1932

Abstract

Incorporating functionality to atomic force microscopy (AFM) to obtain physical and chemical information has always been a strong focus in AFM research. Modifying AFM probes with specific molecules permits accessibility of chemical information via specific reactions and interactions. Fundamental understanding of molecular processes at the solid/liquid interface with high spatial resolution is essential to many emerging research areas. Nanoscale electrochemical imaging has emerged as a complementary technique to advanced AFM techniques, providing information on electrochemical interfacial processes. While this review presents a brief introduction to advanced AFM imaging modes, such as multiparametric AFM and topography recognition imaging, the main focus herein is on electrochemical imaging via hybrid AFM-scanning electrochemical microscopy. Recent applications and the challenges associated with such nanoelectrochemical imaging strategies are presented.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125716
2018-06-12
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-125716.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125716&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Eifert A, Kranz C 2014. Hyphenating atomic force microscopy. Anal. Chem. 86:115190–200
    [Google Scholar]
  2. 2.  Binnig G, Quate CF, Gerber C 1986. Atomic force microscope. Phys. Rev. Lett. 56:930–33
    [Google Scholar]
  3. 3.  Florin EL, Moy VT, Gaub HE 1994. Adhesion forces between individual ligand-receptor pairs. Science 264:5157415–17
    [Google Scholar]
  4. 4.  Frisbie CD, Rozsnyai LF, Noy A, Wrighton MS, Lieber CM 1994. Functional-group imaging by chemical force microscopy. Science 265:51812071–74
    [Google Scholar]
  5. 5.  Noy A, Frisbie CD, Rozsnyai LF, Wrighton MS, Lieber CM 1995. Chemical force microscopy: exploiting chemically-modified tips to quantify adhesion, friction, and functional group distributions in molecular assemblies. J. Am. Chem. Soc. 117:307943–51
    [Google Scholar]
  6. 6.  Gross L, Wang ZL, Ugarte D, Mohn F, Moll N et al. 2009. The chemical structure of a molecule resolved by atomic force microscopy. Science 325:59941110–14
    [Google Scholar]
  7. 7.  Gross L, Mohn F, Moll N, Meyer G, Ebel R et al. 2010. Organic structure determination using atomic-resolution scanning probe microscopy. Nat. Chem. 2:10821–25
    [Google Scholar]
  8. 8.  Gross L 2011. Recent advances in submolecular resolution with scanning probe microscopy. Nat. Chem. 3:4273–78
    [Google Scholar]
  9. 9.  Pavliček N, Gross L 2017. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 1:10005
    [Google Scholar]
  10. 10.  Hinterdorfer P, Garcia-Parajo MF, Dufrêne YF 2012. Single-molecule imaging of cell surfaces using near-field nanoscopy. Acc. Chem. Res. 45:3327–36
    [Google Scholar]
  11. 11.  Senapati S, Lindsay S 2016. Recent progress in molecular recognition imaging using atomic force microscopy. Acc. Chem. Res. 49:3503–10
    [Google Scholar]
  12. 12.  Alsteens D, Müller DJ, Dufrêne YF 2017. Multiparametric atomic force microscopy imaging of biomolecular and cellular systems. Acc. Chem. Res. 50:4924–31
    [Google Scholar]
  13. 13.  Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D et al. 2017. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12:4295–307
    [Google Scholar]
  14. 14.  Helenius J, Heisenberg C-P, Gaub HE, Müller DJ 2008. Single-cell force spectroscopy. J. Cell Sci. 121:111785–91
    [Google Scholar]
  15. 15.  Butt H-J, Cappella B, Kappl M 2005. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf. Sci. Rep. 59:1–61–152
    [Google Scholar]
  16. 16.  Hughes ML, Dougan L 2016. The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. Rep. Prog. Phys. 79:776601
    [Google Scholar]
  17. 17.  Pittenger B, Erina N, Su C 2011. Quantitative mechanical property mapping at the nanoscale with PeakForce QNM Appl. Note 128, Bruker Corp., Fremont, Calif.
