1932

Abstract

Measurements of the intracellular state of mammalian cells often require probes or molecules to breach the tightly regulated cell membrane. Mammalian cells have been shown to grow well on vertical nanoscale structures in vitro, going out of their way to reach and tightly wrap the structures. A great deal of research has taken advantage of this interaction to bring probes close to the interface or deliver molecules with increased efficiency or ease. In turn, techniques have been developed to characterize this interface. Here, we endeavor to survey this research with an emphasis on the interface as driven by cellular mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125705
2018-06-12
2024-07-23
Loading full text...

Full text loading...

/deliver/fulltext/anchem/11/1/annurev-anchem-061417-125705.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125705&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Ozel T, Zhang BA, Gao R, Day RW, Lieber CM, Nocera DG 2017. Electrochemical deposition of conformal and functional layers on high aspect ratio silicon micro/nanowires. Nano Lett 17:4502–7
    [Google Scholar]
  2. 2.  Martiradonna L, Quarta L, Sileo L, Schertel A, Maccione A et al. 2012. Beam induced deposition of 3D electrodes to improve coupling to cells. Microelectron. Eng. 97:365–68
    [Google Scholar]
  3. 3.  Xie C, Lin Z, Hanson L, Cui Y, Cui B 2012. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7:185–90
    [Google Scholar]
  4. 4.  Nick C, Thielemann C, Schlaak HF 2014. PEDOT:PSS coated gold nanopillar microelectrodes for neural interfaces Presented at IEEE Int. Conf. Manip. Manuf. Meas Nanoscale (3M-NANO) Taipei:
    [Google Scholar]
  5. 5.  Jahed Z, Lin P, Seo BB, Verma MS, Gu FX et al. 2014. Responses of Staphylococcus aureus bacterial cells to nanocrystalline nickel nanostructures. Biomaterials 35:4249–54
    [Google Scholar]
  6. 6.  Weidlich S, Krause KJ, Schnitker J, Wolfrum B, Offenhäusser A 2017. MEAs and 3D nanoelectrodes: electrodeposition as tool for a precisely controlled nanofabrication. Nanotechnology 28:095302
    [Google Scholar]
  7. 7.  Miyauchi A, Kuwabara K, Hasegawa M, Ogino M 2016. Large-area nanoimprint and application to cell cultivation. Appl. Phys. A Mater. Sci. Process. 122:265
    [Google Scholar]
  8. 8.  De Angelis F, Malerba M, Patrini M, Miele E, Das G et al. 2013. 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano Lett 13:3553–58
    [Google Scholar]
  9. 9.  Zhao W, Hanson L, Lou H-Y, Akamatsu M, Chowdary PD et al. 2017. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nat. Nanotechnol. 12:750–56
    [Google Scholar]
  10. 10.  Cheung CL, Nikolić RJ, Reinhardt CE, Wang TF 2006. Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17:1339
    [Google Scholar]
  11. 11.  Rey BM, Elnathan R, Ditcovski R, Geisel K, Zanini M et al. 2016. Fully tunable silicon nanowire arrays fabricated by soft nanoparticle templating. Nano Lett 16:157–63
    [Google Scholar]
  12. 12.  Robinson JT, Jorgolli M, Shalek AK, Yoon M-H, Gertner RS, Park H 2012. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7:180–84
    [Google Scholar]
  13. 13.  Shalek AK, Gaublomme JT, Wang L, Yosef N, Chevrier N et al. 2012. Nanowire-mediated delivery enables functional interrogation of primary immune cells: application to the analysis of chronic lymphocytic leukemia. Nano Lett 12:6498–504
    [Google Scholar]
  14. 14.  Prinz CN 2015. Interactions between semiconductor nanowires and living cells. J. Phys. Condens. Matter 27:233103
