et al. 2015. Activity of temocillin in a murine model of urinary tract infection due to Escherichia coli producing or not producing the ESBL CTX-M-15. J. Antimicrobial. Chemother. 70:1466–72
    [Google Scholar]
  84. 84.  Reyes N, Aggen JB, Kostrub CF 2011. In vivo efficacy of the novel aminoglycoside ACHN-490 in murine infection models. Antimicrob. Agents Chemother. 55:1728–33
    [Google Scholar]
  85. 85.  Brunetti J, Falciani C, Roscia G, Pollini S, Bindi S et al. 2016. In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Sci. Rep. 6:26077
    [Google Scholar]
  86. 86.  Levasseur P, Girard A-M, Lavallade L, Miossec C, Pace J, Coleman K 2014. Efficacy of a ceftazidime-avibactam combination in a murine model of septicemia caused by Enterobacteriaceae species producing AmpC or extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 58:6490–95
    [Google Scholar]
  87. 87.  Schmidt R, Knappe D, Wende E, Ostorhazi E, Hoffmann R 2017. In vivo efficacy and pharmacokinetics of optimized apidaecin analogs. Front. Chem. 5:15
    [Google Scholar]
  88. 88.  Busch U, Schmid J, Heinzel G, Schmaus H, Baierl J et al. 1998. Pharmacokinetics of meloxicam in animals and the relevance to humans. Drug Metab. Dispos. 26:576–84
    [Google Scholar]
  89. 89.  Gupta N, Price P, Aboagye E 2002. PET for in vivo pharmacokinetic and pharmacodynamic measurements. Eur. J. Cancer 38:2094–107
    [Google Scholar]
  90. 90.  Antunes IF, Willemsen ATM, Sijbesma JWA, Boerema AS, van Waarde A et al. 2017. In vivo quantification of ER-β expression by pharmacokinetic modeling: Studies with 18F-FHNP PET. J. Nucl. Med. 58:1743–48
    [Google Scholar]
  91. 91.  Wooten DW, Guehl NJ, Verwer EE, Shoup TM, Yokell DL et al. 2017. Pharmacokinetic evaluation of the tau PET radiotracer 18F-T807 (18F-AV-1451) in human subjects. J. Nucl. Med. 58:484–91
    [Google Scholar]
  92. 92.  Lammertsma AA 2004. Role of human and animal PET studies in drug development. Int. Congr. Ser. 1265:3–11
    [Google Scholar]
  93. 93.  Aboagye EO, Price PM, Jones T 2001. In vivo pharmacokinetics and pharmacodynamics in drug development using positron-emission tomography. Drug Discov. Today 6:293–302
    [Google Scholar]
  94. 94.  Man F, Lim L, Shmeeda H, Gabizon A, Blower P et al. 2017. Direct cell labelling with 89Zr(oxine)4 allows in vivo PET imaging of gamma-delta T-cells in a breast cancer model. J. Nucl. Med. 58:185
    [Google Scholar]
  95. 95.  Gustafsson S, Eriksson J, Syvänen S, Eriksson O, Hammarlund-Udenaes M, Antoni G 2017. Combined PET and microdialysis for in vivo estimation of drug blood-brain barrier transport and brain unbound concentrations. NeuroImage 155:177–86
    [Google Scholar]
  96. 96.  Drusano GL 1988. Role of pharmacokinetics in the outcome of infections. Antimicrob. Agents Chemother. 32:289–97
    [Google Scholar]
  97. 97.  Boxenbaum H 1982. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J. Pharmacokinet. Biopharm. 10:201–27
    [Google Scholar]
  98. 98.  Dedrick RL 1973. Animal scale-up. J. Pharmacokinet. Biopharm. 1:435–61
    [Google Scholar]
  99. 99.  Gerber AU, Brugger H-P, Feller C, Stritzko T, Stalder B 1986. Antibiotic therapy of infections due to Pseudomonas aeruginosa in normal and granulocytopenic mice: comparison of murine and human pharmacokinetics. J. Infect. Dis. 153:90–97
    [Google Scholar]
