1932

Abstract

Sensitive, specific, and fast analysis of nucleic acids (NAs) is strongly needed in medicine, environmental science, biodefence, and agriculture for the study of bacterial contamination of food and beverages and genetically modified organisms. Electrochemistry offers accurate, simple, inexpensive, and robust tools for the development of such analytical platforms that can successfully compete with other approaches for NA detection. Here, electrode reactions of DNA, basic principles of electrochemical NA analysis, and their relevance for practical applications are reviewed and critically discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125811
2018-06-12
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-125811.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125811&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Boussicault F, Robert M 2008. Electron transfer in DNA and DNA-related biological processes. Electrochemical insights. Chem. Rev. 108:2622–45
    [Google Scholar]
  2. 2.  Paleček E, Bartošík M 2012. Electrochemistry of nucleic acids. Chem. Rev. 112:3427–81
    [Google Scholar]
  3. 3.  Furst AL, Hill MG, Barton JK 2014. Electrocatalysis in DNA sensors. Polyhedron 84:150–59
    [Google Scholar]
  4. 4.  Ferapontova EE 2017. Hybridization biosensors relying on electrical properties of nucleic acids. Electroanalysis 29:6–13
    [Google Scholar]
  5. 5.  Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE 2012. Point of care diagnostics: status and future. Anal. Chem. 84:487–515
    [Google Scholar]
  6. 6.  Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A 2013. Biosensor technology: recent advances in threat agent detection and medicine. Chem. Soc. Rev. 42:8733–68
    [Google Scholar]
  7. 7.  Hsieh K, Ferguson BS, Eisenstein M, Plaxco KW, Soh HT 2015. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care. Acc. Chem. Res. 48:911–20
    [Google Scholar]
  8. 8.  Manzanares-Palenzuela CL, Martín-Fernández B, Sánchez-Paniagua López M, López-Ruiz B 2015. Electrochemical genosensors as innovative tools for detection of genetically modified organisms. Trends Anal. Chem. 66:19–31
    [Google Scholar]
  9. 9.  Labib M, Sargent EH, Kelley SO 2016. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem. Rev. 116:9001–90
    [Google Scholar]
  10. 10.  Yu HLL, Maslova A, Hsing IM 2017. Rational design of electrochemical DNA biosensors for point-of-care applications. ChemElectroChem 4:795–805
    [Google Scholar]
  11. 11.  Campuzano S, Yáñez-Sedeño P, Pingarrón JM 2017. Electrochemical biosensing for the diagnosis of viral infections and tropical diseases. ChemElectroChem 4:753–77
    [Google Scholar]
  12. 12.  Kékedy-Nagy L, Ferapontova EE, Brand I 2017. Submolecular structure and orientation of oligonucleotide duplexes tethered to gold electrodes probed by infrared reflection absorption spectroscopy: effect of the electrode potentials. J. Phys. Chem. B 121:1552–65
    [Google Scholar]
  13. 13.  Smith SB, Cui Y, Bustamante C 1996. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–99
    [Google Scholar]
  14. 14.  Anne A, Demaille C 2008. Electron transport by molecular motion of redox-DNA strands: unexpectedly slow rotational dynamics of 20-mer dsDNA chains end-grafted onto surfaces vis C6 linkers. J. Am. Chem. Soc. 130:9812–23
    [Google Scholar]
  15. 15.  Farjami E, Clima L, Gothelf K, Ferapontova EE 2011. “Off-On” electrochemical hairpin-DNA-based genosensor for cancer diagnostics. Anal. Chem. 83:1594–602
    [Google Scholar]
  16. 16.  Markham NR, Zuker M 2005. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:W577–81
    [Google Scholar]
  17. 17.  Gebala M, Bonilla S, Bisaria N, Herschlag D 2016. Does cation size affect occupancy and electrostatic screening of the nucleic acid ion atmosphere?. J. Am. Chem. Soc. 138:10925–34