    [Google Scholar]
  15. 15.  Hanson L, Lin ZC, Xie C, Cui Y, Cui B 2012. Characterization of the cell–nanopillar interface by transmission electron microscopy. Nano Lett 12:5815–20
    [Google Scholar]
  16. 16.  Lee D, Lee D, Won Y, Hong H, Kim Y et al. 2016. Insertion of vertically aligned nanowires into living cells by inkjet printing of cells. Small 12:1446–57
    [Google Scholar]
  17. 17.  Chiappini C, Martinez JO, De Rosa E, Almeida CS, Tasciotti E, Stevens MM 2015. Biodegradable nanoneedles for localized delivery of nanoparticles in vivo: exploring the biointerface. ACS Nano 9:5500–9
    [Google Scholar]
  18. 18.  Chiappini C, De Rosa E, Martinez JO, Liu X, Steele J et al. 2015. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14:532–39
    [Google Scholar]
  19. 19.  Wang Z, Yang Y, Xu Z, Wang Y, Zhang W, Shi P 2015. Interrogation of cellular innate immunity by diamond-nanoneedle-assisted intracellular molecular fishing. Nano Lett 15:7058–63
    [Google Scholar]
  20. 20.  Tang J, Zhang Y, Kong B, Wang Y, Da P et al. 2014. Solar-driven photoelectrochemical probing of nanodot/nanowire/cell interface. Nano Lett 14:2702–8
    [Google Scholar]
  21. 21.  Kavaldzhiev M, Perez JE, Ivanov Y, Bertoncini A, Liberale C, Kosel J 2017. Biocompatible 3D printed magnetic micro needles. Biomed. Phys. Eng. Express 3:025005
    [Google Scholar]
  22. 22.  Chiappini C 2017. Nanoneedle-based sensing in biological systems. ACS Sensors 2:1086–102
    [Google Scholar]
  23. 23.  Chang L, Hu J, Chen F, Chen Z, Shi J et al. 2016. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. Nanoscale 8:3181–206
    [Google Scholar]
  24. 24.  Kwak M, Han L, Chen JJ, Fan R 2015. Interfacing inorganic nanowire arrays and living cells for cellular function analysis. Small 11:5600–10
    [Google Scholar]
  25. 25.  Zhou W, Dai X, Lieber CM 2017. Advances in nanowire bioelectronics. Rep. Prog. Phys. 80:016701
    [Google Scholar]
  26. 26.  Davis H 1939. Electrical phenomena of the brain and spinal cord. Annu. Rev. Physiol. 1:345–62
    [Google Scholar]
  27. 27.  Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM et al. 2013. Nanotools for neuroscience and brain activity mapping. ACS Nano 7:1850–66
    [Google Scholar]
  28. 28.  van de Burgt Y, Lubberman E, Fuller EJ, Keene ST, Faria GC et al. 2017. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16:414–18
    [Google Scholar]
  29. 29.  Müller J, Ballini M, Livi P, Chen Y, Radivojevic M et al. 2015. High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab Chip 15:2767–80
    [Google Scholar]
  30. 30.  Obien MEJ, Deligkaris K, Bullmann T, Bakkum DJ, Frey U 2014. Revealing neuronal function through microelectrode array recordings. Front. Neurosci. 8:423
    [Google Scholar]
  31. 31.  Berdondini L, Imfeld K, Maccione A, Tedesco M, Neukom S et al. 2009. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9:2644–51
    [Google Scholar]
  32. 32.  Eversmann B, Jenkner M, Hofmann F, Paulus C, Brederlow R et al. 2003. A 128×128 CMOS biosensor array for extracellular recording of neural activity. IEEE J. Solid-State Circuits 38:2306–17
    [Google Scholar]
  33. 33.  Frey U, Sedivy J, Heer F, Pedron R, Ballini M et al. 2010. Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circuits 45:467–82
    [Google Scholar]
  34. 34.  Liu R, Chen R, Elthakeb AT, Lee SH, Hinckley S et al. 2017. High density individually addressable nanowire arrays record intracellular activity from primary rodent and human stem cell derived neurons. Nano Lett 17:2757–64