    [Google Scholar]
  18. 18.  Rosa-Zeiser A, Weilandt E, Hild S, Marti O 1997. The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas. Sci. Technol. 8:111333–38
    [Google Scholar]
  19. 19.  Gaboriaud F, Parcha BS, Gee ML, Holden JA, Strugnell RA 2008. Spatially resolved force spectroscopy of bacterial surfaces using force-volume. im: aging. Coll. Surf. B Biointerfaces 62:2206–13
    [Google Scholar]
  20. 20.  Medalsy I, Hensen U, Müller DJ 2011. Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force-volume AFM. Angew. Chem. Int. Ed. 50:5012103–8
    [Google Scholar]
  21. 21.  Pfreundschuh M, Alsteens D, Hilbert M, Steinmetz MO, Müller DJ 2014. Localizing chemical groups while imaging single native proteins by high-resolution atomic force microscopy. Nano Lett 14:52957–64
    [Google Scholar]
  22. 22.  Wegmann S, Medalsy ID, Mandelkow E, Müller DJ 2013. The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush. PNAS 110:4E313–21
    [Google Scholar]
  23. 23.  Alsteens D, Pfreundschuh M, Zhang C, Spoerri PM, Coughlin SR et al. 2015. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape. Nat. Methods 12:9845–51
    [Google Scholar]
  24. 24.  Alsteens D, Newton R, Schubert R, Martinez-Martin D, Delguste M et al. 2017. Nanomechanical mapping of first binding steps of a virus to animal cells. Nat. Nanotechnol. 12:2177–83
    [Google Scholar]
  25. 25.  Formosa-Dague C, Speziale P, Foster TJ, Geoghegan JA, Dufrêne YF 2016. Zinc-dependent mechanical properties of Staphylococcusaureus biofilm-forming surface protein SasG. PNAS 113:2410–15
    [Google Scholar]
  26. 26.  Alsteens D, Trabelsi H, Soumillion P, Dufrêne YF 2013. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat. Commun. 4:2926
    [Google Scholar]
  27. 27.  Riener CK, Kienberger F, Hahn CD, Buchinger GM, Egwim IOC et al. 2003. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes. Anal. Chim. Acta 497:1–2101–14
    [Google Scholar]
  28. 28.  Manna S, Senapati S, Lindsay S, Zhang P 2015. A three-arm scaffold carrying affinity molecules for multiplex recognition imaging by atomic force microscopy: the synthesis, attachment to silicon tips, and detection of proteins. J. Am. Chem. Soc. 137:237415–23
    [Google Scholar]
  29. 29.  Lohr D, Bash R, Wang H, Yodh J, Lindsay S 2007. Using atomic force microscopy to study chromatin structure and nucleosome remodeling. Methods 41:3333–41
    [Google Scholar]
  30. 30.  Riener CK, Stroh CM, Ebner A, Klampfl C, Gall AA et al. 2003. Simple test system for single molecule recognition force microscopy. Anal. Chim. Acta 479:159–75
    [Google Scholar]
  31. 31.  Martines E, Zhong J, Muzard J, Lee AC, Akhremitchev BB et al. 2012. Single-molecule force spectroscopy of the Aplysia cell adhesion molecule reveals two homophilic bonds. Biophys. J. 103:4649–57
    [Google Scholar]
  32. 32.  Klein DC, Øvrebø KM, Latz E, Espevik T, Stokke BT 2012. Direct measurement of the interaction force between immunostimulatory CpG-DNA and TLR9 fusion protein. J. Mol. Recognit. 25:274–81
    [Google Scholar]
  33. 33.  Anne A, Cambril E, Chovin A, Demaille C, Goyer C 2009. Electrochemical atomic force mediator for topographic and functional imaging of nanosystems. ACS Nano 3:102927–40
    [Google Scholar]