    [Google Scholar]
  18. 18.  Ferapontova EE, Domínguez E 2003. Direct electrochemical oxidation of DNA on polycrystalline gold electrodes. Electroanalysis 15:629–34
    [Google Scholar]
  19. 19.  Brabec V, Paleccek E 1976. Interactions of nucleic acids with electrically charged surfaces II. Conformational changes in double-helical polynucleotides. Biophys. Chem. 4:79–92
    [Google Scholar]
  20. 20.  Nielsen PE, Haaima G 1997. Peptide nucleic acid (PNA). A DNA mimic with a pseudopeptide backbone. Chem. Soc. Rev. 26:73–78
    [Google Scholar]
  21. 21.  Wang J, Palecek E, Nielsen PE, Rivas G, Cai X et al. 1996. Peptide nucleic acid probes for sequence-specific DNA biosensors. J. Am. Chem. Soc. 118:7667–70
    [Google Scholar]
  22. 22.  Koshkin AA, Singh SK, Nielsen P, Rajwanshi VK, Kumar R et al. 1998. LNA (Locked Nucleic Acids): synthesis of adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54:3607–30
    [Google Scholar]
  23. 23.  Nielsen KE, Singh SK, Wengel J, Jacobsen JP 2000. Solution structure of an LNA hybridized to DNA: NMR study of the d(CTLGCTLTLCTLGC):d(GCAGAAGCAG) duplex containing four locked nucleotides. Bioconjug. Chem. 11:228–38
    [Google Scholar]
  24. 24.  Braasch DA, Corey DR 2001. Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem. Biol. 8:1–7
    [Google Scholar]
  25. 25.  Chen J, Zhang J, Wang K, Lin X, Huang L, Chen G 2008. Electrochemical biosensor for detection of BCR/ABL fusion gene using Locked Nucleic Acids on 4-aminobenzenesulfonic acid-modified glassy carbon electrode. Anal. Chem. 80:8028–34
    [Google Scholar]
  26. 26.  Ferapontova EE 2011. Electrochemical indicators for DNA electroanalysis. Curr. Anal. Chem 7:51–62
    [Google Scholar]
  27. 27.  Davis F, Hughes MA, Cossins AR, Higson SPJ 2007. Single gene differentiation by DNA-modified carbon electrodes using an AC impedimetric approach. Anal. Chem. 79:1153–57
    [Google Scholar]
  28. 28.  Lemeshko SV, Powdrill T, Belosludtsev YY, Hogan M 2001. Oligonucleotides form a duplex with non-helical properties on a positively charged surface. Nucleic Acid Res. 29:3051–58
    [Google Scholar]
  29. 29.  Steel AB, Herne TM, Tarlov MJ 1998. Electrochemical quantitation of DNA immobilized on gold. Anal. Chem. 70:4670–77
    [Google Scholar]
  30. 30.  Kelley SO, Barton JK, Jackson NM, McPherson LD, Potter AB et al. 1998. Orienting DNA helices on gold using applied electric fields. Langmuir 14:6781–84
    [Google Scholar]
  31. 31.  Farjami E, Campos R, Ferapontova EE 2012. Effect of the DNA end of tethering to electrodes on electron transfer in methylene blue-labeled DNA duplexes. Langmuir 28:16218–26
    [Google Scholar]
  32. 32.  Farjami E, Campos R, Ferapontova EE 2016. Correction to “Effect of the DNA end of tethering to electrodes on electron transfer in methylene blue-labeled DNA duplexes. .” Langmuir 32:928
    [Google Scholar]
  33. 33.  Mie Y, Kowata K, Kojima N, Komatsu Y 2012. Electrochemical properties of intrastrand cross-linked DNA duplexes labelled with Nile blue. Langmuir 28:17211–16
    [Google Scholar]
  34. 34.  Johnson RP, Richardson JA, Brown T, Bartlett PN 2012. A label-free, electrochemical SERS-based assay for detection of DNA hybridization and discrimination of mutations. J. Am. Chem. Soc. 134:14099–107
    [Google Scholar]
  35. 35.  Campos R, Kotlyar A, Ferapontova EE 2014. DNA-mediated electron transfer in DNA duplexes tethered to gold electrodes via phosphorothioated dA tags. Langmuir 30:11853–57
    [Google Scholar]
  36. 36.  Kimura-Suda H, Petrovykh DY, Tarlov MJ, Whitman LJ 2003. Base-dependent competitive adsorption of single-stranded DNA on gold. J. Am. Chem. Soc. 125:9014–15
    [Google Scholar]
  37. 37.  Herne TM, Tarlov MJ 1997. Characterization of DNA probes immobilized on gold surfaces. J. Am. Chem. Soc. 119:8916–20
    [Google Scholar]
