1932

Abstract

Owing to its extreme sensitivity and easy execution, surface-enhanced Raman spectroscopy (SERS) now finds application for a wide variety of problems requiring sensitive and targeted analyte detection. This widespread application has prompted a proliferation of different SERS-based sensors, suggesting the need for a framework to classify existing methods and guide the development of new techniques. After a brief discussion of the general SERS modalities, we classify SERS-based sensors according the origin of the signal. Three major categories emerge from this analysis: surface-affinity strategy, SERS-tag strategy, and probe-mediated strategy. For each case, we describe the mechanism of action, give selected examples, and point out general misconceptions to aid the construction of new devices. We hope this review serves as a useful tutorial guide and helps readers to better classify and design practical and effective SERS-based sensors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125724
2018-06-12
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-125724.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125724&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Xu ML, Gao Y, Han XX, Zhao B 2017. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review. J. Agric. Food Chem. 65:6719–26
    [Google Scholar]
  2. 2.  Golightly RS, Doering WE, Natan MJ 2009. Surface-enhanced Raman spectroscopy and homeland security: A perfect match?. ACS Nano 3:2859–69
    [Google Scholar]
  3. 3.  Jamieson LE, Asiala SM, Gracie K, Faulds K, Graham D 2017. Bioanalytical measurements enabled by surface-enhanced Raman scattering (SERS) probes. Annu. Rev. Anal. Chem. 10:415–37
    [Google Scholar]
  4. 4.  Granger JH, Schlotter NE, Crawford AC, Porter MD 2016. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chem. Soc. Rev. 45:3865–82
    [Google Scholar]
  5. 5.  Cialla-May D, Zheng XS, Weber K, Popp J 2017. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem. Soc. Rev. 46:3945–61
    [Google Scholar]
  6. 6.  Sun F, Galvan DD, Jain P, Yu QM 2017. Multi-functional, thiophenol-based surface chemistry for surface-enhanced Raman spectroscopy. Chem. Commun. 53:4550–61
    [Google Scholar]
  7. 7.  Fleischmann M, Hendra PJ, McQuillan AJ 1974. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26:163–66
    [Google Scholar]
  8. 8.  Albrecht MG, Creighton JA 1977. Anomalously intense Raman-spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99:5215–17
    [Google Scholar]
  9. 9.  Jeanmaire DL, Van Duyne RP 1977. Surface Raman spectroelectrochemistry. 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem. 84:1–20
    [Google Scholar]
  10. 10.  Moskovits M 1978. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69:4159–61
    [Google Scholar]
  11. 11.  Moskovits M 1985. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57:783–826
    [Google Scholar]
  12. 12.  Ding SY, Yi J, Li JF, Ren B, Wu DY et al. 2016. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1:16021
    [Google Scholar]
  13. 13.  Wei H, Xu HX 2013. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale 5:10794–805
    [Google Scholar]
  14. 14.  Ling X, Huang SX, Deng SB, Mao NN, Kong J et al. 2015. Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc. Chem. Res. 48:1862–70
    [Google Scholar]
  15. 15.  Kennedy BJ, Spaeth S, Dickey M, Carron KT 1999. Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. J. Phys. Chem. B 103:3640–46
    [Google Scholar]
  16. 16.  Tripathi A, Emmons ED, Fountain AW3rd, Guicheteau JA, Moskovits M, Christesen SD 2015. Critical role of adsorption equilibria on the determination of surface-enhanced Raman enhancement. ACS Nano 9:584–93
    [Google Scholar]
  17. 17.  Kneipp K, Kneipp H, Kneipp J 2006. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates—from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 39:443–50
    [Google Scholar]