  34. 34.  Preiner J, Ebner A, Chtcheglova L, Zhu R, Hinterdorfer P 2009. Simultaneous topography and recognition imaging: physical aspects and optimal imaging conditions. Nanotechnology 20:21215103
    [Google Scholar]
  35. 35.  Han W, Lindsay SM, Jing T 1996. A magnetically driven oscillating probe microscope for operation in liquids. Appl. Phys. Lett. 69:264111–13
    [Google Scholar]
  36. 36.  Raab A, Han W, Badt D, Smith-Gill SJ, Lindsay SM et al. 1999. Antibody recognition imaging by force microscopy. Nat. Biotechnol. 17:9901–5
    [Google Scholar]
  37. 37.  Lin L, Wang H, Liu Y, Yan H, Lindsay S 2006. Recognition imaging with a DNA aptamer. Biophys. J. 90:114236–38
    [Google Scholar]
  38. 38.  Senapati S, Manna S, Lindsay S, Zhang P 2013. Application of catalyst-free click reactions in attaching affinity molecules to tips of atomic force microscopy for detection of protein biomarkers. Langmuir 29:4714622–30
    [Google Scholar]
  39. 39.  Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H 1996. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. PNAS 93:83477–81
    [Google Scholar]
  40. 40.  Stroh C, Wang H, Bash R, Ashcroft B, Nelson J et al. 2004. Single-molecule recognition imaging microscopy. PNAS 101:3412503–7
    [Google Scholar]
  41. 41.  Lin L, Hom D, Lindsay SM, Chaput JC 2007. In vitro selection of histone H4 aptamers for recognition imaging microscopy. J. Am. Chem. Soc. 129:4714568–69
    [Google Scholar]
  42. 42.  Bard AJ, Fu-Ren FF, Kwak J, Lev O 1989. Scanning electrochemical microscopy. Introduction and principles. Anal. Chem. 61:132–38
    [Google Scholar]
  43. 43.  Polcari D, Dauphin-Ducharme P, Mauzeroll J 2016. Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem. Rev. 116:2213234–78
    [Google Scholar]
  44. 44.  Mirkin MV, Sun T, Yu Y, Zhou M 2016. Electrochemistry at one nanoparticle. Acc. Chem. Res. 49:102328–35
    [Google Scholar]
  45. 45.  Kang M, Momotenko D, Page A, Perry D, Unwin PR 2016. Frontiers in nanoscale electrochemical imaging: faster, multifunctional, and ultrasensitive. Langmuir 32:327993–8008
    [Google Scholar]
  46. 46.  Ballesteros Katemann B, Schulte A, Schuhmann W 2003. Constant-distance mode scanning electrochemical microscopy (SECM)–Part I: adaptation of a non-optical shear-force-based positioning mode for SECM tips. Chem. Eur. J. 9:92025–33
    [Google Scholar]
  47. 47.  Ballesteros Katemann B, Schulte A, Schuhmann W 2004. Constant-distance mode scanning electrochemical microscopy. Part II: high-resolution SECM imaging employing Pt nanoelectrodes as miniaturized scanning probes. Electroanalysis 16:1260–65
    [Google Scholar]
  48. 48.  Takahashi Y, Shevchuk AI, Novak P, Zhang Y, Ebejer N et al. 2011. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew. Chem. Int. Ed. 50:419638–42
    [Google Scholar]
  49. 49.  Comstock DJ, Elam JW, Pellin MJ, Hersam MC 2010. Integrated ultramicroelectrode- nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy. Anal. Chem. 82:1270–76
    [Google Scholar]
  50. 50.  Ebejer N, Güell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR 2013. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 6:329–51
    [Google Scholar]
  51. 51.  Macpherson JV, Unwin PR 2000. Combined scanning electrochemical–atomic force microscopy. Anal. Chem. 72:2276–85
    [Google Scholar]