  38. 38.  Lee C-Y, Gong P, Harbers GM, Grainger DW, Castner DG, Gamble LJ 2006. Surface coverage and structure of mixed DNA/alkylthiol monolayers on gold:characterization by XPS, NEXAFS, and fluorescence intensity measurements. Anal. Chem. 78:3316–25
    [Google Scholar]
  39. 39.  Josephs EA, Ye T 2013. Nanoscale spatial distribution of thiolated DNA on model nucleic acid sensor surfaces. ACS Nano 7:3653–60
    [Google Scholar]
  40. 40.  Wu J, Campuzano S, Halford C, Haake DA, Wang J 2010. Ternary surface monolayers for ultrasensitive (zeptomole) amperometric detection of nucleic acid hybridization without signal amplification Anal. . Chem 82:8830–37
    [Google Scholar]
  41. 41.  Ju H, Ye Y, Zhu Y 2005. Interaction between nile blue and immobilized single- or double-stranded DNA and its application in electrochemical recognition. Electrochim. Acta 50:1361–67
    [Google Scholar]
  42. 42.  Steel AB, Levicky R, Herne TM, Tarlov MJ 2000. Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys. J. 79:975–81
    [Google Scholar]
  43. 43.  Petrovykh DY, Kimura-Suda H, Whitman LJ, Tarlov MJ 2003. Quantitative analysis and characterisation of DNA immobilized on gold. J. Am. Chem. Soc. 125:5219–26
    [Google Scholar]
  44. 44.  Kaiser W, Rant U 2010. Conformations of end-tethered DNA molecules on gold surfaces: influences of applied electric potential, electrolyte screening, and temperature. J. Am. Chem. Soc. 132:7935–45
    [Google Scholar]
  45. 45.  Boon EM, Sam M, Barton JK, Hill MG, Spain EM 2001. Morphology of 15-mer duplexes tethered to Au(111) probed using scanning probe microscopy. Langmuir 17:5727–30
    [Google Scholar]
  46. 46.  Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M 2006. Electrical manipulation of oligonucleotides grafted to charged surfaces. Org. Biomol. Chem. 4:3448–55
    [Google Scholar]
  47. 47.  Wang J, Rivas G, Jiang M, Zhang X 1999. Electrochemically induced release of DNA from gold ultramicroelectrodes. Langmuir 15:6541–45
    [Google Scholar]
  48. 48.  Lai RY, S-h Lee, Soh HT, Plaxco KW, Heeger AJ 2006. Differential labeling of closely spaced biosensor electrodes via electrochemical lithography. Langmuir 22:1932–36
    [Google Scholar]
  49. 49.  Woo SM, Gabardo CM, Soleymani L 2014. Prototyping of wrinkled nano-/microstructured electrodes for electrochemical DNA detection. Anal. Chem. 86:12341–47
    [Google Scholar]
  50. 50.  De Luna P, Mahshid SS, Das J, Luan B, Sargent EH et al. 2017. High-curvature nanostructuring enhances probe display for biomolecular detection. Nano Lett 17:1289–95
    [Google Scholar]
  51. 51.  Hansen MN, Farjami E, Kristiansen M, Clima L, Pedersen SU et al. 2010. Synthesis and application of a triazene-ferrocene modifier for immobilization and characterization of oligonucleotides at electrodes. J. Org. Chem. 75:2474–81
    [Google Scholar]
  52. 52.  Harper JC, Polsky R, Wheeler DR, Brozik SM 2008. Maleimide-activated aryl diazonium salts for electrode surface functionalization with biological and redox-active molecules. Langmuir 24:2206–11
    [Google Scholar]
  53. 53.  Esteban-Fernández de Ávila B, Araque E, Campuzano S, Pedrero M, Dalkiran B et al. 2015. Dual functional graphene derivative-based electrochemical platforms for detection of the TP53 gene with single nucleotide polymorphism selectivity in biological samples. Anal. Chem. 87:2290–98
    [Google Scholar]
  54. 54.  Strother T, Cai W, Zhao X, Hamers RJ, Smith LM 2000. Synthesis and characterization of DNA-modified silicon (111) surfaces. J. Am. Chem. Soc. 122:1205–09
    [Google Scholar]
  55. 55.  Jin L, Horgan A, Levicky R 2003. Preparation of end-tethered DNA monolayers on siliceous surfaces using heterobifunctional cross-linkers. Langmuir 19:6968–75
    [Google Scholar]