    [Google Scholar]
  35. 35.  Dipalo M, Amin H, Lovato L, Moia F, Caprettini V et al. 2017. Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett 17:3932–39
    [Google Scholar]
  36. 36.  Ojovan SM, Rabieh N, Shmoel N, Erez H, Maydan E et al. 2015. A feasibility study of multi-site, intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes. Sci. Rep. 5:14100
    [Google Scholar]
  37. 37.  Qing Q, Jiang Z, Xu L, Gao R, Mai L, Lieber CM 2014. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9:142–47
    [Google Scholar]
  38. 38.  Almquist BD, Melosh NA 2010. Fusion of biomimetic stealth probes into lipid bilayer cores. PNAS 107:5815–20
    [Google Scholar]
  39. 39.  Hai A, Kamber D, Malkinson G, Erez H, Mazurski N et al. 2009. Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms. J. Neural Eng. 6:066009
    [Google Scholar]
  40. 40.  Santoro F, Dasgupta S, Schnitker J, Auth T, Neumann E et al. 2014. Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter. ACS Nano 8:6713–23
    [Google Scholar]
  41. 41.  Rabieh N, Ojovan SM, Shmoel N, Erez H, Maydan E, Spira ME 2016. On-chip, multisite extracellular and intracellular recordings from primary cultured skeletal myotubes. Sci. Rep. 6:36498
    [Google Scholar]
  42. 42.  Shmoel N, Rabieh N, Ojovan SM, Erez H, Maydan E, Spira ME 2016. Multisite electrophysiological recordings by self-assembled loose-patch-like junctions between cultured hippocampal neurons and mushroom-shaped microelectrodes. Sci. Rep. 6:27110
    [Google Scholar]
  43. 43.  Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH 1982. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–45
    [Google Scholar]
  44. 44.  Fendyur A, Spira ME 2012. Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes. Front. Neuroeng. 5:21
    [Google Scholar]
  45. 45.  Abbott J, Ye T, Qin L, Jorgolli M, Gertner RS et al. 2017. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12:460–66
    [Google Scholar]
  46. 46.  Lin ZC, Xie C, Osakada Y, Cui Y, Cui B 2014. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 5:3206
    [Google Scholar]
  47. 47.  Lin ZC, McGuire AF, Burridge PW, Matsa E, Lou H-Y et al. 2017. Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. Microsyst. Nanoeng. 3:16080
    [Google Scholar]
  48. 48.  Messina GC, Dipalo M, La Rocca R, Zilio P, Caprettini V et al. 2015. Spatially, temporally, and quantitatively controlled delivery of broad range of molecules into selected cells through plasmonic nanotubes. Adv. Mater. 27:7145–49
    [Google Scholar]
  49. 49.  Hai A, Shappir J, Spira ME 2010. Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. J. Neurophysiol. 104:559–68
    [Google Scholar]
  50. 50.  Hai A, Spira ME 2012. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab Chip 12:2865–73
    [Google Scholar]
  51. 51.  Gesteland R, Howland B, Lettvin J, Pitts W 1959. Comments on microelectrodes. Proc. IRE 47:1856–62
    [Google Scholar]
  52. 52.  Seker E, Berdichevsky Y, Begley MR, Reed ML, Staley KJ, Yarmush ML 2010. The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies. Nanotechnology 21:125504
    [Google Scholar]
  53. 53.  Brüggemann D, Wolfrum B, Maybeck V, Mourzina Y, Jansen M, Offenhäusser A 2011. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology 22:265104
    [Google Scholar]
  54. 54.  Heim M, Rousseau L, Reculusa S, Urbanova V, Mazzocco C et al. 2012. Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks. J. Neurophysiol. 108:1793–803
