1932

Abstract

This review summarizes progress in the fabrication, modification, characterization, and applications of nanopipettes since 2010. A brief history of nanopipettes is introduced, and the details of fabrication, modification, and characterization of nanopipettes are provided. Applications of nanopipettes in chemical analysis are the focus in several cases, including recent progress in imaging; in the study of single molecules, single nanoparticles, and single cells; in fundamental investigations of charge transfer (ion and electron) reactions at liquid/liquid interfaces; and as hyphenated techniques combined with other methods to study the mechanisms of complicated electrochemical reactions and to conduct bioanalysis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125840
2018-06-12
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/anchem/11/1/annurev-anchem-061417-125840.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125840&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Sakmann B, Neher E, Eds. 1995. Single-Channel Recording New York: Plenum, 2nd ed..
    [Google Scholar]
  2. 2.  Morris CA, Friedman AK, Baker LA 2010. Applications of nanopipettes in the analytical sciences. Analyst 135:2190–202
    [Google Scholar]
  3. 3.  Liu SG, Li Q, Shao YH 2011. Electrochemistry at micro- and nanoscopic liquid/liquid interfaces. Chem. Soc. Rev. 40:2236–53
    [Google Scholar]
  4. 4.  Wang YH, Wang D, Mirkin MV 2017. Resistive-pulse and rectification sensing with glass and carbon nanopipettes. Proc. R. Soc. A 473:220320160931
    [Google Scholar]
  5. 5.  Ammann D 1986. Ion-Selective Microelectrodes: Principles, Design and Application Berlin: Springer-Verlag
    [Google Scholar]
  6. 6.  Chen C-C, Zhou Y, Baker LA 2012. Scanning ion conductance microscopy. Annu. Rev. Anal. Chem. 5:207–28
    [Google Scholar]
  7. 7.  Jing P, He SL, Liang ZW, Shao YH 2006. Charge-transfer reactions at liquid/liquid interfaces and their applications in bioassays. Anal. Bioanal. Chem. 385:428–32
    [Google Scholar]
  8. 8.  Takahashi Y, Kumatani A, Shiku H, Matsue T 2016. Scanning probe microscopy for nanoscale electrochemical imaging. Anal. Chem. 89:342–57
    [Google Scholar]
  9. 9.  Ebejer N, Güell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR 2013. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 6:329–51
    [Google Scholar]
  10. 10.  Page A, Perry D, Unwin PR 2017. Multifunctional scanning ion conductance microscopy. Proc. R. Soc. A 473:220320160889
    [Google Scholar]
  11. 11.  Brown KT, Flaming DG 1986. Advanced Micropipette Techniques for Cell Physiology New York: John Wiley & Sons
    [Google Scholar]
  12. 12.  Graham J, Gerard RW 1946. Membrane potentials and excitation of impaled single muscle fibers. J. Cell. Comp. Physiol. 28:99–117
    [Google Scholar]
  13. 13.  Brown KT, Flaming DG 1977. New microelectrode techniques for intracellular work in small cells. Neuroscience 2:813–27
    [Google Scholar]
  14. 14.  Taylor G, Girault HH 1986. Ion transfer reactions across a liquid-liquid interface supported on a micropipette tip. J. Electroanal. Chem. 208:179–83
    [Google Scholar]
  15. 15.  Solomon T, Bard AJ 1995. Scanning electrochemical microscopy. 30. Application of glass micropipet tips and electron transfer at the interface between two immiscible electrolyte solutions for SECM imaging. Anal. Chem. 67:2787–90
    [Google Scholar]
  16. 16.  Wei C, Bard AJ, Feldberg SW 1997. Current rectification at quartz nanopipet electrodes. Anal. Chem. 69:4627–33