  56. 56.  Barreda-García S, Miranda-Castro R, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ 2017. Solid-phase helicase dependent amplification and electrochemical detection of Salmonella on highly stable oligonucleotide-modified ITO electrodes. Chem. Commun. 53:9721–24
    [Google Scholar]
  57. 57.  Paleček E, Jelen F, Teijeiro C, Fučik V, Jovin TM 1993. Biopolymer-modified electrodes in the voltammetric determination of nucleic acids and proteins at the submicrogram level. Anal. Chim. Acta 273:175–86
    [Google Scholar]
  58. 58.  Jelen F, Tomschik M, Paleček E 1997. Adsorptive stripping square-wave voltammetry of DNA. J. Electroanal. Chem. 423:141–48
    [Google Scholar]
  59. 59.  Faraggi M, Broitman F, Trent JB, Klapper MH 1996. One-electron oxidation reactions of some purine and pyrimidine bases in aqueous solutions. Electrochemical and pulse radiolysis studies. J. Phys. Chem. 100:14751–61
    [Google Scholar]
  60. 60.  Brett CMA, Oliveira Brett AM, Serrano SHP 1994. On the adsorption and electrochemical oxidation of DNA at glassy carbon electrodes. J. Electroanal. Chem. 366:225–31
    [Google Scholar]
  61. 61.  Dryhurst G, Pace GF 1970. Electrochemical oxidation of guanine at the pyrolytic graphite electrode. J. Electrochem. Soc. 117:1259–64
    [Google Scholar]
  62. 62.  Li Q, Batchelor-McAuley C, Compton RG 2010. Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses. J. Phys. Chem. B 114:7423–28
    [Google Scholar]
  63. 63.  Gonçalves LM, Batchelor-McAuley C, Barros AA, Compton RG 2010. Electrochemical oxidation of adenine: a mixed adsorption and diffusion response on an edge-plane pyrolytic graphite electrode. J. Phys. Chem. C 114:14213–19
    [Google Scholar]
  64. 64.  Ferapontova E 2004. Electrochemistry of guanine and 8-oxoguanine at gold electrodes. Electrochim. . Acta 49:1751–59
    [Google Scholar]
  65. 65.  Zhou M, Zhai Y, Dong S 2009. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81:5603–13
    [Google Scholar]
  66. 66.  Brabec V, Dryhurst G 1978. Electrochemical behavior of natural and biosynthetic polynucleotides at the pyrolytic graphite electrode: a new probe for studies of polynucleotide structure and reactions. J. Electroanal. Chem. Interfac. Electrochem. 89:161–73
    [Google Scholar]
  67. 67.  Karadeniz H, Gulmez B, Sahinci F, Erdem A, Kaya GI et al. 2003. Disposable electrochemical biosensor for the detection of the interaction between DNA and lycorine based on guanine and adenine signals. J. Pharm. Biomed. Anal. 33:295–302
    [Google Scholar]
  68. 68.  Cai X, Rivas G, Shirashi H, Farias P, Wang J et al. 1997. Electrochemical analysis of formation of polynucleotide complexes in solution and at electrode surfaces. Anal. Chim. Acta 344:65–76
    [Google Scholar]
  69. 69.  Ferapontova E, Shipovskov S 2003. Electrochemically induced oxidative damage of double-stranded calf thymus DNA adsorbed on gold electrodes. Biochemistry 68:99–104
    [Google Scholar]
  70. 70.  Wu L, Zhou J, Luo J, Lin Z 2000. Oxidation and adsorption of deoxyribonucleic acid at highly ordered pyrolytic graphite electrode. Electrochim. Acta 45:2923–27
    [Google Scholar]
  71. 71.  Wang J, Cai X, Wang J, Jonsson C, Palecek E 1995. Trace measurements of RNA by potentiometric stripping analysis at carbon paste electrodes. Anal. Chem. 67:4065–70
    [Google Scholar]
  72. 72.  Wang J, Bollo S, Paz JLL, Sahlin E, Mukherjee B 1999. Ultratrace measurements of nucleic acids by baseline-corrected adsorptive stripping square-wave voltammetry. Anal. Chem. 71:1910–13
    [Google Scholar]
  73. 73.  Wang J, Rivas G, Fernandes JR, Paz JLL, Jiang M, Waymire R 1998. Indicator-free electrochemical DNA hybridization biosensor. Anal. Chim. Acta 375:197–203
    [Google Scholar]
  74. 74.  Abi A, Ferapontova EE 2013. Electroanalysis of single-nucleotide polymorphism by hairpin DNA architectures. Anal. Bioanal. Chem. 405:3693–703
    [Google Scholar]