    [Google Scholar]
  55. 55.  Wesche M, Hüske M, Yakushenko A, Brüggemann D, Mayer D et al. 2012. A nanoporous alumina microelectrode array for functional cell-chip coupling. Nanotechnology 23:495303
    [Google Scholar]
  56. 56.  Chapman CAR, Chen H, Stamou M, Biener J, Biener MM et al. 2015. Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size. ACS Appl. Mater. Interfaces 7:7093–100
    [Google Scholar]
  57. 57.  Kim YH, Kim GH, Kim AY, Han YH, Chung M-A, Jung S-D 2015. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays. J. Neural Eng. 12:066029
    [Google Scholar]
  58. 58.  Duan X, Gao R, Xie P, Cohen-Karni T, Qing Q et al. 2011. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7:174–79
    [Google Scholar]
  59. 59.  Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM 2010. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett 10:1098–102
    [Google Scholar]
  60. 60.  Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB et al. 2006. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–4
    [Google Scholar]
  61. 61.  Zhang A, Lieber CM 2016. Nano-bioelectronics. Chem. Rev. 116:215–57
    [Google Scholar]
  62. 62.  Harrison RR 2008. The design of integrated circuits to observe brain activity. Proc. IEEE 96:1203–16
    [Google Scholar]
  63. 63.  Strickholm A 1961. Impedance of a small electrically isolated area of the muscle cell surface. J. Gen. Physiol. 44:1073–88
    [Google Scholar]
  64. 64.  Fromherz P, Offenhäusser A, Vetter T, Weis J 1991. A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252:1290–93
    [Google Scholar]
  65. 65.  Zhu X, Yuen MF, Yan L, Zhang Z, Ai F et al. 2016. Intracellular delivery: diamond-nanoneedle-array-facilitated intracellular delivery and the potential influence on cell physiology. Adv. Healthc. Mater. 5:1116
    [Google Scholar]
  66. 66.  Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM et al. 2014. Chemically defined generation of human cardiomyocytes. Nat. Methods 11:855–60
    [Google Scholar]
  67. 67.  Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L 2013. The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc. Res. 99:600–11
    [Google Scholar]
  68. 68.  Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P 2007. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129:7228–29
    [Google Scholar]
  69. 69.  Shalek AK, Robinson JT, Karp ES, Lee JS, Ahn D-R et al. 2010. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. PNAS 107:1870–75
    [Google Scholar]
  70. 70.  Harding FJ, Surdo S, Delalat B, Cozzi C, Elnathan R et al. 2016. Ordered silicon pillar arrays prepared by electrochemical micromachining: substrates for high-efficiency cell transfection. ACS Appl. Mater. Interfaces 8:29197–202
    [Google Scholar]
  71. 71.  Matsumoto D, Yamagishi A, Saito M, Sathuluri RR, Silberberg YR et al. 2016. Mechanoporation of living cells for delivery of macromolecules using nanoneedle array. J. Biosci. Bioeng. 122:748–52
    [Google Scholar]
  72. 72.  Zu Y, Huang S, Lu Y, Liu X, Wang S 2016. Size specific transfection to mammalian cells by micropillar array electroporation. Sci. Rep. 6:38661
    [Google Scholar]
  73. 73.  Chiappini C, Campagnolo P, Almeida CS, Abbassi-Ghadi N, Chow LW et al. 2015. Mapping local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles. Adv. Mater. 27:5147–52
    [Google Scholar]