  52. 52.  Macpherson JV, Unwin PR 2001. Noncontact electrochemical imaging with combined scanning electrochemical atomic force microscopy. Anal. Chem. 73:3550–57
    [Google Scholar]
  53. 53.  Kranz C, Friedbacher G, Mizaikoff B, Lugstein A, Smoliner J, Bertagnolli E 2001. Integrating an ultramicroelectrode in an AFM cantilever: combined technology for enhanced information. Anal. Chem. 73:2491–500
    [Google Scholar]
  54. 54.  Knittel P, Mizaikoff B, Kranz C 2016. Simultaneous nanomechanical and electrochemical mapping: combining peak force tapping atomic force microscopy with scanning electrochemical microscopy. Anal. Chem. 88:126174–78
    [Google Scholar]
  55. 55.  Ghorbal A, Grisotto F, Charlier J, Palacin S, Goyer C et al. 2013. Nano-electrochemistry and nano-electrografting with an original combined AFM-SECM. Nanomaterials 3:2303–16
    [Google Scholar]
  56. 56.  Izquierdo J, Eifert A, Souto RM, Kranz C 2015. Simultaneous pit generation and visualization of pit topography using combined atomic force-scanning electrochemical microscopy. Electrochem. Commun. 51:15–18
    [Google Scholar]
  57. 57.  Davoodi A, Pan J, Leygraf C, Norgren S 2008. The role of intermetallic particles in localized corrosion of an aluminum alloy studied by SKPFM and integrated AFM/SECM. J. Electrochem. Soc. 155:5C211–18
    [Google Scholar]
  58. 58.  Burt DP, Wilson NR, Janus U, Macpherson JV, Unwin PR 2008. In-situ atomic force microscopy (AFM) imaging: influence of AFM probe geometry on diffusion to microscopic surfaces. Langmuir 24:2212867–76
    [Google Scholar]
  59. 59.  Izquierdo J, Fernández-Pérez BM, Eifert A, Souto RM, Kranz C 2016. Simultaneous atomic force–scanning electrochemical microscopy (AFM-SECM) imaging of copper dissolution. Electrochim. Acta 201:320–32
    [Google Scholar]
  60. 60.  Eckhard K, Shin H, Mizaikoff B, Schuhmann W, Kranz C 2007. Alternating current (AC) impedance imaging with combined atomic force scanning electrochemical microscopy (AFM-SECM). Electrochem. Commun. 9:61311–15
    [Google Scholar]
  61. 61.  Eckhard K, Kranz C, Shin H, Mizaikoff B, Schuhmann W 2007. Frequency dependence of the electrochemical activity contrast in AC-scanning electrochemical microscopy and atomic force microscopy-AC-scanning electrochemical microscopy imaging. Anal. Chem. 79:145435–38
    [Google Scholar]
  62. 62.  Shin H, Hesketh PJ, Mizaikoff B, Kranz C 2007. Batch fabrication of atomic force microscopy probes with recessed integrated ring microelectrodes at a wafer level. Anal. Chem. 79:134769–77
    [Google Scholar]
  63. 63.  Eckhard K, Chen X, Turcu F, Schuhmann W 2006. Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity. Phys. Chem. Chem. Phys. 8:455359–65
    [Google Scholar]
  64. 64.  Velmurugan J, Agrawal A, An S, Choudhary E, Szalai VA 2017. Fabrication of scanning electrochemical microscopy-atomic force microscopy probes to image surface topography and reactivity at the nanoscale. Anal. Chem. 89:52687–91
    [Google Scholar]
  65. 65. KeySight Tech. N9545F SECM (scanning electrochemical microscopy) Keysight Tech., Böblingen, Ger. https://www.keysight.com/en/pd-2417461-pn-N9545F/secm-scanning-electrochemical-microscopy?cc=US&lc=eng
    [Google Scholar]
  66. [Google Scholar]