    [Google Scholar]
  17. 17.  Shao YH, Mirkin MV 1997. Fast kinetic measurements with nanometer-sized pipets. Transfer of potassium ion from water into dichloroethane facilitated by dibenzo-18-crown-6. J. Am. Chem. Soc. 119:8103–4
    [Google Scholar]
  18. 18.  Shao YH, Mirkin MV 1997. Scanning electrochemical microscopy (SECM) of facilitated ion transfer at the liquid/liquid interface. J. Electroanal. Chem. 439:137–43
    [Google Scholar]
  19. 19.  Sun P, Zhang ZQ, Gao Z, Shao YH 2002. Probing fast facilitated ion transfer across an externally polarized liquid-liquid interface by scanning electrochemical microscopy. Angew. Chem. Int. Ed. 41:3445–48
    [Google Scholar]
  20. 20.  Sun P, Li F, Chen Y, Zhang MQ, Zhang ZQ et al. 2003. Observation of the Marcus inverted region of electron transfer reactions at a liquid/liquid interface. J. Am. Chem. Soc. 125:9600–1
    [Google Scholar]
  21. 21.  Takahashi Y, Shevchuk AI, Novak P, Murakami Y, Shiku H et al. 2010. Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation. J. Am. Chem. Soc. 132:10118–26
    [Google Scholar]
  22. 22.  Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M et al. 2009. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6:279–81
    [Google Scholar]
  23. 23.  Shevchuk AI, Frolenkov GI, Sanchez D, James PS, Freedman N et al. 2006. Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew. Chem. Int. Ed. 45:2212–16
    [Google Scholar]
  24. 24.  Liu SJ, Dong YT, Zhao WB, Xie X, Ji TR et al. 2012. Studies of ionic current rectification using polyethyleneimines coated glass nanopipettes. Anal. Chem. 84:5565–73
    [Google Scholar]
  25. 25.  Yin X, Zhang S, Dong Y, Liu S, Gu J et al. 2015. Ionic current rectification in organic solutions with quartz nanopipettes. Anal. Chem. 87:9070–77
    [Google Scholar]
  26. 26.  Jal PK, Patel S, Mishra B 2004. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 62:1005–28
    [Google Scholar]
  27. 27.  Feng JY, Liu J, Wu BH, Wang GL 2010. Impedance characteristics of amine modified single glass nanopores. Anal. Chem. 82:4520–28
    [Google Scholar]
  28. 28.  Schibel AEP, Ervin EN 2014. Antigen detection via the rate of ion current rectification change of the antibody-modified glass nanopore membrane. Langmuir 30:11248–56
    [Google Scholar]
  29. 29.  Wang GL, Zhang B, Wayment JR, Harris JM, White HS 2006. Electrostatic-gated transport in chemically modified glass nanopore electrodes. J. Am. Chem. Soc. 128:7679–86
    [Google Scholar]
  30. 30.  Rees HR, Anderson SE, Privman E, Bau HH, Venton BJ 2015. Carbon nanopipette electrodes for dopamine detection in Drosophila. . Anal. Chem. 87:3849–55
    [Google Scholar]
  31. 31.  Schrlau MG, Dun NJ, Bau HH 2009. Cell electrophysiology with carbon nanopipettes. ACS Nano 3:563–68
    [Google Scholar]
  32. 32.  Freedman KJ, Otto LM, Ivanov AP, Barik A, Oh SH, Edel JB 2016. Nanopore sensing at ultralow concentrations using single-molecule dielectrophoretic trapping. Nat. Commun. 7:10217
    [Google Scholar]
  33. 33.  Xu XL, He HL, Jin YD 2015. Facile one-step photochemical fabrication and characterization of an ultrathin gold-decorated single glass nanopipette. Anal. Chem. 87:3216–21
    [Google Scholar]
  34. 34.  Yu Y, Noel JM, Mirkin MV, Gao Y, Mashtalir O et al. 2014. Carbon pipette based electrochemical nanosampler. Anal. Chem. 86:3365–72
    [Google Scholar]