  74. 74.  Caprettini V, Cerea A, Melle G, Lovato L, Capozza R et al. 2017. Soft electroporation for delivering molecules into tightly adherent mammalian cells through 3D hollow nanoelectrodes. Sci. Rep. 7:8524
    [Google Scholar]
  75. 75.  VanDersarl JJ, Xu AM, Melosh NA 2012. Nanostraws for direct fluidic intracellular access. Nano Lett 12:3881–86
    [Google Scholar]
  76. 76.  Xie X, Xu AM, Leal-Ortiz S, Cao Y, Garner CC, Melosh NA 2013. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 7:4351–58
    [Google Scholar]
  77. 77.  Xu AM, Wang DS, Shieh P, Cao Y, Melosh NA 2017. Direct intracellular delivery of cell-impermeable probes of protein glycosylation by using nanostraws. ChemBioChem 18:623–28
    [Google Scholar]
  78. 78.  Cao Y, Hjort M, Chen H, Birey F, Leal-Ortiz SA et al. 2017. Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. PNAS 114:E1866–74
    [Google Scholar]
  79. 79.  Choi S, Kim H, Kim SY, Yang EG 2016. Probing protein complexes inside living cells using a silicon nanowire-based pull-down assay. Nanoscale 8:11380–84
    [Google Scholar]
  80. 80.  Rawson FJ, Cole MT, Hicks JM, Aylott JW, Milne WI et al. 2016. Electrochemical communication with the inside of cells using micro-patterned vertical carbon nanofibre electrodes. Sci. Rep. 6:37672
    [Google Scholar]
  81. 81.  Shashaani H, Faramarzpour M, Hassanpour M, Namdar N, Alikhani A, Abdolahad M 2016. Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells. Biosens. Bioelectron. 85:363–70
    [Google Scholar]
  82. 82.  Xie C, Hanson L, Cui Y, Cui B 2011. Vertical nanopillars for highly localized fluorescence imaging. PNAS 108:3894–99
    [Google Scholar]
  83. 83.  Hanson L, Zhao W, Lou H-Y, Lin ZC, Lee SW et al. 2015. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nat. Nanotechnol. 10:554–62
    [Google Scholar]
  84. 84.  Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y et al. 2013. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496:461–68
    [Google Scholar]
  85. 85.  Xu AM, Aalipour A, Leal-Ortiz S, Mekhdjian AH, Xie X et al. 2014. Quantification of nanowire penetration into living cells. Nat. Commun. 5:3613
    [Google Scholar]
  86. 86.  Xie X, Aalipour A, Gupta SV, Melosh NA 2015. Determining the time window for dynamic nanowire cell penetration processes. ACS Nano 9:11667–77
    [Google Scholar]
  87. 87.  Aalipour A, Xu AM, Leal-Ortiz S, Garner CC, Melosh NA 2014. Plasma membrane and actin cytoskeleton as synergistic barriers to nanowire cell penetration. Langmuir 30:12362–67
    [Google Scholar]
  88. 88.  McMahon HT, Gallop JL 2005. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–96
    [Google Scholar]
  89. 89.  Liu J, Sun Y, Drubin DG, Oster GF 2009. The mechanochemistry of endocytosis. PLOS Biol 7:e1000204
    [Google Scholar]
  90. 90.  Buch-Månson N, Bonde S, Bolinsson J, Berthing T, Nygård J, Martinez KL 2015. Towards a better prediction of cell settling on nanostructure arrays—simple means to complicated ends. Adv. Funct. Mater. 25:3246–55
    [Google Scholar]
  91. 91.  Xie X, Xu AM, Angle MR, Tayebi N, Verma P, Melosh NA 2013. Mechanical model of vertical nanowire cell penetration. Nano Lett 13:6002–8
    [Google Scholar]
  92. 92.  Liu X, Liu R, Gu Y, Ding J 2017. Nonmonotonic self-deformation of cell nuclei on topological surfaces with micropillar array. ACS Appl. Mater. Interfaces 9:18521–30
    [Google Scholar]
  93. 93.  Viela F, Granados D, Ayuso-Sacido A, Rodríguez I 2016. Biomechanical cell regulation by high aspect ratio nanoimprinted pillars. Adv. Funct. Mater. 26:5599–609