  100. 100.  Keel RA, Crandon JL, Nicolau DP 2011. Efficacy of human simulated exposures of ceftaroline administered at 600 milligrams every 12 hours against phenotypically diverse Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 55:4028–32
    [Google Scholar]
  101. 101.  Craig WA, Redington J, Ebert SC 1991. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J. Antimicrob. Chemother. 27:Suppl. C29–40
    [Google Scholar]
  102. 102.  Lin JH, Lin TH 1988. Renal handling of drugs in renal failure. I: Differential effects of uranyl nitrate- and glycerol-induced acute renal failure on renal excretion of TEAB and PAH in rats. J. Pharmacol. Exp. Ther. 246:896–901
    [Google Scholar]
  103. 103.  Mattoes HM, Banevicius M, Li D, Turley C, Xuan D et al. 2001. Pharmacodynamic assessment of gatifloxacin against Streptococcus pneumoniae. Antimicrob. Agents Chemother. 45:2092–97
    [Google Scholar]
  104. 104.  Sagcal-Gironella ACP, Sherwin CMT, Tirona RG, Rieder MJ, Brunner HI et al. 2011. Open-label, single dose pharmacokinetic study of prednisolone at steady state in young patients with SLE on prednisone therapy. Clin. Ther. 33:1524–36
    [Google Scholar]
  105. 105. Minist. Health Labour Welf. 2001. Clinical pharmacokinetic studies of pharmaceuticals Ref. Rep., Minist. Health Labour Welf., Tokyo. http://www.nihs.go.jp/phar/pdf/ClPkEng011122.pdf
    [Google Scholar]
  106. 106.  Zain-Hamid R, Ismail Z, Mahendra Raj S, Shuaib IL, Mohsin SSJ 2002. The pharmacokinetics of single dose versus steady-state doses of propranolol in cirrhotic Malay patients. Malays. J. Med. Sci. 9:16–20
    [Google Scholar]
  107. 107.  Corey GR, Kabler H, Mehra P, Gupta S, Overcash JS et al. 2014. Single-dose oritavancin in the treatment of acute bacterial skin infections. N. Engl. J. Med. 370:2180–90
    [Google Scholar]
  108. 108.  Tsuchiya S, Friedman E, Addy C, Wakana A, Tatosian D et al. 2017. Single and multiple dose pharmacokinetics and pharmacodynamics of omarigliptin, a novel, once‐weekly dipeptidyl peptidase‐4 inhibitor, in healthy Japanese men. J. Diabetes Investig. 8:84–92
    [Google Scholar]
  109. 109.  Hansson A, Rasmussen T, Kraiczi H 2017. Single-dose and multiple-dose pharmacokinetics of nicotine 6 mg gum. Nicotine Tob. Res. 19:477–83
    [Google Scholar]
  110. 110.  Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S et al. 2011. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob. Agents Chemother. 55:3284–94
    [Google Scholar]
  111. 111.  Peloquin CA, Hadad DJ, Molino LPD, Palaci M, Boom WH et al. 2008. Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis. Antimicrob. Agents Chemother. 52:852–57
    [Google Scholar]
  112. 112.  Charles B 2014. Population pharmacokinetics: an overview. Aust. Prescrib. 37:210–13
    [Google Scholar]
  113. 113.  Kloft C, Wallin J, Henningsson A, Chatelut E, Karlsson MO 2006. Population pharmacokinetic-pharmacodynamic model for neutropenia with patient subgroup identification: comparison across anticancer drugs. Clin. Cancer Res. 12:5481–90
    [Google Scholar]
  114. 114.  Venkatesh S, Lipper RA 2000. Role of the development scientist in compound lead selection and optimization. J. Pharm. Sci. 89:145–54
    [Google Scholar]
  115. 115.  Mercuri A, Wu S, Stranzinger S, Mohr S, Salar-Behzadi S et al. 2016. In vitro and in silico characterisation of Tacrolimus released under biorelevant conditions. Int. J. Pharm. 515:271–80
    [Google Scholar]
  116. 116.  Boobis A, Gundert-Remy U, Kremers P, Macheras P, Pelkonen O 2002. In silico prediction of ADME and pharmacokinetics. Report of an expert meeting organised by COST B15. Eur. J. Pharm. Sci. 17:183–93