  75. 75.  Lubin AA, Plaxco KW 2010. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc. Chem. Res. 43:496–505
    [Google Scholar]
  76. 76.  Liu G, Wan Y, Gau V, Zhang J, Wang L et al. 2008. An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets. J. Am. Chem. Soc. 130:6820–25
    [Google Scholar]
  77. 77.  Paleček E 1960. Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature 188:656–57
    [Google Scholar]
  78. 78.  Korri-Youssoufi H, Garnier F, Srivastava P, Godillot P, Yassar A 1997. Toward bioelectronics:specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. J. Am. Chem. Soc. 119:7388–89
    [Google Scholar]
  79. 79.  Souteyrand E, Cloarec JP, Martin JR, Wilson C, Lawrence I et al. 1997. Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by field effect. J. Phys. Chem. B 101:2980–85
    [Google Scholar]
  80. 80.  Fritz J, Cooper EB, Gaudet S, Sorger PK, Manalis SR 2002. Electronic detection of DNA by its intrinsic molecular charge. PNAS 99:14142–46
    [Google Scholar]
  81. 81.  Star A, Tu E, Niemann J, Gabriel J-CP, Joiner CS, Valcke C 2006. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. PNAS 103:921–26
    [Google Scholar]
  82. 82.  Riccardi CdS, Kranz C, Kowalik J, Yamanaka H, Mizaikoff B, Josowicz M 2008. Label-free DNA detection of hepatitis C virus based on modified conducting polypyrrole films at microelectrodes and atomic force microscopy tip-integrated electrodes. Anal. Chem. 80:237–45
    [Google Scholar]
  83. 83.  Wang J, Jiang M, Mukherjee B 1999. Flow detection of nucleic acids at a conducting polymer-modified electrode. Anal. Chem. 71:4095–99
    [Google Scholar]
  84. 84.  Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS 2004. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4:245–47
    [Google Scholar]
  85. 85.  Toumazou C, Shepherd LM, Reed SC, Chen GI, Patel A et al. 2013. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Meth. 10:641–46
    [Google Scholar]
  86. 86.  Xie S, Yuan Y, Chai Y, Yuan R 2015. Tracing phosphate ions generated during loop-mediated isothermal amplification for electrochemical detection of Nosema bombycis genomic DNA PTP1. Anal. Chem. 87:10268–74
    [Google Scholar]
  87. 87.  Kjällman THM, Peng H, Soeller C, Travas-Sejdic J 2008. Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor. Anal. Chem. 80:9460–66
    [Google Scholar]
  88. 88.  Koo KM, Carrascosa LG, Shiddiky MJA, Trau M 2016. Poly(A) extensions of miRNAs for amplification-free electrochemical detection on screen-printed gold electrodes. Anal. Chem. 88:2000–5
    [Google Scholar]
  89. 89.  Liu S, Liu T, Wang L 2015. Label-free, isothermal and ultrasensitive electrochemical detection of DNA and DNA 3′-phosphatase using a cascade enzymatic cleavage strategy. Chem. Commun. 51:176–79
    [Google Scholar]
  90. 90.  Bonanni A, Pumera M 2011. Graphene platform for hairpin-DNA-based impedimetric genosensing. ACS Nano 5:2356–61
    [Google Scholar]
  91. 91.  Daggumati P, Appelt S, Matharu Z, Marco ML, Seker E 2016. Sequence-specific electrical purification of nucleic acids with nanoporous gold electrodes. J. Am. Chem. Soc. 138:7711–17
    [Google Scholar]
  92. 92.  Yang M, Jeong SW, Chang SJ, Kim KH, Jang M et al. 2016. Flexible and disposable sensing platforms based on newspaper. ACS Appl. Mater. Interfaces 8:34978–84
    [Google Scholar]
  93. 93.  Ben-Yoav H, Dykstra PH, Bentley WE, Ghodssi R 2015. A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis. Biosens. Bioelectron. 64:579–85
    [Google Scholar]
  94. 94.  Abi A, Ferapontova EE 2012. Unmediated by DNA electron transfer in redox-labeled DNA duplexes end-tethered to gold electrodes. J. Am. Chem. Soc. 134:14499–507
    [Google Scholar]
  95. 95.  Zhang J, Song S, Zhang L, Wang L, Wu H et al. 2006. Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS):effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J. Am. Chem. Soc. 128:8575–80