  18. 18.  Nie SM, Emory SR 1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–6
    [Google Scholar]
  19. 19.  Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I et al. 1997. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78:1667–70
    [Google Scholar]
  20. 20.  Hennig S, Mönkemöller V, Böger C, Müller M, Huser T 2015. Nanoparticles as nonfluorescent analogues of fluorophores for optical nanoscopy. ACS Nano 9:6196–205
    [Google Scholar]
  21. 21.  Laing S, Gracie K, Faulds K 2016. Multiplex in vitro detection using SERS. Chem. Soc. Rev. 45:1901–18
    [Google Scholar]
  22. 22.  Rodriguez-Lorenzo L, Fabris L, Alvarez-Puebla RA 2012. Multiplex optical sensing with surface-enhanced Raman scattering: a critical review. Anal. Chim. Acta 745:10–23
    [Google Scholar]
  23. 23.  Lee PC, Meisel D 1982. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86:3391–95
    [Google Scholar]
  24. 24.  Otto A 1991. Surface-enhanced Raman-scattering of adsorbates. J. Raman Spectrosc. 22:743–52
    [Google Scholar]
  25. 25.  Otto A, Lust M, Pucci A, Meyer G 2007. “SERS active sites”, facts, and open questions. Can. J. Anal. Sci. Spectrosc. 52:150–71
    [Google Scholar]
  26. 26.  Senapati D, Dasary SSR, Singh AK, Senapati T, Yu H, Ray PC 2011. A label-free gold-nanoparticle-based SERS assay for direct cyanide detection at the parts-per-trillion level. Chemistry 17:8445–51
    [Google Scholar]
  27. 27.  Ulman A 1996. Formation and structure of self-assembled monolayers. Chem. Rev. 96:1533–54
    [Google Scholar]
  28. 28.  Zhong ZY, Patskovskyy S, Bouvrette P, Luong JHT, Gedanken A 2004. The surface chemistry of Au colloids and their interactions with functional amino acids. J. Phys. Chem. B 108:4046–52
    [Google Scholar]
  29. 29.  Huang GG, Han XX, Hossain MK, Ozaki Y 2009. Development of a heat-induced surface-enhanced Raman scattering sensing method for rapid detection of glutathione in aqueous solutions. Anal. Chem. 81:5881–88
    [Google Scholar]
  30. 30.  Bell SEJ, Sirimuthu NMS 2006. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc. 128:15580–81
    [Google Scholar]
  31. 31.  Xu L-J, Lei Z-C, Li J, Zong C, Yang CJ, Ren B 2015. Label-free surface-enhanced Raman spectroscopy detection of DNA with single-base sensitivity. J. Am. Chem. Soc. 137:5149–54
    [Google Scholar]
  32. 32.  Saleh TA, Al-Shalalfeh MM, Onawole AT, Al-Saadi AA 2017. Ultra-trace detection of methimazole by surface-enhanced Raman spectroscopy using gold substrate. Vib. Spectrosc. 90:96–103
    [Google Scholar]
  33. 33.  Faulds K, Smith WE, Graham D, Lacey RJ 2002. Assessment of silver and gold substrates for the detection of amphetamine sulfate by surface enhanced Raman scattering (SERS). Analyst 127:282–86
    [Google Scholar]
  34. 34.  Li M, Wu H, Wu Y, Ying Y, Wen Y et al. 2017. Heterostructured cube Au–Ag composites for rapid Raman detection of antibiotic ciprofloxacin. J. Raman Spectrosc. 48:525–29
    [Google Scholar]
  35. 35.  Nie S, Emory SR 1997. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–6
    [Google Scholar]
  36. 36.  Lee S, Choi J, Chen L, Park B, Kyong JB et al. 2007. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor. Anal. Chim. Acta 590:139–44
    [Google Scholar]
  37. 37.  Tran CD 1984. Subnanogram detection of dyes on filter paper by surface-enhanced Raman scattering spectrometry. Anal. Chem. 56:824–26
    [Google Scholar]
  38. 38.  Shen W, Lin X, Jiang C, Li C, Lin H et al. 2015. Reliable quantitative SERS analysis facilitated by core–shell nanoparticles with embedded internal standards. Angew. Chem. Int. Ed. 54:7308–12
    [Google Scholar]
  39. 39.  Pinkhasova P, Puccio B, Chou TM, Sukhishvili S, Du H 2012. Noble metal nanostructure both as a SERS nanotag and an analyte probe. Chem. Commun. 48:9750–52
    [Google Scholar]
  40. 40.  Fales AM, Tuan VD 2015. Silver embedded nanostars for SERS with internal reference (SENSIR). J. Mater. Chem. C 3:7319–24