    [Google Scholar]
  117. 117.  Hodgson J 2001. ADMET-turning chemicals into drugs. Nat. Biotech. 19:722–26
    [Google Scholar]
  118. 118.  Lagorce D, Reynes C, Camproux A-C, Miteva MA, Sperandio O, Villoutreix BO 2011. In silico ADME/Tox predictions. ADMET for Medicinal Chemists29–124 Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  119. 119.  Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF 2004. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-Å resolution. J. Biol. Chem. 279:38091–94
    [Google Scholar]
  120. 120.  Yoo J, Medina-Franco JL 2011. Homology modeling, docking and structure-based pharmacophore of inhibitors of DNA methyltransferase. J. Comput.-Aided Mol. Des. 25:555–67
    [Google Scholar]
  121. 121.  Friedman FK, Robinson RC, Dai R 2004. Molecular modeling of mammalian cytochrome P450s. Front. Biosci. 9:2796–806
    [Google Scholar]
  122. 122.  De Rienzo F Fanelli F, Menziani MC, De Benedetti PG 2000. Theoretical investigation of substrate specificity for cytochromes P450 IA2, P450 IID6 and P450 IIIA4. J. Comput.-Aided Mol. Des. 14:93–116
    [Google Scholar]
  123. 123.  Lewis DF, Eddershaw PJ, Goldfarb PS, Tarbit MH 1997. Molecular modelling of cytochrome P4502D6 (CYP2D6) based on an alignment with CYP102: structural studies on specific CYP2D6 substrate metabolism. Xenobiotica 27:319–39
    [Google Scholar]
  124. 124.  Paramashivam SK, Elayaperumal K, Natarajan B, Ramamoorthy M, Balasubramanian S, Dhiraviam KN 2015. In silico pharmacokinetic and molecular docking studies of small molecules derived from Indigofera aspalathoides Vahl targeting receptor tyrosine kinases. Bioinformation 11:73–84
    [Google Scholar]
  125. 125.  Shaik JB, Palaka BK, Penumala M, Kotapati KV, Devineni SR et al. 2016. Synthesis, pharmacological assessment, molecular modeling and in silico studies of fused tricyclic coumarin derivatives as a new family of multifunctional anti-Alzheimer agents. Eur. J. Med. Chem. 107:219–32
    [Google Scholar]
  126. 126.  Yamashita F, Hashida M 2004. In silico approaches for predicting ADME properties of drugs. Drug Metab. Pharmacokinet. 19:327–38
    [Google Scholar]
  127. 127.  Patel Y, Gillet VJ, Bravi G, Leach AR 2002. A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP. J. Comput.-Aided Mol. Des. 16:653–81
    [Google Scholar]
  128. 128.  Bednarczyk D, Ekins S, Wikel JH, Wright SH 2003. Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol. Pharmacol. 63:489–98
    [Google Scholar]
  129. 129.  Swaan PW, Tukker JJ 1997. Molecular determinants of recognition for the intestinal peptide carrier. J. Pharm. Sci. 86:596–602
    [Google Scholar]
  130. 130.  Ekins S, Bravi G, Ring BJ, Gillespie TA, Gillespie JS et al. 1999. Three-dimensional quantitative structure activity relationship analyses of substrates for CYP2B6. J. Pharmacol. Exp. Ther. 288:21–29
    [Google Scholar]
  131. 131.  Locuson CW, Rock DA, Jones JP 2004. Quantitative binding models for CYP2C9 based on benzbromarone analogues. Biochemistry 43:6948–58
    [Google Scholar]
  132. 132.  Yang S-Y 2010. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov. Today 15:444–50
    [Google Scholar]
  133. 133.  van de Waterbeemd H, Gifford E 2003. ADMET in silico modelling: towards prediction paradise?. Nat. Rev. Drug Discov. 2:192–204
    [Google Scholar]