    [Google Scholar]
  94. 94.  Seo BB, Jahed Z, Coggan JA, Chau YY, Rogowski JL et al. 2017. Mechanical contact characteristics of PC3 human prostate cancer cells on complex-shaped silicon micropillars. Materials 10:892
    [Google Scholar]
  95. 95.  Persson H, Købler C, Mølhave K, Samuelson L, Tegenfeldt JO et al. 2013. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 9:4006–16
    [Google Scholar]
  96. 96.  Buch-Månson N, Kang D-H, Kim D, Lee KE, Yoon M-H, Martinez KL 2017. Mapping cell behavior across a wide range of vertical silicon nanocolumn densities. Nanoscale 9:5517–27
    [Google Scholar]
  97. 97.  Hai A, Dormann A, Shappir J, Yitzchaik S, Bartic C et al. 2009. Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices. J. R. Soc. Interface 6:1153–65
    [Google Scholar]
  98. 98.  Choi C-H, Hagvall SH, Wu BM, Dunn JCY, Beygui RE, Kim C-J 2007. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials 28:1672–79
    [Google Scholar]
  99. 99.  Nomura S, Kojima H, Ohyabu Y, Kuwabara K, Miyauchi A, Uemura T 2005. Cell culture on nanopillar sheet: study of HeLa cells on nanopillar sheet. Jpn. J. Appl. Phys. 44:L1184–86
    [Google Scholar]
  100. 100.  Hu W, Crouch AS, Miller D, Aryal M, Luebke KJ 2010. Inhibited cell spreading on polystyrene nanopillars fabricated by nanoimprinting and in situ elongation. Nanotechnology 21:385301
    [Google Scholar]
  101. 101.  Lee S, Kim D, Kim S-M, Kim J-A, Kim T et al. 2015. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications. Nanoscale 7:14627–35
    [Google Scholar]
  102. 102.  Persson H, Li Z, Tegenfeldt JO, Oredsson S, Prinz CN 2015. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour. Sci. Rep. 5:18535
    [Google Scholar]
  103. 103.  Bucaro MA, Vasquez Y, Hatton BD, Aizenberg J 2012. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano 6:6222–30
    [Google Scholar]
  104. 104.  Oh S, Brammer KS, Li YSJ, Teng D, Engler AJ et al. 2009. Stem cell fate dictated solely by altered nanotube dimension. PNAS 106:2130–35
    [Google Scholar]
  105. 105.  Zou Y, Feng H, Ouyang H, Jin Y, Yu M et al. 2017. The modulation effect of the convexity of silicon topological nanostructures on the growth of mesenchymal stem cells. RSC Adv 7:16977–83
    [Google Scholar]
  106. 106.  Santoro F, Schnitker J, Panaitov G, Offenhäusser A 2013. On chip guidance and recording of cardiomyocytes with 3D mushroom-shaped electrodes. Nano Lett 13:5379–84
    [Google Scholar]
  107. 107.  Jahed Z, Zareian R, Chau YY, Seo BB, West M et al. 2016. Differential collective- and single-cell behaviors on silicon micropillar arrays. ACS Appl. Mater. Interfaces 8:23604–13
    [Google Scholar]
  108. 108.  Xie C, Hanson L, Xie W, Lin Z, Cui B, Cui Y 2010. Noninvasive neuron pinning with nanopillar arrays. Nano Lett 10:4020–24
    [Google Scholar]
  109. 109.  Gautam V, Naureen S, Shahid N, Gao Q, Wang Y et al. 2017. Engineering highly interconnected neuronal networks on nanowire scaffolds. Nano Lett 17:3369–75
    [Google Scholar]
  110. 110.  Santoro F, Panaitov G, Offenhäusser A 2014. Defined patterns of neuronal networks on 3D thiol-functionalized microstructures. Nano Lett 14:6906–9
    [Google Scholar]
  111. 111.  Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO et al. 2007. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6:997–1003
    [Google Scholar]
  112. 112.  Brammer KS, Choi C, Frandsen CJ, Oh S, Jin S 2011. Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation. Acta Biomater 7:683–90