  35. 35.  Hu K, Wang YX, Cai HJ, Mirkin MV, Gao Y et al. 2014. Open carbon nanopipettes as resistive-pulse sensors, rectification sensors, and electrochemical nanoprobes. Anal. Chem. 86:8897–901
    [Google Scholar]
  36. 36.  Zhu XY, Qiao YH, Zhang X, Zhang SS, Yin XH et al. 2014. Fabrication of metal nanoelectrodes by interfacial reactions. Anal. Chem. 86:7001–8
    [Google Scholar]
  37. 37.  Hao R, Zhang B 2016. Nanopipette-based electroplated nanoelectrodes. Anal. Chem. 88:614–20
    [Google Scholar]
  38. 38.  Michalak M, Kurel M, Jedraszko J, Toczydlowska D, Wittstock G et al. 2015. Voltammetric pH nanosensor. Anal. Chem. 87:11641–45
    [Google Scholar]
  39. 39.  Shao YH, Liu B, Mirkin VM 1998. Studying ionic reactions by a new generation/collection technique. J. Am. Chem. Soc. 120:12700–1
    [Google Scholar]
  40. 40.  Liu B, Shao YH, Mirkin VM 2000. Dual-pipet techniques for probing ionic reactions. Anal. Chem. 72:510–19
    [Google Scholar]
  41. 41.  Chen Y, Gao Z, Li F, Ge HL, Zhang MQ et al. 2003. Studies of electron-transfer and charge-transfer coupling processes at a liquid/liquid interface by double-barrel micropipet technique. Anal. Chem. 75:6593–601
    [Google Scholar]
  42. 42.  Hu H, Xie SB, Meng X, Jing P, Zhang MQ et al. 2006. Fabrication and characterization of submicrometer-and nanometer-sized double-barrel pipets. Anal. Chem. 78:7034–39
    [Google Scholar]
  43. 43.  Gao Z, Li B, Zhao WB, Chen Y, Hu M et al. 2011. Simulation and experimental verification of the dependence of collection efficiency on the shape of a dual micropipette. Sci. China Chem. 54:1311–18
    [Google Scholar]
  44. 44.  Zhang X, Wang HM, Morris C, Gu CY, Li MZ et al. 2016. Probing electron transfer and ion transfer coupling processes at the liquid/liquid interfaces by pipette electrodes. ChemElectroChem 3:2153–59
    [Google Scholar]
  45. 45.  Qiu R, Zhang X, Luo H, Shao YH 2016. Mass spectrometric snapshots for electrochemical reactions. Chem. Sci. 7:6684–88
    [Google Scholar]
  46. 46.  McKelvey K, Nadappuram BP, Actis P, Takahashi Y, Korchev YE et al. 2013. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM). Anal. Chem. 85:7519–26
    [Google Scholar]
  47. 47.  Méndez MA, Partovi-Nia R, Hatay I, Su B, Ge PY et al. 2010. Molecular electrocatalysis at soft interfaces. Phys. Chem. Chem. Phys. 12:15163–71
    [Google Scholar]
  48. 48.  Ji TR, Liang ZW, Zhu XY, Wang LY, Liu SJ, Shao YH 2011. Probing the structure of a nitrobenzene/water interface by scanning ion conductance microscopy. Chem. Sci. 2:1523–29
    [Google Scholar]
  49. 49.  Byers JC, Nadappuram BP, Perry D, McKelvey K, Colburn AW, Unwin PR 2015. Single molecule electrochemical detection in aqueous solutions and ionic liquids. Anal. Chem. 87:10450–56
    [Google Scholar]
  50. 50.  Singhal R, Bhattacharyya S, Orynbayeva Z, Vitol E, Friedman G, Gogotsi Y 2010. Small diameter carbon nanopipettes. Nanotechnology 21:15304
    [Google Scholar]
  51. 51.  Shao YH, Mirkin MV, Fish G, Kokotov S, Palanker D, Lewis A 1997. Nanometer-sized electrochemical sensors. Anal. Chem. 69:1627–34
    [Google Scholar]
  52. 52.  Satpati AK, Bard AJ 2012. Preparation and characterization of carbon powder paste ultramicroelectrodes as tips for scanning electrochemical microscopy applications. Anal. Chem. 84:2498–504
    [Google Scholar]
  53. 53.  Perry D, Momotenko D, Lazenby RA, Kang MK, Unwin PR 2016. Characterization of nanopipettes. Anal. Chem. 88:5523–30
    [Google Scholar]