    [Google Scholar]
  41. 41.  Bao L, Mahurin SM, Haire RG, Dai S 2003. Silver-doped sol−gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions. Anal. Chem. 75:6614–20
    [Google Scholar]
  42. 42.  Li D, Qu L, Zhai W, Xue J, Fossey JS, Long Y 2011. Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Environ. Sci. Technol. 45:4046–52
    [Google Scholar]
  43. 43.  Liu BH, Han GM, Zhang ZP, Liu RY, Jiang CL et al. 2012. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal. Chem. 84:255–61
    [Google Scholar]
  44. 44.  Braz A, Lopez-Lopez M, Garcia-Ruiz C 2013. Raman spectroscopy for forensic analysis of inks in questioned documents. Forensic Sci. Int. 232:206–12
    [Google Scholar]
  45. 45.  Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA 1997. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–29
    [Google Scholar]
  46. 46.  Wang W, Yin Y, Tan Z, Liu J 2014. Coffee-ring effect-based simultaneous SERS substrate fabrication and analyte enrichment for trace analysis. Nanoscale 6:9588–93
    [Google Scholar]
  47. 47.  Xu J, Du J, Jing C, Zhang Y, Cui J 2014. Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced Raman scattering sensor based on the Au coffee ring effect. ACS Appl. Mater. Interfaces 6:6891–97
    [Google Scholar]
  48. 48.  Yang J-K, Kang H, Lee H, Jo A, Jeong S et al. 2014. Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides. ACS Appl. Mater. Interfaces 6:12541–49
    [Google Scholar]
  49. 49.  Liu HL, Yang ZL, Meng LY, Sun YD, Wang J et al. 2014. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J. Am. Chem. Soc. 136:5332–41
    [Google Scholar]
  50. 50.  Yang LB, Li P, Liu HL, Tang XH, Liu JH 2015. A dynamic surface enhanced Raman spectroscopy method for ultra-sensitive detection: from the wet state to the dry state. Chem. Soc. Rev. 44:2837–48
    [Google Scholar]
  51. 51.  Suh JS, Moskovits M 1986. Surface-enhanced Raman-spectroscopy of amino-acids and nucleotide bases adsorbed on silver. J. Am. Chem. Soc. 108:4711–18
    [Google Scholar]
  52. 52.  Kearns H, Sengupta S, Sasselli IR, Bromley L, Faulds K et al. 2016. Elucidation of the bonding of a near infrared dye to hollow gold nanospheres—a chalcogen tripod. Chem. Sci. 7:5160–70
    [Google Scholar]
  53. 53.  Turley HK, Hu ZW, Jensen L, Camden JP 2017. Surface-enhanced resonance hyper-Raman scattering elucidates the molecular orientation of rhodamine 6G on silver colloids. J. Phys. Chem. Lett. 8:1819–23
    [Google Scholar]
  54. 54.  Ma K, Yuen JM, Shah NC, Walsh JT, Glucksberg MR, Van Duyne RP 2011. In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal. Chem. 83:9146–52
    [Google Scholar]
  55. 55.  Bantz KC, Haynes CL 2009. Surface-enhanced Raman scattering detection and discrimination of polychlorinated biphenyls. Vib. Spectrosc. 50:29–35
    [Google Scholar]
  56. 56.  Jones CL, Bantz KC, Haynes CL 2009. Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Anal. Bioanal. Chem. 394:303–11
    [Google Scholar]
  57. 57.  Lu Y, Yao G, Sun K, Huang Q 2015. β-Cyclodextrin coated SiO2@Au@Ag core-shell nanoparticles for SERS detection of PCBs. Phys. Chem. Chem. Phys. 17:21149–57
    [Google Scholar]
  58. 58.  Strickland AD, Batt CA 2009. Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods. Anal. Chem. 81:2895–903
    [Google Scholar]
  59. 59.  Xie Y, Wang X, Han X, Xue X, Ji W et al. 2010. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering. Analyst 135:1389–94
    [Google Scholar]
  60. 60.  Trujillo MJ, Jenkins DM, Bradshaw JA, Camden JP 2017. Surface-enhanced Raman scattering of uranyl in aqueous samples: implications for nuclear forensics and groundwater testing. Anal. Methods 9:1575–79
    [Google Scholar]
  61. 61.  Ruan C, Luo W, Wang W, Gu B 2007. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples. Anal. Chim. Acta 605:80–86
    [Google Scholar]