  134. 134.  Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D et al. 2005. Virtual computational chemistry laboratory—design and description. J. Comput.-Aided Mol. Des. 19:453–63
    [Google Scholar]
  135. 135.  Zheng S, Luo X, Chen G, Zhu W, Shen J et al. 2005. A new rapid and effective chemistry space filter in recognizing a druglike database. J. Chem. Inf. Model. 45:856–62
    [Google Scholar]
  136. 136.  Butina D, Segall MD, Frankcombe K 2002. Predicting ADME properties in silico: methods and models. Drug Discov. Today 7:S83–88
    [Google Scholar]
  137. 137.  Shen M, Xiao Y, Golbraikh A, Gombar VK, Tropsha A 2003. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. J. Med. Chem. 46:3013–20
    [Google Scholar]
  138. 138.  Niwa T 2003. Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures. J. Chem. Inf. Comput. Sci. 43:113–19
    [Google Scholar]
  139. 139.  Yamashita F, Wanchana S, Hashida M 2002. Quantitative structure/property relationship analysis of Caco-2 permeability using a genetic algorithm-based partial least squares method. J. Pharm. Sci. 91:2230–39
    [Google Scholar]
  140. 140.  Ran Y, Jain N, Yalkowsky SH 2001. Prediction of aqueous solubility of organic compounds by the general solubility equation (GSE). J. Chem. Inf. Comput. Sci. 41:1208–17
    [Google Scholar]
  141. 141.  Abuasal BS, Bolger MB, Walker DK, Kaddoumi A 2012. In silico modeling for the nonlinear absorption kinetics of UK-343,664: a P-gp and CYP3A4 substrate. Mol. Pharm. 9:492–504
    [Google Scholar]
  142. 142.  Sousa MC, Braga RC, Cintra BAS, de Oliveira V, Andrade CH 2013. In silico metabolism studies of dietary flavonoids by CYP1A2 and CYP2C9. Food Res. Int. 50:102–10
    [Google Scholar]
  143. 143.  Kusama M, Toshimoto K, Maeda K, Hirai Y, Imai S et al. 2010. In silico classification of major clearance pathways of drugs with their physiochemical parameters. Drug Metab. Dispos. 38:1362–70
    [Google Scholar]
  144. 144.  Fortuna A, Alves G, Soares-da-Silva P, Falcão A 2013. Pharmacokinetics, brain distribution and plasma protein binding of carbamazepine and nine derivatives: new set of data for predictive in silico ADME models. Epilepsy Res 107:37–50
    [Google Scholar]
  145. 145.  del Amo EM, Vellonen K-S, Kidron H, Urtti A 2015. Intravitreal clearance and volume of distribution of compounds in rabbits: in silico prediction and pharmacokinetic simulations for drug development. Eur. J. Pharm. Biopharm. 95:Pt. B215–26
    [Google Scholar]
  146. 146.  Mori A, Yabuta C, Kishimoto Y, Kozai S, Ohtori A et al. 2017. In silico ocular pharmacokinetic modeling: delivery of topical FK962 to retina. J. Ocul. Pharmacol. Ther. 33:556–66
    [Google Scholar]
  147. 147.  Kambayashi A, Dressman JB 2017. Forecasting gastrointestinal precipitation and oral pharmacokinetics of dantrolene in dogs using an in vitro precipitation testing coupled with in silico modeling and simulation. Eur. J. Pharm. Biopharm. 119:107–13
    [Google Scholar]
  148. 148.  Guet-Revillet H, Tomini E, Emirian A, Join-Lambert O, Lécuyer H et al. 2017. Piperacillin/tazobactam as an alternative antibiotic therapy to carbapenems in the treatment of urinary tract infections due to extended-spectrum β-lactamase-producing Enterobacteriaceae: an in silico pharmacokinetic study. Int. J. Antimicrob. Agents 49:62–66
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125611
Loading
/content/journals/10.1146/annurev-anchem-061417-125611
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error