  54. 54.  Beattie PD, Delay A, Girault HH 1995. Investigation of the kinetics of assisted potassium ion transfer by dibenzo-18-crown-6 at the micro-ITIES by means of steady-state voltammetry. J. Electroanal. Chem. 380:167–75
    [Google Scholar]
  55. 55.  Shao YH, Mirkin MV 1998. Voltammetry at micropipet electrodes. Anal. Chem. 70:3155–61
    [Google Scholar]
  56. 56.  Rodgers PJ, Amemiya S, Wang YX, Mirkin MV 2010. Nanopipet voltammetry of common ions across the liquid-liquid interface. Theory and limitations in kinetic analysis of nanoelectrode voltammograms. Anal. Chem. 82:84–90
    [Google Scholar]
  57. 57.  Rodgers PJ, Amemiya S 2007. Cyclic oltammetry at micropipet electrodes for the study of ion-transfer kinetics at liquid/liquid interfaces. Anal. Chem. 79:9276–85
    [Google Scholar]
  58. 58.  Armbrecht L, Dittrich PS 2017. Recent advances in the analysis of single cells. Anal. Chem. 89:2–21
    [Google Scholar]
  59. 59.  Ganesana M, Lee ST, Wang Y, Venton BJ 2017. Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods. Anal. Chem. 89:314–41
    [Google Scholar]
  60. 60.  Bard AJ, Fan FRF, Kwak J, Lev O 1989. Scanning electrochemical microscopy. Introduction and principles. Anal Chem 61:132–38
    [Google Scholar]
  61. 61.  Shao YH, Mirkin MV 1998. Probing ion transfer at the liquid/liquid interface by scanning electrochemical microscopy (SECM). J. Phys. Chem. B 102:9915–21
    [Google Scholar]
  62. 62.  Ervin E, White H, Baker L 2005. Alternating current impedance imaging of membrane pores using scanning electrochemical microscopy. Anal. Chem. 77:5564–69
    [Google Scholar]
  63. 63.  Williams GC, Edwards MA, Colley AL, Macpherson JV, Unwin PR 2009. Scanning micropipet contact method for high-resolution imaging of electrode surface redox activity. Anal. Chem. 81:2486–95
    [Google Scholar]
  64. 64.  Beaulieu I, Kuss S, Mauzeroll J 2011. Biological scanning electrochemical microscopy and its application to live cell studies. Anal. Chem. 83:1485–92
    [Google Scholar]
  65. 65.  Ishimatsu R, Kim J, Jing P, Striemer CC, Fang DZ et al. 2010. Ion-selective permeability of an ultrathin nanoporous silicon membrane as probed by scanning electrochemical microscopy using micropipet-supported ITIES tips. Anal. Chem. 82:7127–34
    [Google Scholar]
  66. 66.  Shen M, Ishimatsu R, Kim J, Amemiya S 2012. Quantitative imaging of ion transport through single nanopores by high-resolution scanning electrochemical microscopy. J. Am. Chem. Soc. 134:9856–59
    [Google Scholar]
  67. 67.  Kim J, Izadyar A, Shen M, Ishimatsu R, Amemiya S 2014. Ion permeability of the nuclear pore complex and ion-induced macromolecular permeation as studied by scanning electrochemical and fluorescence microscopy. Anal. Chem. 86:2090–98
    [Google Scholar]
  68. 68.  Wang YX, Kececi K, Velmurugan J, Mirkin MV 2013. Electron transfer/ion transfer mode of scanning electrochemical microscopy (SECM): a new tool for imaging and kinetic studies. Chem. Sci. 4:3606–16
    [Google Scholar]
  69. 69.  Kim J, Renault C, Nioradze N, Arroyo-Currás N, Leonard KC, Bard AJ 2016. Nanometer scale scanning electrochemical microscopy instrumentation. Anal. Chem. 88:10284–89
    [Google Scholar]
  70. 70.  Hansma PK, Drake B, Marti O, Gould SA, Prater CB 1989. The scanning ion-conductance microscope. Science 243:641–43
    [Google Scholar]
  71. 71.  Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ 1997. Scanning ion conductance microscopy of living cells. Biophys. J. 73:653–58
    [Google Scholar]