  62. 62.  Teiten B, Burneau A 1997. Detection and sorption study of dioxouranium(VI) ions on N-(2-mercaptopropionyl)glycine-modified silver colloid by surface-enhanced Raman scattering. J. Raman Spectrosc. 28:879–84
    [Google Scholar]
  63. 63.  Lu G, Forbes TZ, Haes AJ 2016. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size. Analyst 141:5137–43
    [Google Scholar]
  64. 64.  Ruan C, Wang W, Gu B 2006. Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles. Anal. Chim. Acta 567:114–20
    [Google Scholar]
  65. 65.  Mosier-Boss PA, Lieberman SH 2000. Detection of nitrate and sulfate anions by normal Raman spectroscopy and SERS of cationic-coated, silver substrates. Appl. Spectrosc. 54:1126–35
    [Google Scholar]
  66. 66.  Morla-Folch J, Xie H, Gisbert-Quilis P, Gómez de-Pedro S, Pazos-Perez N et al. 2015. Ultrasensitive direct quantification of nucleobase modifications in DNA by surface-enhanced Raman scattering: the case of cytosine. Angew. Chem. Int. Ed. 54:13650–54
    [Google Scholar]
  67. 67.  Alvarez-Puebla RA, Liz-Marzan LM 2012. SERS detection of small inorganic molecules and ions. Angew. Chem. Int. Ed. 51:11214–23
    [Google Scholar]
  68. 68.  Wang HY, Zhou YF, Jiang XX, Sun B, Zhu Y et al. 2015. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew. Chem. Int. Ed. 54:5132–36
    [Google Scholar]
  69. 69.  Sharma B, Bugga P, Madison LR, Henry A-I, Blaber MG et al. 2016. Bisboronic acids for selective, physiologically relevant direct glucose sensing with surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 138:13952–59
    [Google Scholar]
  70. 70.  Dasary SSR, Singh AK, Senapati D, Yu HT, Ray PC 2009. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 131:13806–12
    [Google Scholar]
  71. 71.  Negri P, Kage A, Nitsche A, Naumann D, Dluhy RA 2011. Detection of viral nucleoprotein binding to anti-influenza aptamers via SERS. Chem. Commun. 47:8635–37
    [Google Scholar]
  72. 72.  Wu X, Xu C, Tripp RA, Y-W Huang, Zhao Y 2013. Detection and differentiation of foodborne pathogenic bacteria in mung bean sprouts using field deployable label-free SERS devices. Analyst 138:3005–12
    [Google Scholar]
  73. 73.  Chen Y, Zhang Y, Pan F, Liu J, Wang K et al. 2016. Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons. ACS Nano 10:8169–79
    [Google Scholar]
  74. 74.  Zhang Y, Ye X, Xu G, Jin X, Luan M et al. 2016. Identification and distinction of non-small-cell lung cancer cells by intracellular SERS nanoprobes. RSC Adv 6:5401–7
    [Google Scholar]
  75. 75.  Li M, Kang JW, Sukumar S, Dasari RR, Barman I 2015. Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay. Chem. Sci. 6:3906–14
    [Google Scholar]
  76. 76.  Wang ZY, Zong SF, Wu L, Zhu D, Cui YP 2017. SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem. Rev. 117:7910–63
    [Google Scholar]
  77. 77.  Lane LA, Qian XM, Nie SM 2015. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 115:10489–529
    [Google Scholar]
  78. 78.  Wang YQ, Yan B, Chen LX 2013. SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 113:1391–428
    [Google Scholar]
  79. 79.  Yin DY, Wang SS, He YJ, Liu J, Zhou M et al. 2015. Surface-enhanced Raman scattering imaging of cancer cells and tissues via sialic acid-imprinted nanotags. Chem. Commun. 51:17696–99
    [Google Scholar]
  80. 80.  Ye J, Chen Y, Liu Z 2014. A boronate affinity sandwich assay: an appealing alternative to immunoassays for the determination of glycoproteins. Angew. Chem. Int. Ed. 53:10386–89
    [Google Scholar]
  81. 81.  Liu J, Yin DY, Wang SS, Chen HY, Liu Z 2016. Probing low-copy-number proteins in a single living cell. Angew. Chem. Int. Ed. 55:13215–18
    [Google Scholar]
  82. 82.  Harmsen S, Wall MA, Huang RM, Kircher MF 2017. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 12:1400–14
    [Google Scholar]
  83. 83.  Lim DK, Jeon KS, Hwang JH, Kim H, Kwon S et al. 2011. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 6:452–60
    [Google Scholar]