    [Google Scholar]
  96. 96.  Wang J, Shi A, Fang X, Han X, Zhang Y 2015. An ultrasensitive supersandwich electrochemical DNA biosensor based on gold nanoparticles decorated reduced graphene oxide. Anal. Biochem. 469:71–75
    [Google Scholar]
  97. 97.  Cheng FF, He TT, Miao HT, Shi JJ, Jiang LP, Zhu JJ 2015. Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS Appl. Mater. Interfaces 7:2979–85
    [Google Scholar]
  98. 98.  Liao WC, Ho JAA 2009. Attomole DNA electrochemical sensor for the detection of Escherichia coli O157. Anal. Chem. 81:2470–76
    [Google Scholar]
  99. 99.  Su S, Wu Y, Zhu D, Chao J, Liu X et al. 2016. On-electrode synthesis of shape-controlled hierarchical flower-like gold nanostructures for efficient interfacial DNA assembly and sensitive electrochemical sensing of microRNA. Small 12:3794–801
    [Google Scholar]
  100. 100.  Millan KM, Mikkelsen SR 1993. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal. Chem. 65:2317–23
    [Google Scholar]
  101. 101.  Yamashita K, Takagi M, Kondo H, Takenaka S 2002. Electrochemical detection of nucleic acid base mismatches with ferrocenyl naphtalene diimide. Anal. Biochem. 306:188–96
    [Google Scholar]
  102. 102.  Shiddicky MJA, Torriero AAJ, Zeng Z, Spiccia L, Bond AM 2010. Highly selective and sensitive DNA assay based on electrocatalytic oxidation of ferrocene bearing zinc(II)-cyclen complexes with dieth-ylamine. J. Am. Chem. Soc. 132:10053–63
    [Google Scholar]
  103. 103.  Wong ELS, Gooding JJ 2006. Charge transfer through DNA: a selective electrochemical DNA biosensor. Anal. Chem. 78:2138–44
    [Google Scholar]
  104. 104.  Slinker JD, Muren NB, Renfrew SE, Barton JK 2011. DNA charge transport over 34 nm. Nat. Chem. 3:228–33
    [Google Scholar]
  105. 105.  Hsieh K, Patterson AS, Ferguson BS, Plaxco KW, Soh HT 2012. Rapid, sensitive, and quantitative detection of pathogenic DNA at the point of care through microfluidic electrochemical quantitative loop-mediated isothermal amplification. Angew. Chem. Int. Ed. 51:4896–900
    [Google Scholar]
  106. 106.  Martin A, Grant KB, Stressmann F, Ghigo J-M, Marchal D, Limoges B 2016. Ultimate single-copy DNA detection using real-time electrochemical LAMP. ACS Sensors 1:904–12
    [Google Scholar]
  107. 107.  Xuan F, Fan TW, Hsing IM 2015. Electrochemical interrogation of kinetically-controlled dendritic DNA/PNA assembly for immobilization-free and enzyme-free nucleic acids sensing. ACS Nano 9:5027–33
    [Google Scholar]
  108. 108.  Tuite E, Norden B 1994. Sequence-specific interactions of methylene blue with polynucleotides and DNA: a spectroscopic study. J. Am. Chem. Soc. 116:7548–56
    [Google Scholar]
  109. 109.  Yang W, Ozsoz M, Hibbert DB, Gooding JJ 2002. Evidence for direct interaction between methylene blue and guanine bases using DNA-modified carbon paste electrode. Electroanalysis 14:1299–302
    [Google Scholar]
  110. 110.  Boon EM, Ceres DM, Drummond TG, Hill MG, Barton JK 2000. Mutation detection by electrocatalysis at DNA-modified electrodes. Nat. Biotechnol. 18:1096–100
    [Google Scholar]
  111. 111.  Gasparac R, Taft BJ, Lapierre-Devlin MA, Lazareck AD, Xu JM, Kelley SO 2004. Ultrasensitive electrocatalytic DNA detection at two- and three-dimensional nanoelectrodes. J. Am. Chem. Soc. 126:12270–71
    [Google Scholar]
  112. 112.  Ivanov I, Stojcic J, Stanimirovic A, Sargent E, Nam RK, Kelley SO 2013. Chip-based nanostructured sensors enable accurate identification and classification of circulating tumor cells in prostate cancer patient blood samples. Anal. Chem. 85:398–403
    [Google Scholar]
  113. 113.  Das J, Ivanov I, Sargent EH, Kelley SO 2016. DNA clutch probes for circulating tumor DNA analysis. J. Am. Chem. Soc. 138:11009–16
    [Google Scholar]