  67. 67.  Abbou J, Demaille C, Druet M, Moiroux J 2002. Fabrication of submicrometer-sized gold electrodes of controlled geometry for scanning electrochemical-atomic force microscopy. Anal. Chem. 74:61627–34
    [Google Scholar]
  68. 68.  Dobson PS, Weaver JMR, Holder MN, Unwin PR, Macpherson JV 2005. Characterization of batch-microfabricated scanning electrochemical-atomic force microscopy probes. Anal. Chem. 77:424–33
    [Google Scholar]
  69. 69.  Gullo MR, Frederix PLTM, Akiyama T, Engel A, DeRooij NF, Staufer U 2006. Characterization of microfabricated probes for combined atomic force and high-resolution scanning electrochemical microscopy. Anal. Chem. 78:155436–42
    [Google Scholar]
  70. 70.  Shin H, Hesketh PJ, Mizaikoff B, Kranz C 2008. Development of wafer-level batch fabrication for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes. Sens. Actuators B Chem. 134:2488–95
    [Google Scholar]
  71. 71.  Salomo M, Pust SE, Wittstock G, Oesterschulze E 2010. Integrated cantilever probes for SECM/AFM characterization of surfaces. Microelectron. Eng. 87:5–81537–39
    [Google Scholar]
  72. 72.  Heintz ELH, Kranz C, Mizaikoff B, Noh HS, Hesketh P et al. 2001. Characterization of Parylene coated combined scanning probe tips for in-situ electrochemical and topographical imaging. Proc. IEEE Conf. Nanotechnol.346–51
    [Google Scholar]
  73. 73.  Derylo MA, Morton KC, Baker LA 2011. Parylene insulated probes for scanning electrochemical-atomic force microscopy. Langmuir 27:2213925–30
    [Google Scholar]
  74. 74.  Davoodi A, Pan J, Leygraf C, Norgren S 2005. In situ investigation of localized corrosion of aluminum alloys in chloride solution using integrated EC-AFM/SECM techniques. Electrochem. Solid-State Lett. 8:6B21–24
    [Google Scholar]
  75. 75.  Eifert A, Smirnov W, Frittmann S, Nebel C, Mizaikoff B, Kranz C 2012. Atomic force microscopy probes with integrated boron doped diamond electrodes: fabrication and application. Electrochem. Commun. 25:30–34
    [Google Scholar]
  76. 76.  Eifert A, Mizaikoff B, Kranz C 2015. Advanced fabrication process for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes. Micron 68:27–35
    [Google Scholar]
  77. 77.  Wiedemair J, Moon J-S, Reinauer F, Mizaikoff B, Kranz C 2010. Ion beam induced deposition of platinum carbon composite electrodes for combined atomic force microscopy-scanning electrochemical microscopy. Electrochem. Commun. 12:7989–91
    [Google Scholar]
  78. 78.  Knittel P, Higgins MJ, Kranz C 2014. Nanoscopic polypyrrole AFM-SECM probes enabling force measurements under potential control. Nanoscale 6:42255–60
    [Google Scholar]
  79. 79.  Knittel P, Bibikova O, Kranz C 2016. Challenges in nanoelectrochemical and nanomechanical studies of individual anisotropic gold nanoparticles. Faraday Discuss 193:353–69
    [Google Scholar]
  80. 80.  Rodriguez RD, Anne A, Cambril E, Demaille C 2011. Optimized hand fabricated AFM probes for simultaneous topographical and electrochemical tapping mode imaging. Ultramicroscopy 111:8973–81
    [Google Scholar]
  81. 81.  Tefashe UM, Wittstock G 2013. Quantitative characterization of shear force regulation for scanning electrochemical microscopy. Comptes Rendus Chim 16:17–14
    [Google Scholar]
  82. 82.  Anne A, Demaille C, Goyer C 2009. Electrochemical atomic-force microscopy using a tip-attached redox mediator. Proof-of-concept and perspectives for functional probing of nanosystems. ACS Nano 3:4819–27