  84. 84.  Nam JM, Oh JW, Lee H, Suh YD 2016. Plasmonic nanogap-enhanced Raman scattering with nanoparticles. Acc. Chem. Res. 49:2746–55
    [Google Scholar]
  85. 85.  Lee JH, Oh JW, Nam SH, Cha YS, Kim GH et al. 2016. Synthesis, optical properties, and multiplexed Raman bio-imaging of surface roughness-controlled nanobridged nanogap particles. Small 12:4726–34
    [Google Scholar]
  86. 86.  Oseledchyk A, Andreou C, Wall MA, Kircher MF 2017. Folate-targeted surface-enhanced resonance Raman scattering nanoprobe ratiometry for detection of microscopic ovarian cancer. ACS Nano 11:1488–97
    [Google Scholar]
  87. 87.  Chuong TT, Pallaoro A, Chaves CA, Li Z, Lee J et al. 2017. Dual-reporter SERS-based biomolecular assay with reduced false-positive signals. PNAS 114:9056–61
    [Google Scholar]
  88. 88.  Qian XM, Nie SM 2008. Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37:912–20
    [Google Scholar]
  89. 89.  Michaels AM, Nirmal M, Brus LE 1999. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121:9932–39
    [Google Scholar]
  90. 90.  Michaels AM, Jiang J, Brus L 2000. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104:11965–71
    [Google Scholar]
  91. 91.  Etchegoin PG, Le Ru E 2008. A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys. 10:6079–89
    [Google Scholar]
  92. 92.  Ru ECL, Etchegoin PG, Meyer M 2006. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. J. Chem. Phys. 125:204701
    [Google Scholar]
  93. 93.  Petryayeva E, Krull UJ 2011. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal. Chim. Acta 706:8–24
    [Google Scholar]
  94. 94.  Takenaka T, Eda K, Mabuchi M, Fujiyoshi Y, Uyeda N 1984. Surface enhanced Raman scattering by isomeric monobromopyridines adsorbed on gold and silver sol particles. Bull. Inst. Chem. Res. 62:219–32
    [Google Scholar]
  95. 95.  Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD et al. 2008. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130:12616–17
    [Google Scholar]
  96. 96.  Li J, Chen L, Lou T, Wang Y 2011. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. ACS Appl. Mater. Interfaces 3:3936–41
    [Google Scholar]
  97. 97.  Li M, Li J, Di H, Liu H, Liu D 2017. Live-cell pyrophosphate imaging by in situ hot-spot generation. Anal. Chem. 89:3532–37
    [Google Scholar]
  98. 98.  Wang Y, Su Z, Wang L, Dong J, Xue J et al. 2017. SERS assay for copper(II) ions based on dual hot-spot model coupling with MarR protein: new Cu2+-specific biorecognition element. Anal. Chem. 89:6392–98
    [Google Scholar]
  99. 99.  Dasary SSR, Jones YK, Barnes SL, Ray PC, Singh AK 2016. Alizarin dye based ultrasensitive plasmonic SERS probe for trace level cadmium detection in drinking water. Sens. Actuators B 224:65–72
    [Google Scholar]
  100. 100.  Yan J, Su S, He S, He Y, Zhao B et al. 2012. Nano rolling-circle amplification for enhanced SERS hot spots in protein microarray analysis. Anal. Chem. 84:9139–45
    [Google Scholar]
  101. 101.  Fabris L, Dante M, Braun G, Lee SJ, Reich NO et al. 2007. A heterogeneous PNA-based SERS method for DNA detection. J. Am. Chem. Soc. 129:6086–87
    [Google Scholar]
  102. 102.  Braun G, Lee SJ, Dante M, Nguyen T-Q, Moskovits M, Reich N 2007. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc. 129:6378–79
    [Google Scholar]
  103. 103.  Cao YC, Jin R, Mirkin CA 2002. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–40
    [Google Scholar]
  104. 104.  Liu H, Li Q, Li M, Ma S, Liu D 2017. In situ hot-spot assembly as a general strategy for probing single biomolecules. Anal. Chem. 89:4776–80
    [Google Scholar]
  105. 105.  Maher RC, Maier SA, Cohen LF, Koh L, Laromaine A et al. 2010. Exploiting SERS hot spots for disease-specific enzyme detection. J. Phys. Chem. C 114:7231–35
    [Google Scholar]
  106. 106.  Zhang CM, Liang X, You TT, Yang N, Gao YK, Yin PG 2017. An ultrasensitive “turn-off” SERS sensor for quantitatively detecting heparin based on 4-mercaptobenzoic acid functionalized gold nanoparticles. Anal. Methods 9:2517–22