  114. 114.  Armistead PM, Thorp HH 2000. Modification of indium tin oxide electrodes with nucleic acids: detection of attomole quantities of immobilized DNA by electrocatalysis. Anal. Chem. 72:3764–70
    [Google Scholar]
  115. 115.  Fan C, Plaxco KW, Heeger AJ 2003. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. PNAS 100:9134–37
    [Google Scholar]
  116. 116.  Lubin AA, Lai RY, Baker BR, Heeger AJ, Plaxco KW 2006. Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Anal. Chem. 78:5671–77
    [Google Scholar]
  117. 117.  Immoos CE, Lee JS, Grinstaff MW 2004. Conformationally gated electrochemical gene detection. ChemBioChem 5:1100–3
    [Google Scholar]
  118. 118.  Xiao Y, Lubin AA, Baker BR, Plaxco KW, Heeger AJ 2006. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. PNAS 103:16677–80
    [Google Scholar]
  119. 119.  Xiao Y, Qu X, Plaxco KW, Heeger AJ 2007. Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. J. Am. Chem. Soc. 129:11896–97
    [Google Scholar]
  120. 120.  Idili A, Amodio A, Vidonis M, Feinberg-Somerson J, Castronovo M, Ricci F 2014. Folding-upon-binding and signal-on electrochemical DNA sensor with high affinity and specificity. Anal. Chem. 86:9013–19
    [Google Scholar]
  121. 121.  Dauphin-Ducharme P, Plaxco KW 2016. Maximizing the signal gain of electrochemical-DNA sensors. Anal. Chem. 88:11654–62
    [Google Scholar]
  122. 122.  Lin M, Song P, Zhou G, Zuo X, Aldalbahi A et al. 2016. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat. Protocols 11:1244–63
    [Google Scholar]
  123. 123.  Dong S, Zhao R, Zhu J, Lu X, Li Y et al. 2015. Electrochemical DNA biosensor based on a tetrahedral nanostructure probe for the detection of avian influenza A (H7N9) virus. ACS Appl. Mater. Interfaces 7:8834–42
    [Google Scholar]
  124. 124.  Li C, Wu D, Hu X, Xiang Y, Shu Y, Li G 2016. One-step modification of electrode surface for ultrasensitive and highly selective detection of nucleic acids with practical applications. Anal. Chem. 88:7583–90
    [Google Scholar]
  125. 125.  Patolsky F, Lichtenstein A, Willner I 2001. Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat. Biotechnol. 19:253–57
    [Google Scholar]
  126. 126.  Wu J, Chumbimuni-Torres KY, Galik M, Thammakhet C, Haake DA, Wang J 2009. Potentiometric detection of DNA hybridization using enzyme-induced metallization and a silver ion selective electrode. Anal. Chem. 81:10007–12
    [Google Scholar]
  127. 127.  Zhang Y, Pothukuchy A, Shin W, Kim Y, Heller A 2004. Detection of ∼103 copies of DNA by an electrochemical enzyme-amplified sandwich assay with ambient O2 as the substrate. Anal. Chem. 76:4093–97
    [Google Scholar]
  128. 128.  Azek F, Grossiord C, Joannes M, Limoges B, Brossier P 2000. Hybridization assay at a disposable electrochemical biosensor for the attomole detection of amplified human cytomegalovirus DNA. Anal. Biochem. 284:107–13
    [Google Scholar]
  129. 129.  Torrente-Rodríguez RM, Ruiz-Valdepeñas Montiel V, Campuzano S, Farchado-Dinia M, Barderas R et al. 2016. Fast electrochemical miRNAs determination in cancer cells and tumor tissues with antibody-functionalized magnetic microcarriers. ACS Sensors 1:896–903
    [Google Scholar]
  130. 130.  Wang J, Liu G, Jan MR 2004. Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction event. J. Am. Chem. Soc. 126:3010–11
    [Google Scholar]
  131. 131.  Shipovskov S, Saunders AM, Nielsen JS, Hansen MN, Gothelf KV, Ferapontova EE 2012. Electrochemical sandwich assay for attomole analysis of DNA and RNA from beer spoilage bacteria Lactobacillus brevis. . Biosens. Bioelectron. 37:99–106
    [Google Scholar]
  132. 132.  Kasianowicz JJ, Brandin E, Branton D, Deamer DW 1996. Characterization of individual polynucleotide molecules using a membranechannel. PNAS 93:13770–73
    [Google Scholar]