  72. 72.  Shevchuk AI, Novak P, Takahashi Y, Clarke R, Miragoli M et al. 2011. Realizing the biological and biomedical potential of nanoscale imaging using a pipette probe. Nanomedicine 6:565–75
    [Google Scholar]
  73. 73.  Happel P, Thatenhorst D, Dietzel ID 2012. Scanning ion conductance microscopy for studying biological samples. Sensors 12:14983–5008
    [Google Scholar]
  74. 74.  Chen CC, Baker LA 2011. Effects of pipette modulation and imaging distances on ion currents measured with scanning ion conductance microscopy (SICM). Analyst 136:90–97
    [Google Scholar]
  75. 75.  Chen CC, Zhou Y, Baker LA 2011. Single-nanopore investigations with ion conductance microscopy. ACS Nano 5:4404–11
    [Google Scholar]
  76. 76.  Zhou Y, Chen CC, Baker LA 2012. Heterogeneity of multiple-pore membranes investigated with ion conductance microscopy. Anal. Chem. 84:3003–9
    [Google Scholar]
  77. 77.  Morris CA, Chen CC, Baker LA 2012. Transport of redox probes through single pores measured by scanning electrochemical-scanning ion conductance microscopy (SECM-SICM). Analyst 137:2933–38
    [Google Scholar]
  78. 78.  Chen CC, Zhou Y, Morris CA, Hou JH, Baker LA 2013. Scanning ion conductance microscopy measurement of paracellular channel conductance in tight junctions. Anal. Chem. 85:3621–28
    [Google Scholar]
  79. 79.  Zhou Y, Chen CC, Weber AE, Zhou LS, Baker LA 2014. Potentiometric-scanning ion conductance microscopy. Langmuir 30:5669–75
    [Google Scholar]
  80. 80.  Shi WQ, Zeng YH, Zhou LS, Xiao YC, Cummins TR, Baker LA 2016. Membrane patches as ion channel probes for scanning ion conductance microscopy. Faraday Discuss 193:81–97
    [Google Scholar]
  81. 81.  Ida H, Takahashi Y, Kumatani A, Shiku H, Matsue T 2017. High speed scanning ion conductance microscopy for quantitative analysis of nanoscale dynamics of microvilli. Anal. Chem. 89:6015–20
    [Google Scholar]
  82. 82.  Zhou L, Gong Y, Hou J, Baker LA 2017. Quantitative visualization of nanoscale ion transport. Anal. Chem. 89:13603–9
    [Google Scholar]
  83. 83.  Nadappuram BP, McKelvey K, Botros RA, Colburn AW, Unwin PR 2013. Fabrication and characterization of dual function nanoscale pH scanning ion conductance microscopy (SICM) probes for high resolution pH mapping. Anal. Chem. 85:8070–74
    [Google Scholar]
  84. 84.  McKelvey K, Perry D, Byers JC, Colburn AW, Unwin PR 2014. Bias modulated scanning ion conductance microscopy. Anal. Chem. 86:3639–46
    [Google Scholar]
  85. 85.  McKelvey K, Kinnear SL, Perry D, Momotenko D, Unwin PR 2014. Surface charge mapping with a nanopipette. J. Am. Chem. Soc. 136:13735–44
    [Google Scholar]
  86. 86.  Perry D, Botros IA, Momotenko D, Kinnear SL, Unwin PR 2015. Simultaneous nanoscale surface charge and topographical mapping. ACS Nano 9:7266–76
    [Google Scholar]
  87. 87.  Momotenko D, Byers JC, McKelvey K, Kang MK, Unwin PR 2015. High-speed electrochemical imaging. ACS Nano 9:8942–52
    [Google Scholar]
  88. 88.  Momotenko D, McKelvey K, Kang MK, Meloni GN, Unwin PR 2016. Simultaneous interfacial reactivity and topography mapping with scanning ion conductance microscopy. Anal. Chem. 88:2838–46
    [Google Scholar]
  89. 89.  Nadappuram BP, McKelvey K, Byers JC, Güell AG, Colburn AW et al. 2015. Quad-barrel multifunctional electrochemical and ion conductance probe for voltammetric analysis and imaging. Anal. Chem. 87:3566–73
    [Google Scholar]
  90. 90.  Perry D, Nadappuram BP, Momotenko D, Voyias PD, Page A et al. 2016. Surface charge visualization at viable living cells. J. Am. Chem. Soc. 138:3152–60