    [Google Scholar]
  107. 107.  Wu ZT, Liu YZ, Zhou XD, Shen AG, Hu JM 2013. A “turn-off” SERS-based detection platform for ultrasensitive detection of thrombin based on enzymatic assays. Biosens. Bioelectron. 44:10–15
    [Google Scholar]
  108. 108.  Wang Y, Irudayaraj J 2011. A SERS DNAzyme biosensor for lead ion detection. Chem. Commun. 47:4394–96
    [Google Scholar]
  109. 109.  Sun B, Jiang XX, Wang HY, Song B, Zhu Y et al. 2015. Surface-enhancement Raman scattering sensing strategy for discriminating trace mercuric ion (II) from real water samples in sensitive, specific, recyclable, and reproducible manners. Anal. Chem. 87:1250–56
    [Google Scholar]
  110. 110.  Shi Y, Wang HY, Jiang XX, Sun B, Song B et al. 2016. Ultrasensitive, specific, recyclable, and reproducible detection of lead ions in real systems through a polyadenine-assisted, surface enhanced Raman scattering silicon chip. Anal. Chem. 88:3723–29
    [Google Scholar]
  111. 111.  Wu Y, Xiao FB, Wu ZY, Yu RQ 2017. Novel aptasensor platform based on ratiometric surface-enhanced Raman spectroscopy. Anal. Chem. 89:2852–58
    [Google Scholar]
  112. 112.  Chen JW, Jiang JH, Gao X, Liu GK, Shen GL, Yu RQ 2008. A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy. Chemistry 14:8374–82
    [Google Scholar]
  113. 113.  Li YY, Zhao QC, Wang YD, Man TT, Zhou L et al. 2016. Ultrasensitive signal-on detection of nucleic acids with surface-enhanced Raman scattering and exonuclease III-assisted probe amplification. Anal. Chem. 88:11684–90
    [Google Scholar]
  114. 114.  Zhang J, He LF, Chen PR, Tian C, Wang JP et al. 2017. A silica-based SERS chip for rapid and ultrasensitive detection of fluoride ions triggered by a cyclic boronate ester cleavage reaction. Nanoscale 9:1599–606
    [Google Scholar]
  115. 115.  Kim S, Jeong SN, Bae S, Chung H, Yoo SY 2016. Sensitive surface enhanced Raman scattering-based detection of a BIGH3 point mutation associated with Avellino corneal dystrophy. Anal. Chem. 88:11288–92
    [Google Scholar]
  116. 116.  Efremov EV, Ariese F, Gooijer C 2008. Achievements in resonance Raman spectroscopy: review of a technique with a distinct analytical chemistry potential. Anal. Chim. Acta 606:119–34
    [Google Scholar]
  117. 117.  Qu WG, Lu LQ, Lin L, Xu AW 2012. A silver nanoparticle based surface enhanced resonance Raman scattering (SERRS) probe for the ultrasensitive and selective detection of formaldehyde. Nanoscale 4:7358–61
    [Google Scholar]
  118. 118.  Zhang ZM, Zhao C, Ma YJ, Li GK 2014. Rapid analysis of trace volatile formaldehyde in aquatic products by derivatization reaction-based surface enhanced Raman spectroscopy. Analyst 139:3614–21
    [Google Scholar]
  119. 119.  Lv ZY, Mei LP, Chen WY, Feng JJ, Chen JY, Wang AJ 2014. Shaped-controlled electrosynthesis of gold nanodendrites for highly selective and sensitive SERS detection of formaldehyde. Sens. Actuators B 201:92–99
    [Google Scholar]
  120. 120.  Correa-Duarte MA, Perez NP, Guerrini L, Giannini V, Alvarez-Puebla RA 2015. Boosting the quantitative inorganic surface-enhanced Raman scattering sensing to the limit: the case of nitrite/nitrate detection. J. Phys. Chem. Lett. 6:868–74
    [Google Scholar]
  121. 121.  Laing S, Hernandez-Santana A, Sassmannshausen J, Asquith DL, McInnes IB et al. 2011. Quantitative detection of human tumor necrosis factor α by a resonance Raman enzyme-linked immunosorbent assay. Anal. Chem. 83:297–302
    [Google Scholar]
  122. 122.  Kayat M, Volkan M 2012. New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid. Anal. Chem. 84:7729–35
    [Google Scholar]
  123. 123.  Sui HM, Wang Y, Zhang XL, Wang XL, Cheng WN et al. 2016. Ultrasensitive detection of thyrotropin-releasing hormone based on azo coupling and surface-enhanced resonance Raman spectroscopy. Analyst 141:5181–88
    [Google Scholar]