    [Google Scholar]
  113. 113.  Wilkinson CDW, Riehle M, Wood M, Gallagher J, Curtis ASG 2002. The use of materials patterned on a nano- and micro-metric scale in cellular engineering. Mater. Sci. Eng. C 19:263–69
    [Google Scholar]
  114. 114.  Kim H, Kang DH, Koo KH, Lee S, Kim S-M et al. 2016. Vertical nanocolumn-assisted pluripotent stem cell colony formation with minimal cell-penetration. Nanoscale 8:18087–97
    [Google Scholar]
  115. 115.  Wei Y, Mo X, Zhang P, Li Y, Liao J et al. 2017. Directing stem cell differentiation via electrochemical reversible switching between nanotubes and nanotips of polypyrrole array. ACS Nano 11:5915–24
    [Google Scholar]
  116. 116.  Lambacher A, Fromherz P 1996. Fluorescence interference-contrast microscopy on oxidized silicon using a monomolecular dye layer. Appl. Phys. A Mater. Sci. Process. 63:207–16
    [Google Scholar]
  117. 117.  Fromherz P, Kiessling V, Kottig K, Zeck G 1999. Membrane transistor with giant lipid vesicle touching a silicon chip. Appl. Phys. A Mater. Sci. Process. 69:571–76
    [Google Scholar]
  118. 118.  Kiessling V, Tamm LK 2003. Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins. Biophys. J. 84:408–18
    [Google Scholar]
  119. 119.  Toma K, Kano H, Offenhäusser A 2014. Label-free measurement of cell–electrode cleft gap distance with high spatial resolution surface plasmon microscopy. ACS Nano 8:12612–19
    [Google Scholar]
  120. 120.  Berthing T, Bonde S, Rostgaard KR, Madsen MH, Sørensen CB et al. 2012. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging. Nanotechnology 23:415102
    [Google Scholar]
  121. 121.  Frederiksen RS, Alarcon-Llado E, Krogstrup P, Bojarskaite L, Buch-Månson N et al. 2016. Nanowire-aperture probe: local enhanced fluorescence detection for the investigation of live cells at the nanoscale. ACS Photonics 3:1208–16
    [Google Scholar]
  122. 122.  Santoro F, Zhao W, Joubert L-M, Duan L, Schnitker J et al. 2017. Revealing the cell-material interface with nanometer resolution by focused ion beam/scanning electron microscopy. ACS Nano 11:8320–28
    [Google Scholar]
  123. 123.  Panaitov G, Thiery S, Hofmann B, Offenhäusser A 2011. Fabrication of gold micro-spine structures for improvement of cell/device adhesion. Microelectron. Eng. 88:1840–44
    [Google Scholar]
  124. 124.  Sileo L, Pisanello F, Quarta L, Maccione A, Simi A et al. 2013. Electrical coupling of mammalian neurons to microelectrodes with 3D nanoprotrusions. Microelectron. Eng. 111:384–90
    [Google Scholar]
  125. 125.  Limongi T, Cesca F, Gentile F, Marotta R, Ruffilli R et al. 2013. Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks. Small 9:402–12
    [Google Scholar]
  126. 126.  Wrobel G, Höller M, Ingebrandt S, Dieluweit S, Sommerhage F et al. 2008. Transmission electron microscopy study of the cell-sensor interface. J. R. Soc. Interface 5:213–22
    [Google Scholar]
  127. 127.  Fendyur A, Mazurski N, Shappir J, Spira ME 2011. Formation of essential ultrastructural interface between cultured hippocampal cells and gold mushroom-shaped MEA—toward “IN-CELL” recordings from vertebrate neurons. Front. Neuroeng. 4:14
    [Google Scholar]
  128. 128.  Spira ME, Kamber D, Dormann A, Cohen A, Bartic C et al. 2007. Improved neuronal adhesion to the surface of electronic device by engulfment of protruding micro-nails fabricated on the chip surface Presented at IEEE Int. Solid-State Sens Actuators Microsyst. Conf Lyon, Fr.:
    [Google Scholar]
  129. 129.  Jeong DW, Kim GH, Kim NY, Lee Z, Jung SD, Lee J-O 2017. A high-performance transparent graphene/vertically aligned carbon nanotube (VACNT) hybrid electrode for neural interfacing. RSC Adv 7:3273–81
    [Google Scholar]
  130. 130.  Munroe PR 2009. The application of focused ion beam microscopy in the material sciences. Mater. Charact. 60:2–13
    [Google Scholar]
  131. 131.  Narayan K, Subramaniam S 2015. Focused ion beams in biology. Nat. Methods 12:1021–31
    [Google Scholar]
  132. 132.  Wierzbicki R, Købler C, Jensen MRB, Łopacińska J, Schmidt MS et al. 2013. Mapping the complex morphology of cell interactions with nanowire substrates using FIB-SEM. PLOS ONE 8:e53307
    [Google Scholar]
  133. 133.  Ha Q, Yang G, Ao Z, Han D, Niu F, Wang S 2014. Rapid fibroblast activation in mammalian cells induced by silicon nanowire arrays. Nanoscale 6:8318–25
    [Google Scholar]
  134. 134.  Toma M, Belu A, Mayer D, Offenhäusser A 2017. Flexible gold nanocone array surfaces as a tool for regulating neuronal behavior. Small 13:1700629
    [Google Scholar]
  135. 135.  Santoro F, Neumann E, Panaitov G, Offenhäusser A 2014. FIB section of cell–electrode interface: an approach for reducing curtaining effects. Microelectron. Eng. 124:17–21
    [Google Scholar]
  136. 136.  Friedmann A, Hoess A, Cismak A, Heilmann A 2011. Investigation of cell-substrate interactions by focused ion beam preparation and scanning electron microscopy. Acta Biomater 7:2499–507
    [Google Scholar]
  137. 137.  Braeken D, Huys R, Jans D, Loo J, Severi S et al. 2009. Local electrical stimulation of single adherent cells using three-dimensional electrode arrays with small interelectrode distances Presented at Annu. Int. Conf. IEEE Eng Med. Biol. Soc., 31st Minneapolis, MN:
    [Google Scholar]
  138. 138.  Seyock S, Maybeck V, Scorsone E, Rousseau L, Hébert C et al. 2017. Interfacing neurons on carbon nanotubes covered with diamond. RSC Adv 7:153–60
    [Google Scholar]
  139. 139.  Van Meerbergen B, Jans K, Loo J, Reekmans G, Braeken D et al. 2008. Peptide-functionalized microfabricated structures for improved on-chip neuronal adhesion. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008:1833–36
    [Google Scholar]
  140. 140.  Belu A, Schnitker J, Bertazzo S, Neumann E, Mayer D et al. 2016. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures. J. Microsc. 263:78–86
    [Google Scholar]
  141. 141.  Xie C, Liu J, Fu T-M, Dai X, Zhou W, Lieber CM 2015. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14:1286–92
    [Google Scholar]
  142. 142.  Xiang Z, Liu J, Lee C 2016. A flexible three-dimensional electrode mesh: an enabling technology for wireless brain–computer interface prostheses. Microsyst. Nanoeng. 2:16012
    [Google Scholar]
  143. 143.  Luan L, Wei X, Zhao Z, Siegel JJ, Potnis O et al. 2017. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 3:e1601966
    [Google Scholar]
  144. 144.  Gonzales DL, Badhiwala KN, Vercosa DG, Avants BW, Liu Z et al. 2017. Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays. Nat. Nanotechnol. 12:684–91
    [Google Scholar]
  145. 145.  Fox CB, Cao Y, Nemeth CL, Chirra HD, Chevalier RW et al. 2016. Fabrication of sealed nanostraw microdevices for oral drug delivery. ACS Nano 10:5873–81
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125705
Loading
/content/journals/10.1146/annurev-anchem-061417-125705
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error