    [Google Scholar]
  91. 91.  Comstock DJ, Elam JW, Pellin MJ, Hersam MC 2010. Integrated ultramicroelectrode-nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy. Anal. Chem. 82:1270–76
    [Google Scholar]
  92. 92.  Thakar R, Weber AE, Morris CA, Baker LA 2013. Multifunctional carbon nanoelectrodes fabricated by focused ion beam milling. Analyst 138:5973–82
    [Google Scholar]
  93. 93.  Takahashi Y, Shevchuk AI, Novak P, Zhang YJ, Ebejer N et al. 2011. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew. Chem. Int. Ed. 50:9638–42
    [Google Scholar]
  94. 94.  Şen M, Takahashi Y, Matsumae Y, Horiguchi Y, Kumatani A et al. 2015. Improving the electrochemical imaging sensitivity of scanning electrochemical microscopy-scanning ion conductance microscopy by using electrochemical Pt deposition. Anal. Chem. 87:3484–89
    [Google Scholar]
  95. 95.  Takahashi Y, Ida H, Matsumae Y, Komaki H, Zhou Y et al. 2017. 3D electrochemical and ion current imaging using scanning electrochemical–scanning ion conductance microscopy. Phys. Chem. Chem. Phys. 19:26728–33
    [Google Scholar]
  96. 96.  O'Connell MA, Lewis JR, Wain AJ 2015. Electrochemical imaging of hydrogen peroxide generation at individual gold nanoparticles. Chem. Commun. 51:10314–17
    [Google Scholar]
  97. 97.  Page A, Kang MK, Armitstead A, Perry D, Unwin PR 2017. Quantitative visualization of molecular delivery and uptake at living cells with self-referencing scanning ion conductance microscopy-scanning electrochemical microscopy. Anal. Chem. 89:3021–28
    [Google Scholar]
  98. 98.  Luchian T, Shin S H, Bayley H 2003. Single-molecule covalent chemistry with spatially separated reactants. Angew. Chem. Int. Ed. 42:3766–71
    [Google Scholar]
  99. 99.  Steinbock LJ, Otto O, Chimerel C, Gornall J, Keyser UF 2010. Detecting DNA folding with nanocapillaries. Nano Lett 10:2493–97
    [Google Scholar]
  100. 100.  Rudzevich Y, Lin Y, Wearne A, Ordonez A, Lupan O, Chow L 2014. Characterization of liposomes and silica nanoparticles using resistive pulse method. Colloid Surf. A 448:9–15
    [Google Scholar]
  101. 101.  Yu RJ, Ying YL, Hu YX, Gao R, Long YT 2017. Label-free monitoring of single molecule immunoreaction with a nanopipette. Anal. Chem. 89:8203–6
    [Google Scholar]
  102. 102.  Gao R, Ying YL, Hu YX, Li YJ, Long YT 2017. Wireless bipolar nanopore electrode for single small molecule detection. Anal. Chem. 89:7382–87
    [Google Scholar]
  103. 103.  Karhanek M, Kemp JT, Pourmand N, Davis RW, Webb CD 2005. Single DNA molecule detection using nanopipettes and nanoparticles. Nano Lett 5:403–7
    [Google Scholar]
  104. 104.  Umehara A, Karhanek M, Davis RW, Pourmand N 2009. Label-free biosensing with functionalized nanopipette probes. PNAS 106:4611–16
    [Google Scholar]
  105. 105.  Ding S, Gao CL, Gu LQ 2009. Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore. Anal. Chem. 81:6649–55
    [Google Scholar]
  106. 106.  Wang YH, Kececi K, Mirkin MV, Mani V, Sardesai N, Rusling JF 2013. Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem. Sci. 4:655–63
    [Google Scholar]
  107. 107.  McKelvey K, Edwards MA, White HS 2016. Resistive pulse delivery of single nanoparticles to electrochemical interfaces. J. Phys. Chem. Lett. 7:3920–24
    [Google Scholar]
  108. 108.  O'Connell MA, Wain AJ 2014. Mapping electroactivity at individual catalytic nanostructures using high-resolution scanning electrochemical-scanning ion conductance microcopy. Anal. Chem. 86:12100–7
    [Google Scholar]