  124. 124.  Sloan-Dennison S, Laing S, Shand NC, Graham D, Faulds K 2017. A novel nanozyme assay utilising the catalytic activity of silver nanoparticles and SERRS. Analyst 142:2484–90
    [Google Scholar]
  125. 125.  Chen Z, Li G, Zhang Z 2017. Miniaturized thermal-assisted purge-and-trap technique coupling with surface-enhanced Raman scattering for trace analysis of complex samples. Anal. Chem. 89:9593–600
    [Google Scholar]
  126. 126.  Gu X, Camden JP 2015. Surface-enhanced Raman spectroscopy-based approach for ultrasensitive and selective detection of hydrazine. Anal. Chem. 87:6460–64
    [Google Scholar]
  127. 127.  Wang F, Gu X, Zheng C, Dong F, Zhang L et al. 2017. Ehrlich reaction evoked multiple spectral resonances and gold nanoparticle hotspots for Raman detection of plant hormone. Anal. Chem. 89:8836–43
    [Google Scholar]
  128. 128.  Ji W, Song W, Tanabe I, Wang Y, Zhao B, Ozaki YH 2015. Semiconductor-enhanced Raman scattering for highly robust SERS sensing: the case of phosphate analysis. Chem. Commun. 51:7641–44
    [Google Scholar]
  129. 129.  Grasseschi D, Zamarion VM, Araki K, Toma HE 2010. Surface enhanced Raman scattering spot tests: a new insight on Feigl's analysis using gold nanoparticles. Anal. Chem. 82:9146–49
    [Google Scholar]
  130. 130.  Du YX, Liu RY, Liu BH, Wang SH, Han MY, Zhang ZP 2013. Surface-enhanced Raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange. Anal. Chem. 85:3160–65
    [Google Scholar]
  131. 131.  Ren W, Zhu CZ, Wang EK 2012. Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale 4:5902–9
    [Google Scholar]
  132. 132.  Senapati T, Senapati D, Singh AK, Fan Z, Kanchanapally R, Ray PC 2011. Highly selective SERS probe for Hg(II) detection using tryptophan-protected popcorn shaped gold nanoparticles. Chem. Commun. 47:10326–28
    [Google Scholar]
  133. 133.  Ji W, Wang Y, Tanabe I, Han XX, Zhao B, Ozaki Y 2015. Semiconductor-driven “turn-off” surface-enhanced Raman scattering spectroscopy: application in selective determination of chromium(VI) in water. Chem. Sci. 6:342–48
    [Google Scholar]
  134. 134.  Dong J, Guo GM, Xie W, Li Y, Zhang MY, Qian WP 2015. Free radical-quenched SERS probes for detecting H2O2 and glucose. Analyst 140:2741–46
    [Google Scholar]
  135. 135.  Gu X, Wang H, Camden JP 2017. Utilizing light-triggered plasmon-driven catalysis reactions as a template for molecular delivery and release. Chem. Sci. 8:5902–8
    [Google Scholar]
  136. 136.  Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T 2004. Intracellular pH sensors based on surface-enhanced Raman scattering. Anal. Chem. 76:7064–68
    [Google Scholar]
  137. 137.  Kneipp J, Kneipp H, Wittig B, Kneipp K 2007. One- and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7:2819–23
    [Google Scholar]
  138. 138.  Zong SF, Wang ZY, Yang J, Cui YP 2011. Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity. Anal. Chem. 83:4178–83
    [Google Scholar]
  139. 139.  Zheng XS, Hu P, Cui Y, Zong C, Feng JM et al. 2014. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing. Anal. Chem. 86:12250–57
    [Google Scholar]
  140. 140.  Gu X, Wang H, Schultz ZD, Camden JP 2016. Sensing glucose in urine and serum and hydrogen peroxide in living cells by use of a novel boronate nanoprobe based on surface-enhanced Raman spectroscopy. Anal. Chem. 88:7191–97
    [Google Scholar]
  141. 141.  Wang WK, Zhang LM, Li L, Tian Y 2016. A single nanoprobe for ratiometric imaging and biosensing of hypochlorite and glutathione in live cells using surface-enhanced Raman scattering. Anal. Chem. 88:9518–23
    [Google Scholar]
  142. 142.  Jiang C, Liu R, Han G, Zhang Z 2013. A chemically reactive Raman probe for ultrasensitively monitoring and imaging the in vivo generation of femtomolar oxidative species as induced by anti-tumor drugs in living cells. Chem. Commun. 49:6647–49
    [Google Scholar]