  133. 133.  Papadopoulou E, Goodchild SA, Cleary DW, Weller SA, Gale N et al. 2015. Using surface-enhanced Raman spectroscopy and electrochemically driven melting to discriminate Yersinia pestis from Y. pseudotuberculosis based on single nucleotide polymorphisms within unpurified polymerase chain reaction amplicons. Anal. Chem. 87:1605–12
    [Google Scholar]
  134. 134.  Johnson RP, Gale N, Richardson JA, Brown T, Bartlett PN 2013. Denaturation of dsDNA immobilised at negatively charged gold electrode is not caused by electrostatic repulsion. Chem. Sci. 4:1625–32
    [Google Scholar]
  135. 135.  Merchant CA, Healy K, Wanunu M, Ray V, Peterman N et al. 2010. DNA translocation through graphene nanopores. Nano Lett 10:2915–21
    [Google Scholar]
  136. 136.  Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW et al. 2010. DNA translocation through graphene nanopores. Nano Lett 10:3163–67
    [Google Scholar]
  137. 137.  Qiu H, Sarathy A, Schulten K, Leburton J-P 2017. Detection and mapping of DNA methylation with 2D material nanopores. NPJ 2D Mater. Appl. 1:3
    [Google Scholar]
  138. 138.  Loose MW 2017. The potential impact of nanopore sequencing on human genetics. Human Mol. Gen. 26:R202–7
    [Google Scholar]
  139. 139.  Luo R, Zimin A, Workman R, Fan Y, Pertea G et al. 2017. First draft genome sequence of the pathogenic fungus Lomentospora prolificans (formerly Scedosporium prolificans). G3 Genes Genomes Genet 7:3831–36
    [Google Scholar]
  140. 140.  Nair PR, Alam MA 2006. Performance limits of nanobiosensors. Appl. Phys. Lett. 88:233120
    [Google Scholar]
  141. 141.  Sheehan PE, Wjitman LJ 2005. Detection limits for nanoscale biosensors. Nano Lett 5:803–7
    [Google Scholar]
  142. 142.  Go J, Alam MA 2009. Statistical interpretation of “femtomolar” detection. Appl. Phys. Lett. 95:033110
    [Google Scholar]
  143. 143.  Squires TM, Meesinger RJ, Manalis SR 2008. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat. Biotech. 26:417–26
    [Google Scholar]
  144. 144.  Álvarez-Martos I, Ferapontova EE 2016. Electrochemical label-free aptasensor for specific analysis of dopamine in serum in the presence of structurally related neurotransmitters. Anal. Chem. 88:3608–16
    [Google Scholar]
  145. 145.  Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P 2004. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal. Chem. 76:1824–31
    [Google Scholar]
  146. 146.  Ferguson BS, Buchsbaum SF, Wu TT, Hsieh K, Xiao Y et al. 2011. Genetic analysis of H1N1 influenza virus from throat swab samples in a microfluidic system for point-of-care diagnostics. J. Am. Chem. Soc. 133:9129–35
    [Google Scholar]
  147. 147.  Li X, Scida K, Crooks RM 2015. Detection of hepatitis B virus DNA with a paper electrochemical sensor. Anal. Chem. 87:9009–15
    [Google Scholar]
  148. 148.  Cunningham JC, Brenes NJ, Crooks RM 2014. Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal. Chem. 86:6166–70
    [Google Scholar]
  149. 149. MarketsandMarkets. 2017. Biosensors market by application (POC, home diagnostics, research labs, biodefense, environmental monitoring, food & beverages industry), technology, product (wearable and non-wearable), and geography—global forecast to 2022 Press Release, MarketsandMarkets, Pune, India. http://www.marketsandmarkets.com/PressReleases/biosensors.asp
  150. 150. Glob. Mark. Insights. 2016. Biosensors market size by technology Ind. Rep Glob. Mark. Insights Selbyville, DE: https://www.gminsights.com/industry-analysis/biosensors-market
  151. 151.  Kékedy-Nagy L, Shipovskov S, Ferapontova EE 2016. Effect of a dual charge on the DNA-conjugated redox probe on DNA sensing by short hairpin beacon tethered to gold electrodes. Anal. Chem. 88:7984–90
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125811
Loading
/content/journals/10.1146/annurev-anchem-061417-125811
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error