    [Google Scholar]
  83. 83.  Kurzawa C, Hengstenberg A, Schuhmann W 2002. Immobilization method for the preparation of biosensors based on pH shift-induced deposition of biomolecule-containing polymer films. Anal. Chem. 74:2355–61
    [Google Scholar]
  84. 84.  Kueng A, Kranz C, Mizaikoff B 2004. Amperometric ATP biosensor based on polymer entrapped enzymes. Biosens. Bioelectron. 19:101301–7
    [Google Scholar]
  85. 85.  Andronescu C, Pöller S, Schuhmann W 2014. Electrochemically induced deposition of poly(benzoxazine) precursors as immobilization matrix for enzymes. Electrochem. Commun. 41:12–15
    [Google Scholar]
  86. 86.  Ziller C, Lin J, Knittel P, Friedrich L, Andronescu C et al. 2017. Poly(benzoxazine) as an immobilization matrix for miniaturized ATP and glucose biosensors. ChemElectroChem 4:4864–71
    [Google Scholar]
  87. 87.  Kueng A, Kranz C, Lugstein A, Bertagnolli E, Mizaikoff B 2005. AFM-tip-integrated amperometric microbiosensors: high-resolution imaging of membrane transport. Angew. Chem. Int. Ed. 44:223419–22
    [Google Scholar]
  88. 88.  Kranz C, Kueng A, Lugstein A, Bertagnolli E, Mizaikoff B 2004. Mapping of enzyme activity by detection of enzymatic products during AFM imaging with integrated SECM-AFM probes. Ultramicroscopy 100:3–4127–34
    [Google Scholar]
  89. 89.  Knittel P, Zhang H, Kranz C, Wallace GG, Higgins MJ 2016. Probing the PEDOT:PSS/cell interface with conductive colloidal probe AFM-SECM. Nanoscale 8:4475–81
    [Google Scholar]
  90. 90.  Sklyar O, Kueng A, Kranz C, Mizaikoff B, Lugstein A et al. 2005. Numerical simulation of scanning electrochemical microscopy experiments with frame-shaped integrated atomic force microscopy-SECM probes using the boundary element method analyzed for a model substrate containing pronounced. Anal. Chem. 77:3764–71
    [Google Scholar]
  91. 91.  Pust SE, Salomo M, Oesterschulze E, Wittstock G 2010. Influence of electrode size and geometry on electrochemical experiments with combined SECM-SFM probes. Nanotechnology 21:10105709
    [Google Scholar]
  92. 92.  Leonhardt K, Avdic A, Lugstein A, Pobelov I, Wandlowski T et al. 2013. Scanning electrochemical microscopy: diffusion controlled approach curves for conical AFM-SECM tips. Electrochem. Commun. 27:29–33
    [Google Scholar]
  93. 93.  Smirnov W, Kriele A, Hoffmann R, Sillero E, Hees J et al. 2011. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes. Anal. Chem. 83:4936–41
    [Google Scholar]
  94. 94.  Davoodi A, Farzadi A, Pan J, Leygraf C, Zhu Y 2008. Developing an AFM-based SECM system; instrumental setup, SECM simulation, characterization, and calibration. J. Electrochem. Soc. 155:8C474–85
    [Google Scholar]
  95. 95.  Izquierdo J, Eifert A, Kranz C, Souto RM 2017. In situ investigation of copper corrosion in acidic chloride solution using atomic force–scanning electrochemical microscopy. Electrochim. Acta 247:588–99
    [Google Scholar]
  96. 96.  Izquierdo J, Eifert A, Kranz C, Souto RM 2015. In situ monitoring of pit nucleation and growth at an iron passive oxide layer by using combined atomic force and scanning electrochemical microscopy. ChemElectroChem 2:111847–56
    [Google Scholar]