  143. 143.  Qu LL, Li DW, Qin LX, Mu J, Fossey JS, Long YT 2013. Selective and sensitive detection of intracellular O2·− using Au NPs/cytochrome c as SERS nanosensors. Anal. Chem. 85:9549–55
    [Google Scholar]
  144. 144.  Li DW, Qu LL, Hu K, Long YT, Tian H 2015. Monitoring of endogenous hydrogen sulfide in living cells using surface-enhanced Raman scattering. Angew. Chem. Int. Ed. 54:12758–61
    [Google Scholar]
  145. 145.  Cao Y, Li DW, Zhao LJ, Liu XY, Cao XM, Long YT 2015. Highly selective detection of carbon monoxide in living cells by palladacycle carbonylation-based surface enhanced Raman spectroscopy nanosensors. Anal. Chem. 87:9696–701
    [Google Scholar]
  146. 146.  Gil PR, Vazquez-Vazquez C, Giannini V, Callao MP, Parak WJ et al. 2013. Plasmonic nanoprobes for real-time optical monitoring of nitric oxide inside living cells. Angew. Chem. Int. Ed. 52:13694–98
    [Google Scholar]
  147. 147.  Cui J, Hu K, Sun JJ, Qu LL, Li DW 2016. SERS nanoprobes for the monitoring of endogenous nitric oxide in living cells. Biosens. Bioelectron. 85:324–30
    [Google Scholar]
  148. 148.  Xu Q, Liu W, Li L, Zhou F, Zhou J, Tian Y 2017. Ratiometric SERS imaging and selective biosensing of nitric oxide in live cells based on trisoctahedral gold nanostructures. Chem. Commun. 53:1880–83
    [Google Scholar]
  149. 149.  Wang Y, Deng XH, Liu JW, Tang H, Jiang JH 2013. Surface enhanced Raman scattering based sensitive detection of histone demethylase activity using a formaldehyde-selective reactive probe. Chem. Commun. 49:8489–91
    [Google Scholar]
  150. 150.  Zhang Z, Yu W, Wang J, Luo D, Qiao X et al. 2017. Ultrasensitive surface-enhanced Raman scattering sensor of gaseous aldehydes as biomarkers of lung cancer on dendritic Ag nanocrystals. Anal. Chem. 89:1416–20
    [Google Scholar]
  151. 151.  Tsoutsi D, Montenegro JM, Dommershausen F, Koert U, Liz-Marzan LM et al. 2011. Quantitative surface-enhanced Raman scattering ultradetection of atomic inorganic ions: the case of chloride. ACS Nano 5:7539–46
    [Google Scholar]
  152. 152.  Ahijado-Guzmán R, Gómez-Puertas P, Alvarez-Puebla RA, Rivas G, Liz-Marzán LM 2012. Surface-enhanced Raman scattering-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements. ACS Nano 6:7514–20
    [Google Scholar]
  153. 153.  Sun F, Bai T, Zhang L, Ella-Menye JR, Liu SJ et al. 2014. Sensitive and fast detection of fructose in complex media via symmetry breaking and signal amplification using surface-enhanced Raman spectroscopy. Anal. Chem. 86:2387–94
    [Google Scholar]
  154. 154.  Tsoutsi D, Guerrini L, Hermida-Ramon JM, Giannini V, Liz-Marzán LM et al. 2013. Simultaneous SERS detection of copper and cobalt at ultratrace levels. Nanoscale 5:5841–46
    [Google Scholar]
  155. 155.  Zamarion VM, Timm RA, Araki K, Toma HE 2008. Ultrasensitive SERS nanoprobes for hazardous metal ions based on trimercaptotriazine-modified gold nanoparticles. Inorg. Chem. 47:2934–36
    [Google Scholar]
  156. 156.  Kho KW, Dinish US, Kumar A, Olivo M 2012. Frequency shifts in SERS for biosensing. ACS Nano 6:4892–902
    [Google Scholar]
  157. 157.  Guerrini L, Pazos E, Penas C, Vázquez ME, Mascareñas JL, Alvarez-Puebla RA 2013. Highly sensitive SERS quantification of the oncogenic protein c-Jun in cellular extracts. J. Am. Chem. Soc. 135:10314–17
    [Google Scholar]
  158. 158.  Pazos E, Garcia-Algar M, Penas C, Nazarenus M, Torruella A et al. 2016. Surface-enhanced Raman scattering surface selection rules for the proteomic liquid biopsy in real samples: efficient detection of the oncoprotein c-MYC. J. Am. Chem. Soc. 138:14206–9
    [Google Scholar]
  159. 159.  Tang BC, Wang JJ, Hutchison JA, Ma L, Zhang N et al. 2016. Ultrasensitive, multiplex Raman frequency shift immunoassay of liver cancer biomarkers in physiological media. ACS Nano 10:871–79
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125724
Loading
/content/journals/10.1146/annurev-anchem-061417-125724
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error