  109. 109.  Zhou M, Yu Y, Hu KK, Xin HL, Mirkin MV 2017. Collisions of Ir oxide nanoparticles with carbon nanopipettes: experiments with one nanoparticle. Anal. Chem. 89:2880–85
    [Google Scholar]
  110. 110.  Takahashi Y, Shevchuk AI, Novak P, Babakinejad B, Macpherson J et al. 2012. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy. PNAS 109:11540–45
    [Google Scholar]
  111. 111.  Nascimento RAS, Özel RE, Mak WH, Mulato M, Singaram B, Pourmand N 2016. Single cell “glucose nanosensor” verifies elevated glucose levels in individual cancer cells. Nano Lett 16:1194–200
    [Google Scholar]
  112. 112.  Jayant K, Hirtz JJ, Plante IJL, Tsai DM, De Boer WDAM et al. 2016. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat. Nanotechnol. 12:335–42
    [Google Scholar]
  113. 113.  Peljo P, Girault HH 2012. Liquid/liquid interfaces, electrochemistry at. Encyclopedia of Analytical Chemistry Hoboken, NJ: John Wiley & Sons https://doi.org/10.1002/9780470027318.a5306.pub2
    [Crossref] [Google Scholar]
  114. 114.  Herzog G 2015. Recent developments in electrochemistry at the interface between two immiscible electrolyte solutions for ion sensing. Analyst 140:3888–96
    [Google Scholar]
  115. 115.  Osborne MC, Shao Y, Pereira CM, Girault HH 1994. Micro-hole interface for the amperometric determination of ionic species in aqueous solutions. J. Electroanal. Chem. 364:155–61
    [Google Scholar]
  116. 116.  Cunnane VJ, Schiffrin DJ, Williams DE 1995. Micro-cavity electrode: a new type of liquid-liquid microelectrode. Electrochim. Acta 40:2943–46
    [Google Scholar]
  117. 117.  Dryfe RAW, Kralj B 1999. Voltammetric ion transfer in the presence of a nanoporous material. Electrochem. Commun. 1:128–310
    [Google Scholar]
  118. 118.  Zazpe R, Hibert C, O'Brien J, Lanyon YH, Arrigan DWM 2007. Ion-transfer voltammetry at silicon membrane-based arrays of micro-liquid-liquid interfaces. Lab Chip 7:1732–37
    [Google Scholar]
  119. 119.  Shen M, Colombo ML 2015. Electrochemical nanoprobes for the chemical detection of neurotransmitters. Anal. Methods 7:7095–105
    [Google Scholar]
  120. 120.  Arrigan DWM, Liu Y 2016. Electroanalytical ventures at nanoscale interfaces between immiscible liquids. Annu. Rev. Anal. Chem. 9:145–61
    [Google Scholar]
  121. 121.  Chen Y, Bian SJ, Gao K, Cao YY, Wu HQ et al. 2014. Studies on the meso-sized selectivity of a novel organic/inorganic hybrid mesoporous silica membrane. J. Membr. Sci. 457:9–18
    [Google Scholar]
  122. 122.  Poltorak L, Herzog G, Walcarius A 2013. In-situ formation of mesoporous silica films controlled by ion transfer voltammetry at the polarized liquid-liquid interface. Electrochem. Commun. 37:76–79
    [Google Scholar]
  123. 123.  Scanlon MD, Strutwolf J, Blake A, Iacopino D, Quinn AJ, Arrigan DWM 2010. Ion-transfer electrochemistry at arrays of nanointerfaces between immiscible electrolyte solutions confined within silicon nitride nanopore membranes. Anal. Chem. 82:6115–23
    [Google Scholar]
  124. 124.  Huang X, Xie L, Lin XY, Su B 2016. Permselective ion transport across the nanoscopic liquid/liquid interface array. Anal. Chem. 88:6563–69
    [Google Scholar]
  125. 125.  Li Q, Xie S, Liang Z, Meng X, Liu S et al. 2009. Fast ion-transfer processes at nanoscopic liquid/liquid interfaces. Angew. Chem. Int. Ed. 48:8010–13
    [Google Scholar]
  126. 126.  Wang Y, Velmurugan J, Mirkin MV, Rodgers PJ, Kim J, Amemiya S 2010. Kinetic study of rapid transfer of tetraethylammonium at the 1,2-dichloroethane/water interface by nanopipet voltammetry of common ions. Anal. Chem. 82:77–83