  97. 97.  Macpherson JV, Gueneau de Mussy J-P, Delplancke J-L 2002. High-resolution electrochemical, electrical, and structural characterization of a dimensionally stable Ti/TiO2/Pt electrode. J. Electrochem. Soc. 149:7B306–13
    [Google Scholar]
  98. 98.  Zampardi G, Klink S, Kuznetsov V, Erichsen T, Maljusch A et al. 2015. Combined AFM/SECM investigation of the solid electrolyte interphase in Li-ion batteries. ChemElectroChem 2:101607–11
    [Google Scholar]
  99. 99.  Jiang J, Huang Z, Xiang C, Poddar R, Lewerenz H-J et al. 2017. Nanoelectrical and nanoelectrochemical imaging of Pt/p-Si and Pt/p+-Si electrodes. ChemSusChem 10:224657–63
    [Google Scholar]
  100. 100.  Kueng A, Kranz C, Lugstein A, Bertagnolli E, Mizaikoff B 2003. Integrated AFM-SECM in tapping mode: simultaneous topographical and electrochemical imaging of enzyme activity. Angew. Chem. Int. Ed. 42:283238–40
    [Google Scholar]
  101. 101.  Anne A, Cambril E, Chovin A, Demaille C 2010. Touching surface-attached molecules with a microelectrode: mapping the distribution of redox-labeled macromolecules by electrochemical-atomic force microscopy. Anal. Chem. 82:156353–62
    [Google Scholar]
  102. 102.  Nault L, Taofifenua C, Anne A, Chovin A, Demaille C et al. 2015. Electrochemical atomic force microscopy imaging of redox-immunomarked proteins on native potyviruses: from subparticle to single-protein resolution. ACS Nano 9:54911–24
    [Google Scholar]
  103. 103.  Anne A, Chovin A, Demaille C, Lafouresse M 2011. High-resolution mapping of redox-immunomarked proteins using electrochemical-atomic force microscopy in molecule touching mode. Anal. Chem. 83:207924–32
    [Google Scholar]
  104. 104.  Anne A, Bahri MA, Chovin A, Demaille C, Taofifenua C 2014. Probing the conformation and 2D-distribution of pyrene-terminated redox-labeled poly(ethylene glycol) chains end-adsorbed on HOPG using cyclic voltammetry and atomic force electrochemical microscopy. Phys. Chem. Chem. Phys. 16:104642–52
    [Google Scholar]
  105. 105.  Wang K, Goyer C, Anne A, Demaille C 2007. Exploring the motional dynamics of end-grafted DNA oligonucleotides by in situ electrochemical atomic force microscopy. J. Phys. Chem. B. 111:216051–58
    [Google Scholar]
  106. 106.  Benoit M, Gabriel D, Gerisch G, Gaub HE 2000. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2:6313–17
    [Google Scholar]
  107. 107.  Minne S, Hu Y, Hu S, Pittenger B, Su C 2010. Nanoscale quantitative mechanical property mapping using peak force tapping atomic force microscopy. Microsc. Microanal. 16:Suppl. 2464–65
    [Google Scholar]
  108. 108.  Guin SK, Knittel P, Daboss S, Breusow A, Kranz C 2017. Template- and additive-free electrosynthesis and characterization of spherical gold nanoparticles on hydrophobic conducting polydimethylsiloxane. Chemistry 12:131615–24
    [Google Scholar]
  109. 109.  Huang Z, Wolf P DE, Poddar R, Li C, Mark A et al. 2016. PeakForce scanning electrochemical microscopy with nanoelectrode probes. Microsc. Today 24:18–25
    [Google Scholar]
  110. 110.  Nellist MR, Chen Y, Mark A, Gödrich S, Stelling C et al. 2017. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging. Nanotechnology 28:995711
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125716
Loading
/content/journals/10.1146/annurev-anchem-061417-125716
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error