    [Google Scholar]
  127. 127.  Wang Y, Kakiuchi T, Yasui Y, Mirkin MV 2010. Kinetics of ion transfer at the ionic liquid/water nanointerface. J. Am. Chem. Soc. 132:16945–52
    [Google Scholar]
  128. 128.  Colombo ML, Sweedler JV, Shen M 2015. Nanopipet-based liquid-liquid interface probes for the electrochemical detection of acetylcholine, tryptamine, and serotonin via ionic transfer. Anal. Chem. 87:5095–100
    [Google Scholar]
  129. 129.  Colombo ML, McNeil S, Iwai N, Chang A, Shen M 2016. Electrochemical detection of dopamine via assisted ion transfer at nanopipet electrode using cyclic voltammetry. J. Electrochem. Soc. 163:H3072–76
    [Google Scholar]
  130. 130.  Zhou M, Yu Y, Hu KK, Mirkin MV 2015. Nanoelectrochemical approach to detecting short-lived intermediates of electrocatalytic oxygen reduction. J. Am. Chem. Soc. 137:6517–23
    [Google Scholar]
  131. 131.  Feng Z, Georgescu NS, Scherson DA 2017. Comments regarding the non-miscible solvent microcapillary method for superoxide detection in aqueous electrolytes. J. Electrochem. Soc. 164:H148–52
    [Google Scholar]
  132. 132.  Gorelik J, Gu YC, Spohr HA, Shevchuk AI, Lab MJ et al. 2002. Ion channels in small cells and subcellular structures can be studied with a smart patch-clamp system. Biophys. J. 83:3296–303
    [Google Scholar]
  133. 133.  Clarke RW, White SS, Zhou D, Ying L, Klenerman D 2005. Trapping of proteins under physiological conditions in a nanopipette. Angew. Chem. Int. Ed. 44:3747–50
    [Google Scholar]
  134. 134.  Shevchuk AI, Novak P, Taylor M, Diakonov IA, Ziyadeh-Isleem A, et al 2012. An alternative mechanism of clathrin-coated pit closure revealed by ion conductance microscopy. J. Cell Biol. 197:499–508
    [Google Scholar]
  135. 135.  Tuna Y, Kim JT, Liu HW, Sandoghdar V 2017. Levitated plasmonic nanoantennas in an aqueous environment. ACS Nano 11:7674–78
    [Google Scholar]
  136. 136.  Cao S, Ding S, Liu Y, Zhu A, Shi GY 2017. Biomimetic mineralization of gold nanoclusters as multifunctional thin films for glass nanopore modification, characterization, and sensing. Anal. Chem. 89:7886–92
    [Google Scholar]
  137. 137.  Hanif S, Liu H, Chen M, Muhammad P, Zhou Y et al. 2017. Organic cyanide decorated SERS active nanopipettes for quantitative detection of hemeproteins and Fe3+ in single cells. Anal. Chem. 89:2522–30
    [Google Scholar]
  138. 138.  Jiang ZY, Liu H, Ahmed SA, Hanif S, Ren S et al. 2017. Insight into ion transfer through the sub-nanometer channels in zeolitic imidazolate frameworks. Angew. Chem. Int. Ed. 56:4767–71
    [Google Scholar]
  139. 139.  Yuill EM, Baker LA 2017. Electrochemical aspects of mass spectrometry: atmospheric pressure ionization and ambient ionization for bioanalysis. ChemElectroChem 4:806–21
    [Google Scholar]
  140. 140.  Li A, Hollerbach A, Luo Q, Cooks RG 2015. On-demand ambient ionization of picoliter sample using charge pulses. Angew. Chem. Int. Ed. 54:6893–95
    [Google Scholar]
  141. 141.  Owens JL, Marsh HA Jr., Dryhurst G 1978. Electrochemical oxidation of uric acid and xanthine. An investigation by cyclic voltammetry. Double potential step chronoamperometry and thin-layer spectroelectrochemistry. J. Electroanal. Chem. 91:231–47
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125840
Loading
/content/journals/10.1146/annurev-anchem-061417-125840
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error